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Abstract

linked information.

Background: Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil
fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme
cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break
down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the
research and development of biomass-derived products and fuels. One approach to meeting this challenge is to
mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties.

Results: Semantic technologies, including natural language processing, ontologies, semantic Web services and
Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-
intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent
system that brings measurable improvements to the users. We present our ongoing development of a semantic
infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of
knowledge from information on fungal enzymes that is available in the literature and genome resources.

Conclusions: Working closely with fungal biology researchers who manually curate the existing literature, we
developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in
two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically

Background

Introduction

Since the early decades of the 20th century, when the
internal combustion engine rapidly replaced the steam
engine, transport has been almost totally dependent on
fossil fuels. As the petroleum reserves decrease, produ-
cing sustainable liquid fuels with low environmental
impact is one of the major technological challenges the
world is facing today. Industrialized and developing
countries consider biofuels, fuels produced from biomass,
as a promising alternative to fossil fuels.
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There are many advantages of using biofuels in terms of
economic, environmental and energy security impacts [1]:
from biomass sources, biofuels can be sustainable and con-
tribute to reducing carbon dioxide emissions. In the United
States, biofuel is produced mainly from the fermentation of
hydrolyzed corn starch, a process requiring substantial
input of water, fertilizer and energy, and which consumes a
food resource. According to the United Nations Environ-
ment Programme [2], the global use of biofuels will nearly
double during the next ten years. Hence, improving effi-
ciency and sustainability of biofuels production from non-
food sources is of great interest. Underutilized agricultural
and forestry residues, such as agricultural straws, residues
from pulp and paper production and other “green” gar-
bage, are composed of lignocellulose, which is the most
abundant organic material on earth.
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The conversion of lignocellulose into fermentable sugars
for biofuels production requires the use of cocktails of bio-
logical catalysts, called enzymes. A key challenge lies in the
development of enzyme cocktails that can efficiently and
economically hydrolyze lignocellulosic biomass. One
approach to meeting this challenge is to mine the rapidly-
expanding repertoire of microbial genomes for enzymes
with the appropriate catalytic properties [3].

Researchers who aim to identify, analyze and develop
these enzymes need to extract and interpret valuable
and relevant knowledge from the huge number of docu-
ments that are available in multiple, ever-growing
repositories.

The largest knowledge source available to biological
researchers is the PubMed bibliographic database [4],
provided by the US National Center for Biotechnology
Information (NCBI), which contains more than 19 mil-
lion citations from more than 21000 life science jour-
nals. PubMed is linked to other databases, like Entrez
Genome, which provides access to genomic sequences,
and BRENDA, The Comprehensive Enzyme Information
System [5], which is the main collection of enzyme
functional data available to the scientific community. A
biology researcher querying PubMed using keywords
typically collects a long list of potentially relevant
papers. Reading all the abstracts and full-text of these
papers to extract relevant information is a time-
consuming task.

The work we present in this paper focuses on the
automatic extraction of knowledge from the massive
amount of information on fungal biomass-degrading
enzymes available from the literature. In our approach,
Natural Language Processing (NLP) pipelines brokered
through Web services support the extraction of relevant
mentions. Detected entities are further enriched with
additional information and where possible, linked to
external data sources.

Related work

To address the challenges of extracting relevant data
from large collections of published papers, NLP and
Semantic Web approaches are increasingly adopted in
biomedical research [6-8]. During the last decade, several
systems combining text mining and semantic processing
have been developed to help life sciences researchers in
extracting knowledge from the literature. Textpresso [9]
enables the user to search for categories of biological
concepts and classes relating two objects and/or key-
words within an entire literature set. GoPubMed [10]
supports the arrangement of the abstracts returned from
a PubMed query. iHOP [11] converts the information in
PubMed into one navigable resource by using genes and
proteins as hyperlinks between sentences and abstracts.
BioRAT [12] extracts biological information from full-
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length papers. Bio-Jigsaw [13] is a visual analytics system
highlighting connections between biological entities or
concepts grounded in the biomedical literature. Muta-
tionMiner [14] automates the extraction of mutations
and textual annotations describing the impacts of muta-
tions on protein properties from full-text scientific litera-
ture. Finally, Reflect [15] is a Firefox plugin which tags
gene, protein and small molecule names in any Web

page.

