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Abstract

Background: There exist many academic search solutions and most of them can be put on either ends of
spectrum: general-purpose search and domain-specific “deep” search systems. The general-purpose search systems,
such as PubMed, offer flexible query interface, but churn out a list of matching documents that users have to go
through the results in order to find the answers to their queries. On the other hand, the “deep” search systems,
such as PPI Finder and iHOP, return the precompiled results in a structured way. Their results, however, are often
found only within some predefined contexts. In order to alleviate these problems, we introduce a new search
engine, BOSS, Biomedical Object Search System.

Methods: Unlike the conventional search systems, BOSS indexes segments, rather than documents. A segment
refers to a Maximal Coherent Semantic Unit (MCSU) such as phrase, clause or sentence that is semantically
coherent in the given context (e.g., biomedical objects or their relations). For a user query, BOSS finds all matching
segments, identifies the objects appearing in those segments, and aggregates the segments for each object.
Finally, it returns the ranked list of the objects along with their matching segments.

Results: The working prototype of BOSS is available at http://boss.korea.ac.kr. The current version of BOSS has
indexed abstracts of more than 20 million articles published during last 16 years from 1996 to 2011 across all
science disciplines.

Conclusion: BOSS fills the gap between either ends of the spectrum by allowing users to pose context-free
queries and by returning a structured set of results. Furthermore, BOSS exhibits the characteristic of good
scalability, just as with conventional document search engines, because it is designed to use a standard document-
indexing model with minimal modifications. Considering the features, BOSS notches up the technological level of
traditional solutions for search on biomedical information.

Background
The Human Genome Project, completed in 2003, trans-
formed the nature of biology into that of an interdisciplin-
ary science. The project proffered a new window of
opportunity for experts in other domains as well, such as
computer science, statistics, and chemistry, just to name a
few. Naturally, there has been a rapid increase of biomedi-
cal publications, in volume and number, in non-traditional
venues, such as computer science conference proceedings,
as well as in the traditional ones like core biology journals.

Approximately 1.2 million studies covering all disci-
plines are published each year. Among them, biomedical
studies constitute about 30-35% [1]. With publications
exploding in number, researchers and practitioners are
now facing a new challenge. Pinpointing relevant infor-
mation has become an extremely labor-intensive and
time-consuming process. To address this problem,
researchers have introduced search services especially
concerning academic literature. Google Scholar [2] and
Microsoft Academic Search [3] are well known examples.
These are general-purpose academic search engines cov-
ering all topics. PubMed [4] is another well known exam-
ple tailored for biomedical disciplines. Although these* Correspondence: kangj@korea.ac.kr
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search engines serve as a good entry point for research-
ers, they produce relevant article lists only, leaving most
of the information-processing task to users. For example,
if one wishes to find biomedical objects that inhibit
EGFR (Epidermal Growth Factor Receptor), he/she might
query the search systems with “EGFR inhibitors.” The
systems will return thousands of articles containing the
keywords EGFR and inhibitors. It is the user’s job to read
through the articles and manually compile the answer to
the query.
On the other end of spectrum, there exist special-pur-

pose “deep” search systems. For example, EDGAR [5] is
used to extract relations between drugs and genes, PIE [6]
and PPI Finder [7] are used to observe protein-protein
interactions, while STRING [8] and iHOP [9] are used to
find out a network of proteins. These systems extract the
target relations from the articles by means of natural lan-
guage processing and text-mining techniques; pre-collect
and store relevant information into a database. In the
query time, they produce the matching pre-compiled hit
results. Although they provide more refined results than
the general-purpose search engines, they have some draw-
backs. First, they can only serve queries that match their
objectives. For example, EDGAR maintains information
related only to cancer. Similarly, PPI Finder is limited to
the information on protein-protein interactions. There-
fore, they are unable to serve other types of queries, such
as disease-protein relations or relations among SNPs.
Second, their query interface is limited in functionality.
For example, iHOP accepts queries based on protein and
gene names, and returns compiled results on that protein
or gene. However, if a user wishes to find proteins that
have a certain relation with the query protein, to express
the query itself poses a problem. For example, let us
further suppose that a user wants to find the proteins that
‘inhibit’ EGFR. The user may expresses the query as
“EGFR inhibitors.” However, iHOP fails to return any
answer to this query, because it recognizes only a precom-
piled list of query terms.
In order to address these problems, we introduce a new

paradigm for searching biomedical information. The
search engine we propose, BOSS, a Biomedical Object
Search System, enables free-text keyword queries just like
general-purpose search engines, and produces a ranked
list of relevant biomedical objects. Moreover, BOSS does
not confine the results to predefined target relations (e.g.,
drug-gene, protein-protein, etc.). It effectively incorpo-
rates therein the benefits with the two ends of the spec-
trum: general-purpose and deep search systems. Figure 1
shows an example result page produced by BOSS to the
query “EGFR inhibitors.”
BOSS has been implemented on top of a conventional

