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Abstract 

In recent times, time-to-event data such as time to failure or death is routinely collected alongside high-through-
put covariates. These high-dimensional bioinformatics data often challenge classical survival models, which 
are either infeasible to fit or produce low prediction accuracy due to overfitting. To address this issue, the focus 
has shifted towards introducing a novel approaches for feature selection and survival prediction. In this article, we 
propose a new hybrid feature selection approach that handles high-dimensional bioinformatics datasets for improved 
survival prediction. This study explores the efficacy of four distinct variable selection techniques: LASSO, RSF-vs, SCAD, 
and CoxBoost, in the context of non-parametric biomedical survival prediction. Leveraging these methods, we con-
ducted comprehensive variable selection processes. Subsequently, survival analysis models—specifically CoxPH, RSF, 
and DeepHit NN—were employed to construct predictive models based on the selected variables. Furthermore, we 
introduce a novel approach wherein only variables consistently selected by a majority of the aforementioned feature 
selection techniques are considered. This innovative strategy, referred to as the proposed method, aims to enhance 
the reliability and robustness of variable selection, subsequently improving the predictive performance of the survival 
analysis models. To evaluate the effectiveness of the proposed method, we compare the performance of the pro-
posed approach with the existing LASSO, RSF-vs, SCAD, and CoxBoost techniques using various performance metrics 
including integrated brier score (IBS), concordance index (C-Index) and integrated absolute error (IAE) for numerous 
high-dimensional survival datasets. The real data applications reveal that the proposed method outperforms the com-
peting methods in terms of survival prediction accuracy.
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Introduction
Survival data analysis is a statistical subfield focused on 
studying the duration until a specific event occurs, such 
as the time until death in living organisms or the time 
until failure in mechanical systems. It aims to answer 
questions like the proportion of a population expected 
to survive beyond a given time point, the rate at which 
those who survive will experience the event, and how the 
likelihood of survival varies with different conditions or 
characteristics. The objectives of survival analysis are to 
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identify relationships between risk variables and occur-
rences, to explain the likelihood of an event occurring by 
a certain period, or to forecast survival times based on 
informative characteristics. Survival outcomes are gener-
ally referred to as events or results related to the duration 
of time that an individual or entity survives or remains in 
a particular state before a specific event occurs such as 
death, relapse, or a specific health condition developing.

In recent decades, there has been an increasing focus 
on devising methods for selecting relevant features in 
time-to-event data. This heightened interest is driven by 
the availability of extensive datasets and the recognition 
that data sparsity may exist. When we refer to sparsity, 
we mean that certain features in the dataset may not 
have any relevance to the outcome of interest, and vari-
able selection becomes the preferred approach to address 
this. A number of feature selection (FS) techniques have 
been developed in literature, each working for the same 
objective function that is to reduce dimension of the 
data but using a different mechanism to reach the goal. 
FS algorithms available are numerous but it is important 
to mention the saying ‘one-size-fits-all’ type algorithm 
does not exists in reality. In such cases, margin of error 
always exists which needs to be minimized. This moti-
vates researchers to improve already existing algorithm/
technique or come up with a fresh idea to do the same 
task with minimum error. With this in mind, we tried to 
introduce a hybrid type FS algorithm for survival analy-
sis whose working mechanism is explained in the next 
section.

Related work
Numerous methods for selecting variables in survival 
data have been devised over time. To provide a concise 
overview of the existing body of work and to gain insight 
into the functionality of each algorithm in this context, a 
brief literature review is presented below.

Tibshirani [1] extended the Least Absolute Shrink-
age and Selection Operator (LASSO) method to the Cox 
model that was initially introduced for linear regression. 
In this approach, an L1-norm penalty term is added to 
the loss function. The coefficients (β) are then estimated 
via maximization of the partial likelihood function while 
observing the constraints 

∑
|β j| ≤ s where ‘s’ is a user-

defined non-negative value. By effectively shrinking the 
coefficients of less significant and superfluous variables to 
zero, this constraint lowers the complexity of the model.

The Adaptive LASSO for the Cox proportional hazards 
model was developed by Zhang and Lu [2] to improve the 
estimator’s characteristics and make it work with com-
mon techniques. In order to achieve equilibrium, this 
strategy gives larger weights to small coefficients and 
smaller weights to large coefficients. Global optimizers 

are certain to exist because of the convex shape of the 
penalty term. The adaptively weighted L1 penalty of the 
form � p

k=1|
βk

βk
| where β̃k = (β̃1, β̃2, β̃3, . . . , β̃p) known as 

Adaptive Lasso penalty maximized partial likelihood.
In certain situations, LASSO has shown limitations. 

For instance, it tended to limit the number of features 
based on a systematic relationship with the number of 
samples in the dataset. Additionally, when dealing with 
highly correlated predictors, it often selected only one 
feature among them. To overcome these challenges, 
alternative methods have been introduced, one of which 
is Elastic Net. This method involves incorporating a com-
bination of L1 and L2-norm penalties into the regression 
coefficient estimation process. The constraint of the form 
�

(
(1− α)

∑p
j=1

∣∣βj
∣∣+ α

∑p
j β

2
j

)
 is added to the partial 

log-likelihood function while maximizing it during the 
estimation process [3].

Cross-validation was used to estimate the two param-
eters, regularization parameter � and mixing parameter 
α. Later, it was suggested to just estimate � by cross-vali-
dation using a fix α = 0.5.

Du et  al. [4] introduced a method for variable selec-
tion in the Cox Proportional Hazards model with semi-
parametric relative risk. They initially divided the model 
into two components: parametric and non-parametric. 
For the non-parametric component, they employed a 
smoothing spline ANOVA model to estimate risk, and 
variable selection was performed using the Kullback–
Leibler geometry method. In contrast, for the paramet-
ric component, risk estimation was conducted using the 
Penalized Profile Partial Likelihood approach. Variable 
selection in this part was achieved by applying a con-
cave penalty, either SCAD (Smoothly Clipped Absolute 
Deviation) or an Adaptive LASSO penalty. It is advisable 
to incorporate discrete covariates into the parametric 
component and continuous covariates into the non-
parametric component of the model. Nevertheless, if 
the estimation process indicates that certain continuous 
covariate effects can be suitably represented by specific 
parametric forms, like linear relationships, these covari-
ates can be transferred to the parametric section, and a 
fresh model can be developed accordingly.

Li and Luan [5] introduced a boosting algorithm uti-
lizing smoothing splines, which constructs a series of 
smoothing spline models and amalgamates them into a 
final model. This iterative algorithm modifies the hazard 
function at each step to rectify errors from prior models. 
In a comparative study against traditional proportional 
hazards models, Li and Luan demonstrated the superior-
ity of their boosting algorithm, particularly in analyzing 
high-dimensional microarray data from a breast can-
cer study. Their research underscores the efficacy of the 
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boosting algorithm with smoothing splines for survival 
analysis in high-dimensional datasets and its capacity to 
handle complex covariate structures in survival analysis.