Implementation

Before we describe our overall architecture and the text
mining pipelines, we briefly introduce the user groups
involved, the semantic entities we analyze and the
resources we use.

System application context

User groups

The identification and the development of effective fun-
gal enzyme cocktails are key elements of the biorefinery
industry. In this context, the manual curation of fungal
genes encoding lignocellulose-active enzymes provides
the thorough knowledge necessary to facilitate research
and experiments. Researchers involved in this curation
are building sharable resources, usually by populating
dedicated databases containing the extracted knowledge
from the curated literature.

The users of our system are populating and using the
mycoCLAP database http://cubique.fungalgenomics.ca/
mycoCLAP/[16], which is a searchable database of fungal
genes encoding lignocellulose-active proteins that have
been biochemically characterized. The curators are there-
fore the first user group of our system. The biology
researchers who make decisions about the experiments to
conduct and the experimenters executing them represent
two additional user groups. They are mainly interested in
the ability of combining multiple semantic queries to the
curated data, thereby semantically integrating the various
knowledge resources.

Semantic entities

The system we are developing has to support the man-
ual curation process; therefore, the semantic entities
have been defined by the curators according to the
information they need to store in the mycoCLAP
database.

Entities include information that is of particular inter-
est for the researchers, such as organisms, enzymes,
assays, genes, catalytic properties, substrates, and protein
properties. The list of the semantic entities along with
the level on which they apply (sentence or word level),
their definition and an instance example is provided in
Table 1.

About half of these entities are detected at the word
level (e.g., enzyme or organism names) and the other
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Table 1 Semantic entities, applicable level (sentence, S or word(s), W), definitions and examples

Semantic entity Level Definition

Conditions at which the activity assay is carried out Ex.: disodium hydrogen phosphate, citric acid, pH 4.0, 37°C

Buffer, pH, temp. for the kinetic parameters determination Ex. 0.1 M (disodium hydrogen phosphate, citric acid), pH

pH mentions Ex.: The enzyme retained greater than 90% of its original activity between pH 2.0 and 7.0 at room

Products formed from enzyme reaction and identification method Ex.: HPLC, glucose, galactose

Substrate specificity mentions Ex.: The Endoglucanase from Pyrococcus furiosus had highest activity on cellopentaose

ActivityAssayConditions S
Assay w Name of the activity assay Ex.. Dinitrosalicylic Acid Method (Somogyi-Nelson)
Enzyme w Enzyme name Ex.. alpha-galactosidase
Gene w Gene name £x.: mel36F
Glycosylation S Presence of glycosylation on protein Ex.. N-glycosylated
Host w Organism used to produce the recombinant protein Ex.. Escherichia coli
KineticAssayConditions S
4.0, 37°C
Organism w Organism name Ex.. Gibberella sp.
pH S
temperature for 3 h.
ProductAnalysis S
SpecificActivity S Specific activity of the enzyme £x.: 11.9 U/mg
Strain w Strain name £x. F75
Substrate w Substrate name Ex.: stachyose
SubstrateSpecificity S
Temperature S

enzyme was incubated at 25°C for 3 h.

Temperature mentions £x.: The enzyme stability at different pH values was measured by the residual activity after the

The list of the semantic entities along with the level they apply (sentence or word level), their definition and an instance example is provided in Table 1.

half consists of contextual properties captured at the
sentence level (e.g., pH and temperature contexts). The
entity set was built in the perspective of providing
instances of the ontological representation of the
domain knowledge. The enzyme names are sought, as
well as the names of their source organisms and strain
designations. The enzymes have specific biochemical
properties, such as optimal temperature and pH, tem-
perature and pH stability, specific activity, substrate spe-
cificities and kinetic parameters. These experimentally
determined properties describe each enzyme’s catalytic
ability and capacity, and are a basis for comparison
between enzymes. Their mentions are captured from
the literature along with the laboratory methods (assay)
used and the experimental conditions (activity and
kinetic assay conditions). In addition to these properties,
the extraction of mentions describing an enzymatic
property (glycosylation state) and the products formed
(product analysis) is performed to complete the knowl-
edge of the reaction.