“document-retrieving” search engine with slight modifica-
tions. The major technical difference is that the indexing

unit is not document, but ‘Maximal Coherent Semantic
Unit (MCSU)’ that is a maximal subsequence of words
within a document containing one coherent semantic.
Hereinafter, we refer to MCSU(s) as segment(s). A single
segment can be a phrase, clause, or sentence, which con-
tains the information of an object and/or its relation to
others. Once a user query is rendered, BOSS finds match-
ing segments and classifies the results for each object and
relation in the segments. Yet another benefit of this design
is that we are able to achieve high scalability just as a con-
ventional web search engine does, since we have employed
the conventional inverted indexing architecture.

Methods
BOSS has been implemented on top of an open source
search engine, Apache Lucene 3.1.0. Lucene consists of
two main subsystems: indexing and searching. BOSS
implementation required modification of both the
indexing model and search routines. Figure 2 illustrates
the modified workflow of both subsystems. The modi-
fied components are highlighted in red boxes.

Indexing subsystem
Like conventional search engines, BOSS indexes docu-
ments which are, in this context, the abstracts of
research articles. However, unlike conventional search
engines, BOSS returns matching objects, not documents.
In the current version of BOSS, we manually compiled
the list of objects from various biomedical information
sources such as HGNC [10], GO (Gene Ontology) [11],
MeSH [12], and FDA [13]. The objects include gene/
protein names, symbols, synonyms, reference sequences,
diseases, drugs, etc. Although we plan to implement a
semi-automated object acquisition module using named
entity resolution technique in the future, the present
manual compilation serves the purpose well, since it is
just a one-time process and furthermore we could
achieve high precision through manual tuning.
We also defined the contexts of the relations among

the objects, which we refer to as features. Following
example explains the nature of features:
Example 1 “MS-1020 potently inhibited persistently-active
STAT3.”
This sentence contains two objects, MS-1020 and
STAT3, and the relation between them (i.e., inhibition).
The features (namely, relation words) were compiled, as
follows: 1) we extract the verbs from the corpus, 2) com-
pute the frequencies of all verbs, 3) and choose top-k fre-
quent words and manually screen the list to eliminate
inappropriate words. We used abstracts of 330,000
papers published during the first quarter of 2010 as a
seed set. The feature set finally selected through this pro-
cess includes 27 relation words. We term this feature set
as frequency-based feature set.
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Figure 1 BOSS result pages for query “EGFR inhibitors”. (1) The main result page presenting the ranked list of objects that match to the
query (2) The detail page for object EGFR.

Figure 2 System workflow. BOSS has been built on top of a conventional search engine architecture with minor modification. The modified
components are highlighted in red boxes.
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In the initial working prototype of BOSS, we solely
used the frequency-based feature set. However, we soon
observed that some important but low-frequency rela-
tion words were not captured. In order to address this
problem, we augmented the frequency-based feature set
with a popular relation-type ontology, BioInfer [14].
Table 1 shows the final 51 features used in the current
version of BOSS.
Once the lists of objects and features are compiled,

indexing is to be commenced. The first step in this
regard is to segmentize the document into MCSUs. We
explain the segmentation process through the example
below.
Example 2 “Oral corticosteroids decrease CC chemokine but
increase IL-8.”
The above example contains two contradicting semantics.
The first segment describes the relation between oral cor-
ticosteroids and CC chemokine, and the second segment
describes their relation with IL-8. These two relations are
contradicting, because the first describes “decrease” while
the second points opposite. In order to produce correct
answers to queries, the sentence is divided into two seg-
ments representing each maximal coherent semantic unit.
For example, with the semantic segmentation, queries
such as proteins that “oral corticosteroids increase” could
be correctly processed to turn up IL-8, but not CC chemo-
kine. This is the major deviation from the conventional
search engines. The conventional ones index entire docu-
ments and therefore, they are incapable of producing cor-
rect results. For example, for a query, proteins that
“decrease IL-8,” the conventional search engines would
return the document in Example 2, because the two key-
words match the document. However, BOSS would return
neither of the segments, as the two keywords do not
match either of the segments.
In order to extract the MCSUs, we first need to split