Morris et  al. [6] devised a feature selection technique 
tailored for stratified Cox models using gradient boost-
ing. This method is intended for situations where the 
assumption of proportional hazards is not met. To miti-
gate confounding effects, they introduced a stratification 
process, resulting in a stratified proportional hazards 
model. In their algorithm, variables are chosen based on 
their capacity to maximize the first partial derivative of 
the likelihood function. This iterative process updates β 
coefficients estimates while monitoring the risk of over-
fitting, with the number of iterations determined through 
various options like Bayesian Information Criterion 
(BIC), a predefined number of variables for selection, 
changes in likelihood, or k-fold cross-validation. Addi-
tionally, they developed an R package called ’SurvBoost’ 
to implement this method and conducted a simulation 
study comparing its accuracy and runtime with the exist-
ing ’mBoost’ R package.

He et al. [7] introduced an algorithm that applies gradi-
ent boosting to the data while considering only one com-
ponent of β, aiming to improve computational feasibility. 
The fundamental concept behind this algorithm involves 
modifying certain aspects of existing variable selection 
techniques designed for high-dimensional survival data. 
Although component-wise boosting algorithms were 
already present in the literature, the authors made spe-
cific adaptations to enhance its computational efficiency, 
drawing inspiration from the Minimization-Maximiza-
tion (MM) algorithm by Hunter and Lange [8].

When conducting FS on randomly sampled observa-
tions, the objective is to determine the probability that 
features are included in the model. This approach is 
known as stability selection [9]. Additionally, the authors 
proposed a stability selection boosting procedure based 
on random permutations, which follows the concept 
introduced by Tusher et al. [10] in the context of the Sig-
nificance Analysis of Microarrays (SAM). This modifica-
tion resulted in a reduced false discovery rate for their 
variable selection algorithm.

Ishwaran et  al. [11] introduced a novel approach in 
survival tree analysis by introducing a dimensionless 
ordered statistic known as the ’minimal depth of maxi-
mal subtree.’ This statistic served as a measure of vari-
able predictiveness within survival trees. Unlike the 
traditional method of calculating Variable Importance 
(VIMP) in random forests using permutation, they opted 
for the minimal depth statistic. This statistic assesses the 
importance of variables based on their proximity to the 
root node in a tree, specifically in relation to the root of 
the nearest maximal subtree. Their variable selection 

procedure comprises three main steps. Initially, they 
randomly select covariates for the model and identify 
the most crucial ones using minimal depth. An initial 
model is then constructed with these chosen covariates. 
This process is iterated a predefined number of times, 
incorporating additional variables into the initial model 
based on minimal depth criteria until the joint VIMP of 
nested models stabilizes. This entire process is repeated 
several times, and the covariates that consistently appear 
in models larger than the average size are ultimately 
selected.

Pang et al. [12] introduced a gene selection method that 
employs an iterative feature elimination procedure within 
the framework of random survival forest (RSF). Their 
approach begins by fitting an RSF model to the dataset 
containing the complete set of covariates and ranking all 
covariates based on their Variable Importance (VIMP) 
scores, which are calculated using a permutation-based 
method. The top variables, typically around 80%, are 
retained, and their out-of-bag errors are computed. This 
process is repeated iteratively until only two covariates 
remain in the model. The objective is to identify the set of 
covariates with the minimum number required to main-
tain an out-of-bag error rate within 1 standard error. This 
methodology effectively takes into account the multivari-
ate correlations among variables. Experimental results 
on real high-dimensional microarray datasets with sur-
vival outcomes demonstrated that this approach excels in 
identifying a compact set of genes while preserving pre-
dictive accuracy for survival.

Mbogning and Broet [13] introduced a variable selec-
tion approach tailored for survival data, which relies on 
a Topological Index derived from permutation meth-
ods. Their methodology begins with the construc-
tion of a bagging survival forest on the training data. 
The importance score, utilized as a criterion for node 
splitting or determining tree depth during forest con-
struction, serves as the basis for calculating an impor-
tance score. These importance scores are denoted as 
HSj(j = 1, 2, 3, . . . , p). Subsequently, another bagging 
survival forest is created, but this time, the importance 
of variables is computed based on permuted data. This 
process is iterated a specified number of times. Another 
list of scores are generated in HS∗j (j = 1, 2, 3, . . . , p) . 
P-values are calculated for all competing variables Xj 
using Pj = 1

Q

∑Q
q=1 I{HS

0
jq > HSj} . Given a global level α, 

variables which satisfies the conditions that pj < a
m   are 

selected according to a Bonferroni procedure for multiple 
comparisons.

Indeed the above mentioned techniques are useful for 
variable selection, their application in this study is how-
ever limited for identifying discriminative features in 
high-dimensional survival datasets. Therefore, we have 
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proposed a novel tools for variable/feature selection due 
their ability in handling high-dimensional survival data 
which is important for better predictions.

Methods and material
Datasets and data processing
In this section, we explore the datasets considered in this 
research study. A total of 11 survival datasets were used 
and their detail description along with their source is 
presented in Table 1. While selecting the datasets for the 
current research study related to feature selection in sur-
vival analysis, it was ensured that the benchmark datasets 
are high-dimensional in nature.

The Cox PH model
The Cox Proportional Hazard Model (CPHM) is a semi-
parametric method used in survival analysis. It defines 
the hazard function ′h(t)′ as the sum of two components: 
a baseline hazard ′h0(t)′ that depends solely on time ’t,’ 
and a component related to covariates. The mathematical 
form of the CPHM is as follows:

Here in this equation, h0(t) is a time-dependent com-
ponent that is not influenced by covariates, while eβ′xi 
represents the covariate-related component, which 
does not depend on time’t’. It’s important to note that 
there is no constant term “ β0 ” in the regression coef-
ficients. This absence of a constant term is because it 
can be absorbed or canceled out by the baseline hazard 

(1)
h(t) = h0(t)× exp

(
β1xp1 + β2x2 + β3xp + · · · + βixi

)
,= h0(t)× e(β′xi)

function, essentially being a part of the hazard function 
itself [24].

Feature selection methods
With the introduction of new technologies in past few 
decades, we are able to access such information about a 
subject under study which one had never before. Having 
more information about samples/subjects on the other 
hand can create a situation called the curse of dimension-
ality. Especially in the case when number of features are 
substantially greater than the number of observations. 
This create several problems during the analysis and pro-
cessing of the data, such as increase in computational 
cost, noise and redundancy, the problem of overfitting 
and poor generalization of performance on unseen data 
[25]. There are three common types of feature selection 
methods namely filter, wrapper and embedded methods.