Semantic resources

In terms of knowledge sources, the system relies on exter-
nal and internal resources and ontologies. The Taxonomy
database http://www.ncbi.nlm.nih.gov/Taxonomy/[17]
from NCBI is used for initializing the NLP resources sup-
porting organism recognition. BRENDA http://www.
brenda-enzymes.org[5] provides the enzyme knowledge
along with SwissProt/UniProtKB http://www.uniprot.org/
[18]. References to the original sources are integrated into
the curated data, which allows us to automatically create
links using standard Web techniques: e.g., links from an
organism mention in a research paper to its corresponding

entry in the NCBI Taxonomy database or from an enzyme
name to its EC number in BRENDA.

System design

In this section, we provide an overview of our system
architecture, the semantic resources we deployed, and
the text mining pipelines we developed.

System architecture

With the different user groups and their diverging require-
ments, as well as the existing and continuously updated
project infrastructure, we needed to find solutions for
incrementally adding semantic support without disrupting
day-to-day work. Our solution deploys a loosely-coupled,
service-oriented architecture that provides semantic ser-
vices through existing and new clients.

To connect the individual services and their results, we
rely on standard semantic data formats, like OWL and
RDF, which provide both loose coupling and semantic inte-
gration, as new data can be browsed and queried as soon as
it is added to the framework (depicted in Figure 1 - Inte-
grating semantic support in curation, analysis, and retrie-
val). The use of the Semantic Assistants architecture [19]
allows us to provide semantic analysis services directly
within desktop applications, by leveraging standard SOAP
Web services and OWL service descriptions.

Ontology

To facilitate semantic discovery, linking and querying
the domain concepts across literature and databases, the
entities are modeled in an OWL ontology, which is
automatically populated from documents. The system
presented in this article makes use of the ontology par-
tially depicted in Figure 2 - Domain ontology. The


http://www.ncbi.nlm.nih.gov/Taxonomy/
http://www.brenda-enzymes.org
http://www.brenda-enzymes.org
http://www.uniprot.org/

Meurs et al. BMC Medical Informatics and Decision Making 2012, 12(Suppl 1):S5

http://www.biomedcentral.com/1472-6947/12/51/S5

Page 4 of 10

- ek . S
\ Y o S’
experimenters il semantic\ I gHrstey
P browser - database
» representatlon v j
A C )
A < s Al - )
...Bio... —
_ Y »
biology ‘ 3 = SxteLnaI
researchers v [E—— o atabases
‘ ‘ A
articles ~
‘ y
NLP methods
curators Linked Data
Figure 1 Integrating semantic support in curation, analysis, and retrieval. The framework of the semantic support integration in the
curation, analysis and retrieval process.

graph nodes show the main entities and the blue arrows
represent the subclass relationships, whereas all the
other arrows stand for property relationships. The
ontology is used both during the text mining process
and for querying the extracted information [14].

Text mining pipelines

Our text mining pipelines are based on the General
Architecture for Text Engineering (GATE) [20]. All docu-
ments first undergo basic preprocessing steps using off-
the-shelf GATE components. Custom pipelines then
extract the semantic entities mentioned above and
populate the OWL ontology using the OwlExporter [21]
component. The same pipeline can be run for automatic
(batch) ontology population, embedded in Teamware
(described below) for manual annotation, or brokered to
desktop clients through Web services for literature
mining and database curation. The general workflow of
the pipeline is depicted in Figure 3 - Natural language
processing workflow.

Preprocessing The processing resources (PRs) compos-
ing the first part of the system pipeline are generic and
independent from the domain. Some of these resources
are based on standard components shipped with the
GATE distribution. In particular, the JAPE language
allows the generation of finite-state language transducers
that are processing annotation graphs over documents.
After initializing the document, the LigatureFinder PR
finds and replaces all ligatures, like fi, ff or fI, with their
individual characters, thereby facilitating gazetteer-based
analysis. The next PR is the ANNIE English Tokenizer,
which splits the text into very simple tokens, such as
numbers, punctuation characters and words of different

types. Finally, the ANNIE Sentence Splitter segments the
text into sentences by means of a cascade of finite-state
transducers and the ANNIE part-of-speech (POS) tagger
that is included with GATE adds POS tags to each
token.

