From: Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU
Predictors | |
---|---|
Acute physiology (first 24 h in the ICU) | Chronic health status |
Heart rate* | Elixhauser comorbidity index |
Systolic blood pressure* | Congestive heart failure |
Diastolic blood pressure* | Cardiac arrhythmias |
Mean blood pressure* | Valvular heart disease |
Respiratory rate* | Pulmonary circulation |
Temperature* | Peripheral vascular |
SpO2* (blood oxygen saturation) | Hypertension |
Total CO2* | Other neurological diseases |
pCO2* (partial pressure of CO2) | Chronic obstructive pulmonary disease |
pH* (acidity in the blood) | Diabetes without complications |
Urine output | Diabetes with complications |
Glasgow Coma Score (GCS) | Hypothyroidism |
GCS (eye) | Renal failure |
GCS (motor) | Liver disease |
GCS (verbal) | Metastatic cancer |
Anion gap* | Coagulopathy |
Bicarbonate* | Obesity |
Creatinine* | Fluid electrolyte |
Chloride* | Alcohol abuse |
Glucose* | Depression |
Haematocrit* | Renal replacement therapy |
Haemoglobin* | Other |
Lactate* | Gender |
Platelet* | Weight loss |
Potassium* | Ventilation |
Partial thromboplastin time* | Age |
INR* | Weight |
Prothrombin time* | SAPS II score (first 24 h in the ICU) |
Sodium* | SOFA score (first 24 h in the ICU) |
Blood urea nitrogen (BUN)* | |
WBC* | |
Acute kidney injury |