Filter methods  This consists of feature selection tech-
niques that ranks the features in dataset ahead of running 
a learning algorithm and selects features in the model 
based on a pre-specified criteria in connection with the 
statistical measure being used for ranking purpose. This 
set of methods are less time-consuming and inexpensive 
in nature as they are done as a pre-processing step.

Wrapper methods  Wrapper methodology consists of 
techniques where subsets of features are made, model 
is trained on each subset and comparison is made for 
each subset in terms of performance metrics. Features 

Table 1  Description of the Benchmark high-dimensional survival datasets

Serial No Name of Dataset used in this study No. of Samples No. of Features Source

1 Breast: Contains clinical and genomic data of 614 early breast cancer patients 614 1692  [14]

2 WPBC: Stands for Wisconsin Prognostic Breast Cancer. Contains clinical data and follow-up 
information for patient with breast cancer

198 34  [15]

3 VDV: van de Vijver Microarray Breast Cancer dataset 78 4707  [16]

4 Heart FD: Heart Failure Dataset collected for research purpose by a group of students at Fais-
alabad, Pakistan

299 13  [17]

5 MNO: Short for Melanoma Nanostring dataset 45 206  [18]

6 GE1: A gene expression data measured by DNA microarrays from breast tumor patients 115 553  [19]

7 GE2: A gene expression dataset comprising patients diagnosed with primary breast carcino-
mas, all of whom had either stage I or III breast cancer and were under 53 years of age

116 4753  [20]

8 GE3: Gene expression data collected from peripheral-blood and bone marrow samples 
of patients diagnosed with acute myeloid leukemia (AML)

116 6288  [19]

9 DLBCL: The dataset consists of gene expression and survival data from a cohort of 240 
patients diagnosed with diffuse large-B-cell lymphoma

240 7399  [21]

10 Bone M: Data pertaining to pediatric patients suffering from various hematologic diseases 
who underwent unrelated donor hematopoietic stem cell transplantation (UD HSCT) with-
out manipulation

187 37  [22]

11 NKI: A subset dataset based on top varying genes from gene expression dataset 272 1567  [23]
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are added or removed from the subsets until a pre-
defined number of features and performance measure is 
obtained. The subset which yields a pre-defined model 
output is considered as a final set of features for model-
ling the data further.

Embedded methods  This method combines the core 
properties of both, the filter and wrapper methods. It is 
named as embedded because the feature selection tech-
nique is blended as a part of the actual learning algorithm. 
It is a less time-consuming, inexpensive and more accurate 
than aforementioned methods. The methods employed in 
this study for comparison fall under this category. In the 
following section, we provide a brief overview of the vari-
able selection methods utilized in this study.

Least Absolute Shrinkage and Selection Operator – LASSO
Least Absolute Shrinkage and Selection Operator, or 
LASSO, is a method that penalises variables. It intro-
duces an L1-type penalty term λ||β|| to the coefficients 
of the Cox regression [1]. This penalty can effectively 
reduce some coefficients to zero, leading to a reduction 
in the model’s size while maintaining its parsimony. The 
parameter λ plays a crucial role in determining the num-
ber of variables selected in the model. A larger λ value 
leads to more coefficients being reduced to zero, result-
ing in a model with fewer features. Conversely, reducing 
the λ value increases the number of features included in 
the model when compared to a higher λ value.

In a survival context, the triplet {(Yi , δi ,Xi), i = 1, 2, 3, . . . , n} 
is used to represent the observed data. Where 
Yi = min(Ti,Ci) is the observed survival time, taking 
minimum of either observed event time “ Ti ” or censoring 
time “ Ci ”. δi is the censoring indicator, δi = I(Ti ≤ Ci) = 1 
when actual event of interest is observed and is 0 other-
wise. And Xi = (x1, x2, x3, . . . , xp)

t is the matrix of ‘p’ pre-
dictor variables for each subject in the dataset. To model 
the survival data, we consider semi-parametric cox pro-
portional hazards model: h(t|x) = h0(t)exp(

∑p
j=1 BjXj).

The partial likelihood for cox model is given as: 
Ln(β) =

∏
i∈D

exp(Xt
i β)∑

l∈Ri
exp(Xt

l β)
.

Where D is the set of indices for observed events, and 
Ri are observations at risk at time Yi . Now, a function 
known as log partial likelihood i.e., ln(β) = log{Ln(β)}/n 
with a penalty term, specifically called lasso penalty 
i.e., p�(β) = �

∑p
j=1 |βj| applied on the coefficients β, 

when minimized, results in the sparsity, hence variable 
selection.

Mathematically: g(β) = ln(β)+ ρ�(β) =, g(β) =
log {(β)}

n +

�
∑p

j=1

∣∣βj
∣∣, (β) = −ln(β)+ �

∑p
j=1

∣∣βj
∣∣.

Where λ is a non-negative tuning parameter taking on 
any positive value and controls the amount of variables 
selected in the final model. The lasso penalty �

∑p
j=1 |βj| 

is singular at point βj = 0 and is therefore able to elimi-
nate the redundant variables from the model and keep 
the relevant ones only.

Random Survival Forest’s Variable Selection – RSF‑vs
A useful tool for variable selection is the Random 
Survival Forest (RSF), which is an extension of the 
random forest approach for survival data [26]. RSF 
builds trees in a similar way as conventional random 
forests. Following the random selection of B boot-
straps at random from the data, a tree is created on 
each bootstrap sample. A cumulative hazard function 
(CHF) is produced by averaging the predictions made 
by these trees. The RSF then offer two option for fea-
ture selection: the variable hunting algorithm (RSF-
VH) and minimal depth. The minimal depth approach 
for FS is advised when the ratio of the number of fea-
tures (p) to the number of samples (n) is less than ten 
that is p/n < 10. However, when p/n > 10, the RSF-VH 
approach for FS is preferred. When splitting of a node 
is carried out, the minimal depth is used to rank the 
features according to their distance from the root 
node in the tree. Shorter paths between variables and 
the root node are regarded as having greater predic-
tive power in the model. More detailed information on 
minimal depth of the maximal subtree can be found 
in the work by Ishwaran et al. [11]. In RSF-VH, an ini-
tial model is constructed using covariates according 
to a predetermined minimal depth threshold value. 
Additional covariates are gradually incorporated into 
the initial model based on their minimal depth rank-
ings until the joint variable importance (VIMP) for the 
resulting nested models stabilizes. This process is typi-
cally repeated multiple times, often 50 repetitions, and 
the variables that are frequently selected in the models 
are included in the final model.