Organism recognition Organism tagging and extraction
rely on the open-source OrganismTagger system http://
www.semanticsoftware.info/organism-tagger. The Orga-
nismTagger is a hybrid rule-based/machine-learning sys-
tem that extracts organism mentions from the biomedical
literature, normalizes them to their scientific name, and
provides grounding to the NCBI Taxonomy database
[22].

The OrganismTagger also comes in the form of GATE

pipeline, which can be easily integrated into our system.
It reuses the NCBI Taxonomy database, which is auto-
matically transformed into NLP resources, thereby
ensuring the system stays up-to-date with the NCBI
database. The OrganismTagger pipeline provides the
flexibility of annotating the species of particular interest
to bio-researchers on different corpora, by optionally
including detection of common names, acronyms, and
strains.
Enzyme recognition Despite the standards published by
the Enzyme Commission [23], enzymes are often
described by the authors under various formats, ranging
from their ‘Recommended Name’ to different synonyms
or abbreviations. Our enzyme recognition process is rule-
based: Gazetteer and mapping lists are automatically
extracted from the BRENDA database, in addition to a
mapping list of SwissProt identifiers extracted from the
SwissProt database.
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An enzyme-specific text tokenization, along with gram-
mar rules written in the JAPE language, analyses tokens
with the -ase and -ases enzyme suffixes. The gazetteers
allow the finding of the enzyme mentions in the docu-
ments by applying a pattern-matching approach.

Some abbreviated forms of enzyme names are not
found during the pattern matching step, usually because
these forms are created by the authors. The following
sentence shows an example excerpted from [24].

The extracellular endoglucanase (EG) was purified to
homogeneity from the culture supernatant by ethanol
precipitation (75%, v/v), CM Bio-Gel A column chro-
matography, and Bio-Gel A-0.5 m gel filtration. The
purified EG (specific activity 43.33 U/mg protein) was a
monomeric protein with a molecular weight of 27 000.

Here, EG stands for ‘endoglucanase’, but this abbrevia-
tion is not reported in BRENDA. Such abbreviations are
meaningful only within the context of a single document.
Therefore, our pipeline contains grammar rules identify-
ing these author-specific abbreviations and performing
coreference resolution on each document.

The mapping lists link up the enzyme mentions found

in the document and the external resources. Through this
grounding step, the system provides the user with the
enzymes’ Recommended Names, Systematic Names, EC
Numbers, SwissProt Identifiers and the URL of the related
Web pages on the BRENDA website.
Temperature and pH contexts Temperature and pH
mentions are involved in several biochemical contexts,
like the temperature and pH dependence/stability of the
enzyme, or the description of the activity and kinetic
assay conditions. Examples are given in the following
sentences from [24]:

Temperature: The purified enzyme exhibited maxi-
mum activity at 55°C, with 84% relative activity at
60°C and 29% activity at 70°C under the assay con-
ditions used.

pH: The enzyme displayed an optimum activity at pH
5.0 and retained 80% activity at pH 3.0 and also at
pH 8.0.

Our GATE pipeline contains PRs based on JAPE rules
and gazetteer lists of specific vocabulary that enable the
detection of these key mentions at the sentence level.
Other entities The detection of the other entities men-
tioned in Table 1 is currently implemented through
gazetteer lists and grammar rules implemented in JAPE;
with the exception of the strain mentions, which are
detected by the strain feature provided by the Orga-
nismTagger pipeline.
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System output and user interfaces

The system output supports two different tasks: the
manual annotation of reference papers needed for eva-
luation purposes and the database curation manually
performed by the biologists. In the context of manual
annotation, the original papers are enriched with the
system output added as pre-annotations before being
submitted to the human annotators. In the context of
database curation, all text mining pipelines are brokered
as NLP Web services through the Semantic Assistants
framework [19]. Users can access these services from
their desktop through client plug-ins for common tools,
such as the Firefox web browser (Figure 4 - Text mining
results displayed in Firefox through the Semantic Assis-
tants plug-in) or the OpenOffice word processor. This
provides the biologists using our system with the ability
to quickly invoke semantic analysis services on scientific
documents they browse online or edit in their text pro-
cessor, without having to switch to an external text
mining application.

External resources can be accessed from the user inter-
faces; the system output provides direct links to the rele-
vant Web pages, e.g., URLs of the Web pages related to
the detected enzymes on the BRENDA website site or the
detected organisms on the NCBI Taxonomy website.

Results and discussion

In this section, we first discuss the development of the
gold standard corpus and present preliminary results of
our system.

Manual annotation process

For the intrinsic evaluation of our NLP pipelines, we are
building a gold standard corpus of freely accessible full-
text articles. These are manually annotated through GATE
Teamware [25], a Web-based management platform for
collaborative annotation and curation.

The tool reports on project status, annotator activity
and statistics. The annotator’s interface (see Figure 5 -
Teamware annotator GUI) allows the curator to view,
add and edit text annotations that are either manually
created using the Teamware interface or pre-annotated.
We make use of that ability by providing the annotators
with documents we pre-annotate with our NLP pipe-
lines throughout its development.

The annotation team consists of four biology research-
ers. The researcher in charge of the curation task and an
annotator having a strong background in fungal enzyme
literature curation are considered as expert annotators.
The inter-annotator agreement between them is over
80% (F-measure), hence their annotation sets are always
defined as the most reliable sets during the adjudication
process.
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Purification and properties of an extracellular beta-xylosidase from
Aspergillus japonicus and sequence analysis of the encoding
gene.

Wakiyama M, Yoshihara ¥, Hayashi $, Ohta K

Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai
Nighi, Miyazaki 889-2192, Japan

Abstract

An axtracellular protein exhibiting beta-xylosidase activity was purified from the culture filtrate
of a filamentous fungus, Aspergillus japonicus strain MU-2, grown on oat spelt xylan, The
purified enzyme was a monomeric glycoprotein with an apparent M(r) of 113.2 kDa as
estimated by SDS-PAGE. beta-Xylosidase activity was optimal at pH 4.0 and 70 degrees C.
The anzyme also showad beta-glucosidase and alpha-l-arabinofuranosidase activities. The
genomic DNA and ¢cDNA encoding this protein weare cloned and sequenced, Southern blot
analysis indicated that the bata-xylosidase gene (xylA) was present as a single copy inthe
genome, An open reading frame, consisting of 2412 bp, was notinterrupted by introns, and it
encoded a presumed signal peptide of 17 amino acids and a mature protein of 787 amino
acids, The deduced amino acid sequence of the xylA gene product showed a high degree of
identity (69%) to the primary structure of the Aspergillus niger beta-xylosidase XInD that
belongs to the giycoside hydrolase family 3. Moreover, the xylA gene was functionally
expressed in the yeast Pichia pastoris.
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Corpus

mycoCLAP database which is specifically designed for

The corpus is composed of freely accessible full-text
articles containing critical knowledge and technical
details the biology researchers aim to store in the

their needs. The papers are related to classes of
enzymes, among them the glycoside hydrolases, the
lipases and the peroxidases. Glycoside hydrolase papers
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represent 69%, lipase papers account for 12% of the arti-
cles, and the remaining 19% are related to peroxidases.
The current gold standard corpus is composed of ten
full-text papers that have been manually annotated by
four biologists each.

At the word level, the two most common entities are
enzymes and organisms, while the most common at the
sentence level are pH and temperature. Table 2 shows
these entities and their counts of occurrence in the cur-
rent gold standard corpus. The goal for the current
annotation task is to include fifty manually annotated
papers in the gold standard corpus. This corpus will be
available on demand.

Results

The performance of our text mining pipelines is evalu-
ated in terms of precision, recall and F-measure. Here,
the reference is provided by the gold standard corpus.
Precision is defined as the number of correct tags
detected by the system divided by the total number of
detected tags. Recall is defined as the number of correct
tags detected by the system divided by the total number
of reference tags. The F-measure is the harmonic mean
of precision and recall. For the ‘strict’ evaluation, we
consider all partially correct responses as incorrect,
while ‘lenient’ considers all partially correct (overlap-
ping) responses as correct. In this evaluation, we focus
on the four most common entities (Enzyme, Organism,
pH and Temperature) in our currently annotated cor-
pus. The results of the text mining pipelines are shown
in Table 3.