Smoothly Clipped Absolute Deviation – SCAD
SCAD was proposed by Fan and Li [27] as an improved 
alternative to LASSO for penalizing the regression coef-
ficients. Some studies [27–29] showed that LASSO can 
come up with biased results for coefficients with larger 
values, while working fine for the coefficients with rela-
tively smaller values. This led the researchers to intro-
duce another penalty term known as non-concave 
SCAD-penalty.

The penalty function is rather defined primarily by its 
first derivative which is given as:



Page 6 of 17Asghar et al. BMC Medical Informatics and Decision Making          (2024) 24:120 

This penalty term contains two tuning parameters that 
are, � and a whose values could be obtained by some cri-
teria such as cross validation based on a grid search for 
the best pair of ( �, a ) values. But this could be computa-
tionally very expensive too. Thus, based on Bayesian sta-
tistical point of view and practical simulation studies, Fan 
and Li [27] suggests using, a = 3.7.

Boosting Algorithm for Variable Selection – CoxBoost
Boosting, originally developed in machine learning for 
classification and regression problems [30–32]. It is basi-
cally an ensemble technique which runs iteratively to 
combine the predictions of many weak models into one 
strong model. With time, boosting algorithms started 
getting notable attention, and were later on extended to 
statistical field, operating in many statistical problems 
including regression and survival analysis.

We utilized the boosting algorithm known as ‘Cox-
Boost’ to perform feature selection making use of the 
cox regression model. For this, we used an R package 
‘mboost’ [33] which performs a model based boost-
ing using the built-in function ‘coxPH’ to be specified in 
argument ‘family’. Using this argument, we are about to 
use negative partial log-likelihood as a loss function L(y, 
F(X)) and OLS estimator as the base learner. The com-
plete boosting algorithm for model fitting as well as fea-
ture selection context completes in these five steps.

1.	 Initialize β̂ = (0, . . . , 0);

2.	 Compute the negative gradient vector: u(i) = δ(i)−∑
l∈R(i) δ

(i) exp{X
(l)T β̂}∑

{X(l)T β̂}

3.	 Compute the possible updates to the gradient vector 
by fitting least square estimator, 

⌢

bj = (XT
j Xj)

−1
XT
j u;

4.	 Select the best update, j∗ = argminj
∑n

i=1

(
u(i) − X

(i)
j b̂j

)2
;

5.	 Update the estimate, β̂j∗ = β̂j∗ + vb̂j∗ .

The steps 2–5 are repeated mstop number of times, 
which plays a crucial role in both, feature selection 
and prediction models. In feature selection, increas-
ing this will increase the number of features selected 
and vice versa. This can create problems of overfitting 
and irrelevant variable selection in the model in case 
of larger value while we may miss important predic-
tor variables if this value is kept low [34]. To cope with 
this issue, a tenfold cross validation is used to select 
the optimal value for mstop – which is the number of 
boosting steps – and do the feature selection using 
that optimal mstop value.

(2)
,
p(β) = �{I(β ≤ �)+

(a�−β)+
(a−1)�

I(β > �)} for some a > 2 and β > 0. Machine learning models
Time-to-event data can be analyzed for making pre-
dictions about survival time and estimate the survival 
probability at a specific estimated survival time, using 
both traditional statistical methods and machine learn-
ing models. Although, they both share this common 
goal of making predictions of the survival time and esti-
mating the survival probabilities, yet the focus of both 
methods is on different objectives. Traditional methods 
mainly focuses on distributions of event times and sta-
tistical properties of estimation of parameters, whereas 
machine learning models combines the power of tradi-
tional methods along with machine learning techniques 
to make better predictions of occurrence of event at a 
given time [35].

There are three types of statistical methods commonly 
used in the context of survival analysis that are Paramet-
ric, Semi-parametric and Non-parametric. In this study, 
the semi-parametric approach, i.e., the Cox Proportional 
Hazards Model, is employed for predictions, along with 
two other machine learning models: Random Survival 
Forest and DeepHit Neural Network. These models are 
used for modeling time-to-event data and are discussed 
in the following section.

Random Survival Forest (RSF)
RSF is an ensemble method usually categorized under 
advanced machine learning techniques which is basically 
an extension of random forests approach to tackle sur-
vival information [36, 37].

The forest is grown in the same manner as in a usual 
random forest i.e.

	 i.	 Randomly select B samples of the same size as the 
original dataset, allowing for replacement. Any sam-
ples not chosen are considered out-of-bag (OOB).

	 ii.	 Construct a survival tree for each of the B samples 
selected in the first step.

a	 At each tree node, randomly choose a subset of 
predictor variables and determine the best pre-
dictor and splitting value that yield two subsets 
(referred to as daughter nodes) with the maxi-
mum difference in the objective function.

b	 Repeatedly apply the above step recursively to 
each daughter node until a specified stopping cri-
terion is met.

	iii.	 Calculate the cumulative hazard function (CHF) 
for each tree and then compute the average CHF 
across all B trees to create the ensemble CHF.
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	iv.	 Assess the prediction error of the ensemble CHF 
using solely the OOB data.

Since the CHF and survival function S(t) are related, 
the RSF also gives us estimates of survival function which 
we can further use for predictions using the test set of the 
data and calculate our performance evaluation metrics.

DeepHit neural network
DeepHit is a deep learning model designed for survival 
analysis, capable of simultaneously addressing single-
cause and competing risks scenarios. It utilizes a net-
work structure comprising a shared sub-network and 
several cause-specific sub-networks. DeepHit’s training 
process involves a loss function that leverages both sur-
vival times and relative risks. This model is proficient 
in capturing non-linear and non-proportional relation-
ships between covariates and risk factors. Further, it is a 
discrete-time survival model, means that survival times 
are discretized into either equidistant (equally spaced) 
or quantiles intervals [38]. The DeepHit method was the 
first to implement neural networks to the discrete-time 
likelihood for survival data. A more detailed reading on 
how discretization process works in survival context and 
its further extensions can be obtained from a study con-
ducted by Kvamme, H. and Borgan, Ø., 2021 [39].

In this study, we implemented the DeepHit NN using 
R package ‘survivalmodels’ [40] which makes it hap-
pen using R package ‘reticulate’ [41]. Where Reticulate 
is a popular R package creating a Python environment 
in R software so that one can use Python packages and 
functions inside R [42]. No hyper parameter tuning was 
applied, rather the default parameters were used for 
training the neural network.