Discussion

The OrganismTagger performance has previously been
evaluated on two corpora, where it showed a precision
of 95%-99%, a recall of 94%-97%, and a grounding accu-
racy of 97.4%-97.5% [22]. Since its results here are
lower, we examined the error cases in more detail.

The manual annotation of organisms highlights all the
textual mentions referring to an organism as indirect
references, non-standard names (e.g., non-binomial
names) or generic mentions. In some cases, correct
results from the OrganismTagger were not manually

Table 2 Entities and their counts in the current gold
standard corpus

Entity Counts
Enzyme 1493
Organism 984

pH 110
Temperature 115

Table 2 shows the most common entities and their counts of occurrence in
the current gold standard corpus.
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Table 3 Text Mining pipelines results on the gold
standard corpus in terms of recall (R), precision (P) and
F-measure (Fm)

Strict Lenient
R P Fm R P Fm
Enzyme 0.79 0.64 0.71 091 0.75 0.82
Organism 0.87 0.86 0.87 091 091 091
pH 0.79 081 0.80 0.96 0.99 0.98
Temperature 0.70 0.66 0.68 093 0.88 0.91

The results of the text mining pipelines on the four most common entities
(Enzyme, Organism, pH and Temperature) in terms of recall (R), precision (P)
and F-measure (Fm) are shown in Table 3.

annotated, leading to false positives. The following com-
mon sentence:

Soluble protein was determined according to the
method of Lowry et al. (1951) using bovine serum
albumin as standard.

shows an example of such a case where the Organism-
Tagger correctly annotates bovine as an organism,
whereas the expert annotators considered bovine serum
albumin as a stand-alone expression.

In some other cases, human annotations are not
detected by the OrganismTagger. For example, Tricho-
derma viridie and M. incrasata or cellulolytic fungi were
manually annotated as organisms by the experts. These
mentions are not detected by the OrganismTagger. In
the first two cases, the cause is a spelling difference
between the names of the organisms reported in the
NCBI Taxonomy database and their mention in the arti-
cle. In the last case, the annotation of a generic organism
mention that is relevant within the context of our project
is not an objective of the OrganismTagger system, which
is designed to provide normalization with scientific
names and grounding to the NCBI Taxonomy database.
Consequently, the results obtained by our pipeline on the
organism recognition are lower than the published
results of the OrganismTagger system. The text mining
pipeline supporting our system needs to be enhanced in
its ability to capture generic organism mentions and to
discard stand-alone expressions containing organism
names.

The results obtained on Temperature and pH sentence
detection are much better in the lenient evaluation than
the strict because of sentence splitter mistakes.

The enzyme recognition pipeline provides state-of-the-
art performance. However, wrong detection of abbrevia-
tions and acronyms represent 92% of the false negatives
found by our pipeline. Further work is needed to reduce
this amount by improving the co-reference resolution with
approaches as described in [26] and external resources,
such as Allie [27].
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Conclusions

We presented our ongoing development of a semantic
infrastructure for enzyme data management. As the first
system specifically designed for lignocellulolytic enzymes
research, it targets the automatic extraction of knowledge
on fungal enzymes from the research literature. The pro-
posed approach is based on text mining pipelines combined
with ontological resources. Preliminary experiments show
state-of-the-art results. Improving the consistency of the
extracted knowledge by increasing the use of ontologies is
one of the next goals for our system. Therefore, a key objec-
tive is the population of the overall ontology of the domain
knowledge and its publication in Linked Data format.

The gold standard corpus of manually annotated papers,
as well as the presented system, will be available under
http://www.semanticsoftware.info/genozymes.

The accessibility of the services through the Semantic
Assistants framework allows the users to mine the seman-
tically annotated literature from their desktop. Future
work is needed to enable the interaction between selected
users (e.g., curators) and the presented system in terms of
data validation and knowledge acquisition.

In future work, we will further deploy our text mining
pipelines to assess the quality of existing manually curated
data in the databases. Measuring the overall impact of the
semantic system on the scientific discovery workflow will
be the target of an extrinsic study.
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