Proposed model architecture
In this paper, Feature selection methods described some 
well-known feature selection techniques for survival 
studies, briefly explaining their algorithms to separate 
and select only important features to the response vari-
able. In practice, it is usually observed that employing 
many FS methods to the same dataset, it is not guaran-
teed that all techniques agree upon the same set of fea-
tures. It is due to the mechanism a FS technique uses 
to give relevant importance to features. For instance, 
RSF-vs uses a dimensionless order statistic called mini-
mal depth of maximal subtree which shows the predic-
tive power of a variable in a survival tree. RSF-vs ranks 
features based on minimal depth criteria and selects the 
top-most from the list. In contrast, LASSO and SCAD 
implies their respective penalties on the regression coef-
ficients in order to contract redundant variables’ coef-
ficients to as low as zero. Although, the mechanism each 

method uses are way different than each other, yet the 
objective function is the same for all, so it is expected 
from each to agree upon other’s selection as much as 
possible, off course if not hundred percent.

In this work, we aimed at exploiting and capitaliz-
ing four different feature selection techniques that uses 
contrasting mechanism to obtain the objective function. 
Intuitively, the variables which are important and non-
redundant in reality is believed to have higher chances of 
being chosen by most of the algorithms. This led to pro-
pose a novel feature selection method for survival data.

The proposed method is a three-step procedure for fea-
ture selection, constituting a hybrid method that selects 
the most informative or discriminative features on which 
the majority of the feature selection techniques agree. 
The method is explained as follows:

	 i.	 Utilize each of the four feature selection tech-
niques—LASSO, RSF-vs, SCAD, and CoxBoost—
individually to obtain four feature sets, one for each 
of the four FS techniques employed.

	 ii.	 After comparison, create a new set that only 
includes those features chosen for at least three of 
the four sets in step 1.

	iii.	 The final set of features is determined by selecting 
the set of characteristics that satisfy the criteria in 
step 2. These features will then go through addi-
tional processes, like fitting a survival model utilis-
ing predictive machine learning models and assess-
ing their predictive accuracy.

The suggested alg0rithm is described mathematically as 
follows:

Let FS 1​, FS 2​, FS 3​, and FS 4​ stand for the sets of fea-
ture that were 0btained by using the LASSO, RSF-vs, 
SCAD, and C0xB00st methods, respectively.
Then, the common features that has agreement or 
the set of intersection of these feature, represented as 
FS intersection​, is determined by:

Next, the features that show up in at least three of the 
four feature sets are then filtered out as:

where count(f ) is the number of times feature f appears 
throughout the four feature sets.

FS intersection =
{
f ∈ F/FS1 ∩ FS2 ∩ FS3 ∩ FS4

}

FS final =
{
f | f ∈ FS intersection, count(f) ≥ 3

}

Here count (f) =|
{
FSi | f ∈FSi

}
|
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The final collection of attributes, denoted by the 
set FSfinal​, will be used for additional analysis, includ-
ing the fitting and performance evaluation of survival 
models.

The primary goal of this suggested approach is to 
create a feature selection pr0cess for survival predic-
tions that is both simple to comprehend and apply. The 
0bjective of this study is to develop an appr0ach that is 
both efficient and intuitive by combining well-known 

feature selection techniques with a simple selection 
criterron based 0n their agreement across these tech-
niques. Despite its simplicity, the prop0sed method 
has shown promising results in 0ur experiments, as 
evidenced by its performance in survival prediction 
tasks compared to existing techniques.

The algorithm of the proposed hybrid feature selection 
method is given below.

Algorithm 1: Pseudo code of the proposed method

The following flowchart shows the basic outline of the 
proposed method in a graphical way in Fig. 1.

Performance evaluation metrics
To evaluate model performance, researchers have access 
to various evaluation metrics, allowing them to choose 
the most appropriate ones for their specific problem. For 
survival models, common metrics include the Concord-
ance index [43], C-statistic (a modified version of C-index 
suitable for models with high censoring rates) [44], Brier 
score, integrated Brier score [45], integrated square error 
(ISE) [46], and others. In this study, we chose to assess 
the competitive models using Integrated Brier Scores 
(IBS), the C-Index, Integrated Absolute Error (IAE), and 

Integrated Square Error (ISE). These methods are briefly 
explained as follow:

i.	 Integrated Brier Score (IBS)

The Brier score, initially introduced by Brier in 1950 
[45] to assess the accuracy of weather forecasts, was later 
adapted to evaluate the performance of survival models 
that incorporate censored observations [47]. The Brier 
score varies with time. In the absence of censoring, the 
Brier score can be expressed as:

(3)BS(t) = 1
N

∑
i=1...N

{
(0− Ŝ(t/zi))

2

(1− Ŝ(t/zi))
2

If ti ≤ t
If ti ≥ t
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In scenarios involving censoring, a weighted version of 
the formula is used to accommodate censoring. Specifi-
cally, BS(t) is divided by 1/Ĝ(ti) when censoring occurs 
before time ‘t’ and it is divided by 1/Ĝ(t) when censor-
ing occurs after time ’t.’ Observations that are censored 
before time ’t’ are not included in the Brier score calcula-
tion. The formula for calculating Brier score in the pres-
ence of censoring is as follows:

A Brier score approaching 0 signifies superior predic-
tive performance, while a score nearing 1 suggests poorer 
performance. The Integrated Brier Score (IBS) is derived 
by integrating the Brier score across all available time 
intervals, denoted as tmin ≤ t ≤ tmax . Mathematically, 
this can be expressed as follows:

The integration can be readily computed using the 
trapezoidal rule, which calculates the area under the pre-
diction curve [48].

	 ii.	 Concordance index (C-Index)

The C-index is a discrimination measure that indicates 
the ability of a model to effectively distinguish between 

(4)BS(t) = 1
N

�





(0−�S(t/zi))2
�G(ti)

(1−�S((t/zi))
2

�G(t)

0

If ti ≤ t, δi = 1
If ti > t
If ti = t, δi = 0

(5)IBS =
1

max(ti)

∫ max(ti)

0
BS(t)dt

a pair of observations categorized as ’high’ and ’low’ 
risk. It is defined as the ratio of concordant pairs to the 
total comparable pairs [47, 49]. Where a comparable 
pair means a pair of individuals (say i and j ) in a data-
set such that ti and tj are its actual event times and S(ti) 
and S(tj) are their predicted survival times. Now, if a pair 
(i, j) is such that ti > tj for which (ti) > S(ti) , this means 
the actual observed time for ith individual is higher than 
jth , and the model predicted the same, it is considered as 
a concordant pair. Otherwise, it is a discordant pair. We 
can write:

To handle censoring when determining comparable 
pairs, certain rules are followed. For example, a censored 
instance can only be paired with uncensored instances 
that occur after it in the dataset. Additionally, a censored 
instance cannot be paired with either another censored 
instance or an uncensored instance that occurs after it. This 
concept is illustrated in Fig. 2, where we have five observa-
tions ordered from top to bottom. We have two possible 
scenarios: (a) All five observations are uncensored, result-
ing in a total of 5C2 = 10 pairs. (b) The second and fourth 
observations are censored, reducing the number of pairs 
to 6, as per the rule that censored observations cannot be 
paired with uncensored observations occurring after them.

In survival models that predicts survival time as an out-
put, the C- index is calculated as:

(6)C − Index =
# of Concordant Pairs

Total Comparable Pairs

Fig. 1  A flowchart of the proposed feature selection method for survival analysis
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Where ‘N’ is the total number of comparable pairs. ‘I[.]’ 
is the indicator function and S(.) are the estimated sur-
vival probabilities from the model. Some survival mod-
els do not directly estimate survival probabilities; instead 
they rather compute hazard ratios, such as Cox PH 
model. In such cases, the C-index can be computed as:

Where ‘ ̂β  ’ represents the estimated parameters cal-
culated from hazard-ratio based models such as Cox, 
C-index values can range from 0 to 1. A higher value for 
the C-index indicates better accuracy in terms of separat-
ing ‘low’ and ‘high’ risk observations. A C-index equal to 
0.5 suggests that the model made random guesses, while 
a value close to 1 indicates perfect separation, and a value 
below 0.5 suggests separation in the wrong direction.

	iii.	 Integrated Absolute and Integrated Square Errors 
(IAE and ISE):

Survival models based on simulated datasets can 
be evaluated using these two similar methods. This is 
because the mathematical expression of the survival 
function S(t) is typically unknown in practical experi-
ments, but an approximate expression can be obtained 
using a non-parametric Kaplan–Meier estimation. Using 

(7)Ĉ =
1

N

∑
i:δi=1

∑
j:yi<yj

I[S
(
ŷj|Xj

)
> S

(
ŷi|Xi

)
]

(8)Ĉ =
1

N

∑
i:δi=1

∑
j:yi<yj

I[Xiβ̂ > Xjβ̂]

this approximate ‘ S(t) ’, we can obtain the measures IAE 
and ISE for the real dataset as well. This approximation is 
available as a built-in function in R package ‘SurvMetrics’ 
[50]. Thus, if S(t) is the true survival function and Ŝ(t) is 
its estimate, then, the two measures are given as:

and

The resultant value of these two measures ranges from 
0 to infinity, where lower value for a predictive model 
indicate better predictions. Since the results of both IAE 
and ISE were quite similar, we therefore reported only 
IAE in the results section.

Results and discussion
In this section, we review four tables containing the 
results of the analysis on 11 high-dimensional survival 
datasets. The first three tables contain results obtained 
from the analysis of each of three survival prediction 
models i.e., Cox Proportional Hazards model, Random 
Survival Forest and DeepHit employed on five different 
features selection methods i.e., our proposed method, 
LASSO, RSF-vs, SCAD and CoxBoost. The results in the 
table are obtained in similar fashion as explained in the 
above section. that is, we performed variable selection 
for each of the 11 datasets and obtained their evaluation 
metrics values for each dataset corresponding to each 
feature selection method employed.

Table  2 contains the results of the Cox Proportional 
Hazards Model when it is employed on different feature 
selection methods listed in the right-most column of the 
table. For each of the methods, three performance met-
rics were computed i.e., Integrated Brier Score, C-index 
and Integrated Absolute Error. The values of these met-
rics were recorded in rows corresponding to each vari-
able selection method.

The values in bold indicate better performance among 
all variable selection methods for each dataset. Since three 
evaluation metrics were considered, we compared all these 
three metrics for each method corresponding to each 
dataset. In terms of individual datasets, such as the ’Breast 
dataset’, when features were selected through LASSO and 
applied to the Cox PH survival model, we observed bet-
ter predictive performance across all three metrics: IBS, 
C-index, and IAE. Similar results were obtained from the 

IAE =

∫

t
|S(t)− Ŝ(t)|dt

ISE =

∫

t
(S(t)− Ŝ(t))

2
dt

Fig. 2  Illustration of making pairs of observations (a) 
with no censored observations and (b) with censored observations
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next two datasets, namely "WPBC" and "VDV", where 
LASSO feature selection again demonstrated superior 
performance. However, there appears to be a deviation in 
the fourth row of the column. In the fourth row of Table 2, 
we observe the metrics for the ’Heart FD’ dataset. Here, 
we find that the LASSO feature selection method outper-
formed the others in terms of IBS and C-index. However, 
it is the CoxBoost FS method that outperformed the oth-
ers in terms of IAE. This approach allows for a more thor-
ough examination of each dataset, enabling us to assess the 
performance of each feature selection method relative to 

others. Each row corresponds to the performance metrics 
for a single dataset, arranged sequentially. The last row of 
the Table 2, is named as ‘Average’ which reflects evaluation 
metrics values averaged across all 11 datasets. This provide 
us with a comprehensive measure based on which it can be 
determined which feature selection method outperforms 
the rest. If we compare the averaged performance across 
all 11 datasets, it becomes evident that our proposed fea-
ture selection method performs exceptionally well across 
all three metrics.

Table 2  Performance evaluation metrics for all datasets corresponding to feature selection method followed by Cox PH model

Dataset Metrics Proposed LASSO RSF-vs SCAD CoxBoost

Breast IBS 0.140535 0.141248 0.190566 0.141693 0.163642

CI 0.867605 0.855217 0.743754 0.803268 0.864257

IAE 0.102332 0.107944 1.310452 0.108920 0.130010

WPBC IBS 0.151628 0.163501 0.169968 0.153057 0.164411

CI 0.739101 0.708902 0.723566 0.707483 0.726452

IAE 7.078766 8.095558 8.889102 8.389040 7.435432

VDV IBS 0.113642 0.127571 0.137118 0.174215 0.159096

CI 0.864258 0.820156 0.821653 0.822120 0.821866

IAE 0.130010 0.360298 0.367722 0.359614 0.280468

Heart FD IBS 0.143304 0.138485 0.147202 0.139102 0.140283

CI 0.721703 0.738974 0.717210 0.720168 0.738300

IAE 5.670940 6.019467 6.047454 5.595676 5.160268
MNO IBS 0.190967 0.233888 0.298705 0.203722 0.195276

CI 0.754441 0.743889 0.742012 0.740748 0.735975

IAE 93.82660 122.7077 111.2272 103.7490 108.0497

GE1 IBS 0.181249 0.232329 0.223765 0.199710 0.226338

CI 0.899909 0.843480 0.818166 0.808327 0.798787

IAE 1.994778 2.329824 4.226144 2.329394 2.599796

GE2 IBS 0.306971 0.186556 0.225465 0.181655 0.173985
CI 0.736727 0.732196 0.699380 0.766529 0.738284

IAE 55.27618 72.01558 108.7328 49.45919 75.49166

GE3 IBS 0.139695 0.149053 0.146137 0.182154 0.158405

CI 0.898224 0.808726 0.719383 0.851940 0.892388

IAE 0.246800 3.830177 0.705477 3.206190 3.872023

DLBCL IBS 0.173810 0.195021 0.517659 0.173366 0.167596
CI 0.804722 0.810092 0.706723 0.809995 0.806990

IAE 0.633490 0.472370 1.201690 0.546490 0.546400

Bone M IBS 0.141842 0.151039 0.166924 0.148258 0.150969

CI 0.767939 0.749391 0.760324 0.747527 0.749346

IAE 18.73366 59.99366 19.60160 48.45792 45.56484

NKI IBS 0.134634 0.142519 0.149063 0.135492 0.145352

CI 0.731245 0.595692 0.668864 0.724220 0.620098

IAE 0.621855 0.816397 0.695028 0.784378 0.735975

Average IBS 0.165298 0.169201 0.215688 0.166584 0.167760

CI 0.798716 0.764247 0.738276 0.772939 0.772068

IAE 16.755947 25.158998 23.90952 20.27144 22.715143
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The comparison of results can be linked to a voting pro-
cess, where we tally the number of times a method out-
performs the others. This involves counting the instances 
where a feature selection method performs better than 
the alternatives. By applying the voting criteria for com-
parison, it becomes evident that in 8 out of 11 datasets, 
the proposed method surpassed the other methods 
across all three metrics considered for comparison.

Examining Table  3, which follows a similar format to 
Table 2, we can compare the outcomes of different feature 

selection methods in two ways, as discussed earlier. One 
method involves examining the average value of each 
metric corresponding to each feature selection method 
to determine the winner. The other method entails count-
ing the number of times a feature selection method out-
performs others across the datasets, which we refer to 
as "voting". Analyzing the bottom row of the table, we 
observe that our proposed method surpasses all other 
four feature selection methods across all comparison met-
rics, including IBS, C-index, and IAE. Furthermore, when 

Table 3  Performance evaluation metrics for all datasets corresponding to variable selection method followed by random survival 
forest

Dataset Metrics Proposed LASSO RSF-vs SCAD CoxBoost

Breast IBS 0.155878 0.18544 0.171801 0.177687 0.167882

CI 0.895660 0.882219 0.887316 0.867222 0.878461

IAE 0.103923 0.105296 0.110770 0.112992 0.120003

WPBC IBS 0.117833 0.165872 0.166485 0.159112 0.162320

CI 0.856080 0.805282 0.813379 0.779982 0.842492

IAE 7.325173 8.681072 7.416497 7.707982 8.004998

VDV IBS 0.118734 0.127096 0.140105 0.119557 0.114835
CI 0.843267 0.844017 0.858886 0.857448 0.846982

IAE 0.269593 0.274366 0.313366 0.272091 0.237590
Heart FD IBS 0.137754 0.135078 0.135004 0.132298 0.132292

CI 0.855959 0.843030 0.826422 0.825119 0.841729

IAE 6.806459 7.49524 7.620023 7.116313 8.093140

MNO IBS 0.206687 0.233364 0.232527 0.234434 0.2240461

CI 0.599092 0.499804 0.571170 0.500227 0.5002147

IAE 95.75326 97.99927 116.8113 99.13617 101.16250

GE1 IBS 0.191179 0.21468 0.225003 0.192341 0.240552

CI 0.882012 0.869439 0.875588 0.847204 0.838386

IAE 2.199206 2.391661 2.242796 2.329494 2.248979

GE2 IBS 0.206963 0.258766 0.211310 0.221533 0.242860

CI 0.880097 0.786075 0.862430 0.799736 0.781516

IAE 36.90679 59.56608 62.63991 57.57227 59.37882

GE3 IBS 0.122479 0.149154 0.139499 0.151794 0.161327

CI 0.885353 0.824239 0.880720 0.861444 0.878454

IAE 3.049394 3.49487 3.487959 3.347062 3.248837

DLBCL IBS 0.180658 0.191903 0.217104 0.191493 0.192339

CI 0.874124 0.848962 0.843127 0.845701 0.849232

IAE 0.42595 0.65403 0.462760 0.714370 0.566990

Bone M IBS 0.161234 0.165367 0.162023 0.162869 0.167537

CI 0.733525 0.724380 0.722689 0.723666 0.724853

IAE 48.83434 50.24475 48.75467 46.90224 45.147470
NKI IBS 0.131234 0.143904 0.144838 0.145442 0.138554

CI 0.683935 0.685304 0.691397 0.743216 0.782807
IAE 0.720843 0.810597 0.747193 0.733533 0.738320

Average IBS 0.157330 0.179148 0.176882 0.171687 0.176777

CI 0.817191 0.782977 0.803011 0.786451 0.796829

IAE 18.39954 21.065203 22.782477 20.540411 20.813422
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assessing performance based on the number of datasets 
on which each feature selection method excels, our pro-
posed method outperforms the competition on 9 out of 
11 datasets. This indicates that our proposed method 
demonstrates superior performance according to our 
"voting" criteria as well. The findings from Table 3 provide 
substantial evidence to support the assertion that utilizing 
the proposed method for feature selection, followed by 
modeling the data using Random Survival Forest, can lead 
to improved predictive performance in survival analysis.

Table  4, displaying the performance evaluation met-
ric values, follows the same format as the previous 
tables. It’s evident from the results that when the pro-
posed method of variable selection is employed for fea-
ture reduction followed by DeepHit-NN as a survival 
prediction model, 8 out of 11 datasets exhibit lower 
IBS and IAE values. When examining the C-Index, it’s 
apparent that the proposed method performed even 
better, with 9 out of 11 datasets showing higher C-index 
values when the proposed FS method was employed. 

Table 4  Performance evaluation metrics for all datasets corresponding to variable selection method followed by DeepHit neural 
network

Dataset Metrics Proposed LASSO RSF-vs SCAD CoxBoost

Breast IBS 0.113255 0.114797 0.125552 0.124476 0.121928

CI 0.740659 0.724126 0.646173 0.696704 0.729015

IAE 0.404546 0.412379 0.456785 0.421668 0.429626

WPBC IBS 0.208961 0.230694 0.230451 0.231829 0.231931

CI 0.607006 0.523109 0.533109 0.514974 0.519482

IAE 3.178291 3.599067 3.653415 3.647081 3.730906

VDV IBS 0.113596 0.127413 0.120839 0.115618 0.126312

CI 0.672175 0.589376 0.557369 0.630036 0.614054

IAE 0.539756 0.688361 0.59838 0.566711 0.687512

Heart FD IBS 0.161924 0.167742 0.161113 0.156328 0.169014

CI 0.590397 0.531742 0.604144 0.598184 0.539913

IAE 85.10901 83.24036 80.97856 78.43349 79.90823

MNO IBS 0.251605 0.253898 0.255841 0.247871 0.243610
CI 0.579729 0.554628 0.521921 0.545528 0.574954

IAE 107.9052 83.9969 158.6473 187.4298 151.9972

GE1 IBS 0.254377 0.311760 0.337485 0.262266 0.283159

CI 0.678024 0.649096 0.606323 0.655086 0.645236

IAE 2.364497 2.506848 2.438306 2.618764 2.415007

GE2 IBS 0.223405 0.325895 0.348384 0.330284 0.329691

CI 0.623580 0.582128 0.545651 0.604297 0.586916

IAE 115.0965 150.3706 309.2388 293.8419 338.5445

GE3 IBS 0.152755 0.239756 0.368914 0.330284 0.338077

CI 0.638167 0.620482 0.629033 0.613605 0.622189

IAE 3.619512 3.7688 3.914945 3.951435 3.991879

DLBCL IBS 0.214506 0.231646 0.238242 0.330284 0.228449

CI 0.599983 0.596729 0.539118 0.586939 0.592922

IAE 1.152548 1.433048 1.223246 1.397092 1.541776

Bone M IBS 0.201675 0.216109 0.227509 0.330284 0.210639

CI 0.590841 0.499735 0.482375 0.502093 0.502661

IAE 120.3905 137.6326 202.5625 209.3423 125.3842

NKI IBS 0.269338 0.269483 0.268874 0.330284 0.269779

CI 0.546614 0.543888 0.559321 0.561748 0.572084
IAE 7.380283 7.427858 7.374283 7.4229 7.267671

Average IBS 0.196854 0.226290 0.243928 0.253619 0.232054

CI 0.624289 0.583185 0.565867 0.591745 0.590857

IAE 40.649149 43.188801 70.098774 71.73392 65.08168
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Additionally, in terms of the average value across all 11 
datasets, the proposed method outperformed other FS 
methods in all three comparison metrics: IBS, IAE, and 
C-index.

Table 5 presents the averaged performance evaluation 
values for five feature selection methods, aligned with 
each survival model, derived from the average values 
of each column in Tables  2, 3 and  4. For instance, the 
IBS value attributed to the ’Proposed’ method under 
the ’Cox PH’ model, which is "0.165298", represents 

the average IBS value obtained from Table  2 under 
the ’Proposed’ method (averaged from the first col-
umn). All other values are recorded following the same 
methodology. This comprehensive approach provides a 
detailed overview of our entire analysis. The table dis-
tinctly illustrates that our proposed feature selection 
method outperforms other methods across all compari-
son metrics, including IBS, C-index, and IAE. Referring 
back to the previous practice of comparison using the 
voting criteria, it is evident that our proposed method 

Table 5  Averaged performance metrics across all datasets

Survival Prediction Model Metrics Variable Selection Method

Proposed LASSO RSF-vs SCAD CoxBoost

COX PH IBS 0.165298 0.169201 0.215688 0.166584 0.167760

CI 0.798716 0.764247 0.738276 0.772939 0.772068

IAE 16.755947 25.158998 23.90952 20.27144 22.715143

RSF IBS 0.157330 0.179148 0.176882 0.171687 0.176777

CI 0.817191 0.782977 0.803011 0.786451 0.796829

IAE 18.39954 21.065203 22.782477 20.540411 20.813422

DeepHit—NN IBS 0.196854 0.226290 0.243928 0.253619 0.232054

CI 0.624289 0.583185 0.565867 0.591745 0.590857

IAE 40.649149 43.188801 70.098774 71.73392 65.08168

Grand Average IBS 0.173161 0.191546 0.212166 0.197297 0.192197

CI 0.746732 0.710136 0.702385 0.717045 0.719918

IAE 25.268212 29.804334 38.930257 37.515257 36.203415

Fig. 3  Boxplots of IBS, C-Index and IAE for Cox PH model for five feature selection methods

Fig. 4  Boxplots of IBS, C-Index and IAE for random survival forest for five feature selection methods
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significantly surpasses the performance of other com-
peting feature selection methods.

The tabulated results are further supported by graph-
ical representations in the form of Figs.  3, 4, and 5, 
illustrating the performance evaluation metrics for the 
three different predictive models we employed with 
each of the five feature selection methods.

Conclusion
This study aimed to harness a range of existing feature 
selection techniques to develop a hybrid feature selec-
tion (FS) technique that could perform the same task 
with improved accuracy and reduced margin of error. To 
assert the accomplishment of the studies objective, we 
employed a total of five FS methods including the pro-
posed one, along with three different survival models to 
compute three different performance evaluation metrics 
namely Integrated Brier Score (IBS), Concordance Index 
(CI) and Integrated Absolute Error (IAE). The results are 
presented in both tabular and graphical formats in the 
results section.

In conclusion, based on the results presented in the 
preceding section, we have two approaches to determine 
which method surpasses the others in reducing pre-
diction error and enhancing prediction accuracy. One 
approach involves comparing how frequently a feature 
selection (FS) method outperforms others on individual 
datasets considered in our analysis.

As a rule of thumb, if a feature selection (FS) algorithm 
performs well on more than two-thirds of the dataset 
counts, it would be considered ideal. Specifically, in this 
case, since we are using a total of 11 datasets and employ-
ing 5 different FS algorithms, it would be quite rare and 
ideal for a FS technique to achieve that level of perfor-
mance consistently across datasets. If a variable selection 
method performs well on 6–8 datasets, it is considered a 
satisfactory outcome. We would ideally expect our pro-
posed method to perform at least as well, if not better (on 
9–11 datasets).

Another approach to comparing the different feature 
selection techniques is to assess their average perfor-
mance across all datasets. Given the detailed discussion 
of results in the previous section, we now provide a con-
cise conclusion.

In Table 2, the proposed method achieved results above 
the satisfactory level, outperforming other methods in 
terms of both the count (8 out of 11 datasets) and aver-
aged results across all three metrics. Moving to Table 3, 
our proposed method yielded ideal results, outperform-
ing the other methods in terms of both the voting (9 out 
of 11 datasets) and average comparison. These surpris-
ing results align with our expectations, primarily due to 
the added advantage of using Random Survival Forest as 
our predictive model. In the case of DeepHit as a predic-
tion model, the proposed technique obtained somewhat 
similar results to those of Cox PH. In summary, focus-
ing on Table  5, the most comprehensive table, it is evi-
dent that the proposed method outperformed the other 
feature selection methods in terms of all three metrics, 
whether it is counting/voting or average results. Based 
on the results provided therein, we conclude that the pro-
posed method improved predictive performance of time-
to-event data, especially when the proposed algorithm is 
employed for dimension reduction and utilized Random 
Survival Forest for survival prediction.
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