the documents into sentences. For this, we used a

maximum entropy-based sentence detector in OpenNLP
1.5 package. For extracting MCSUs from the sentences,
we started with a statistical parser to analyze the sen-
tence structures. However, it turned out that statistical
parsing is not scalable enough to cope with entire cor-
pus. For this reason, in the current version of BOSS, we
decided to resort to a simple heuristic rule-based algo-
rithm as outlined in Algorithm 1.
Algorithm 1 MCSU Extraction Algorithm
procedure MCSU_EXTRACT(sentence)
annotate the sentence with POS tagging
analyze the sentence structure using rule-based

parser
P = C = j
if clause exists in sentence then
split sentence to clauses
C = clauses

else
C = sentence

end if
for all clause in C do

if more than one feature exist in clause then
split the clause to phrases based on features
P = P ∪ phrases

else
P = P ∪ clause

end if
end for
return P

end procedure
BOSS treats MCSUs as documents in conventional

search systems and indexes them as usual. An MCSU
posting list, the data structure used for inverted index-
ing, is formally defined as follows:
Definition 1 (MCSU posting list)
Given an article set D = {d1, d2, . . ., dn}, an MCSU seg-
ment set S = {s1, s2, . . ., sm}, a feature set F = {f1, f2, . . .,

Table 1 The feature set used in BOSS

relation-type NEGATIVE FULL-STOP BREAK-DOWN DECREASE INCREASE START

features downregulate
inhibit
suppress
repress
interfere

inactivate
halt
block
limit

restrict
kill

unbind
depolymerize

disrupt
cleave

disassemble

decrease
diminish
reduce

increase
enrich

initiate
activate
promote

relation-type ADDITION ASSEMBLY UNSPECIFIED POSITIVE

features acetylate
add

phosphorylate

assemble
cross-link
attach

polymerize
bind

integrate

modulate
control
regulate
interact

disseminate

inherit
modify
stabilize
isolate

catalyze
upregulate
stimulate
mediate

accelerate

amplify
elevate
enhance
enlarge

The feature set is constructed by augmenting the frequency-based feature set with a popular relation-type ontology, BioInfer. The underlined features represent
ones existing in both the frequency-based set and BioInfer. The bold features represent ones existing in the frequency-based set but not in BioInfer. Lastly, the
italic features are ones existing in BioInfer but not in the frequency-based set.
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fp}, and an object set O = {o1, o2, . . ., oq}, an MCSU
posting list consists of

ti ⇒ [< sidj, bid1, [oid2, . . .], [fid1, . . .] > . . .]

where sidj wis the ID of MCSU segment sj that con-
tains term ti, oidk is the ID of object ok in sj, fidl is the
ID of feature fl in sj.
Note that the structure of the index is same as that of

the conventional search engines except that segments are
indexed instead of documents, and the extra information
of objects and features are also stored along with the seg-
ments. Only the segments that have one or more objects
are indexed while features are optional. The extra infor-
mation about the objects and features are used for orga-
nizing the results and ranking the entries. Moreover, we
are able to retain scalability as good as conventional
search engines as we have implemented our segment-
based indexing using the standard inverted index archi-
tecture. We now turn to explain how BOSS computes
the search results.

Searching subsystem
BOSS returns mainly two types of result pages. The first
page contains the ranked list of matching objects, along
with the snippets of segments for each object. Figure 1
depicts an example page, which shows the matching
objects for the query “EGFR inhibitors.” An example of
the second type of page is shown in Figure 1, 2. It pre-
sents detailed information of an object. The second page
is shown when a user clicks on the object on the first
page.
In order to compute the matching object list in the

first page, we mostly follow the conventional IR system’s
inverted index-probing process. The main difference is
that we need to aggregate the matching segment(s) for
each object, and rank the objects to produce the final
result. More specifically, we take the following four
steps: 1) Find the matching segments by probing the
index, 2) compute the scores for each segment, 3) aggre-
gate the segments based on the objects they contain, 4)
and finally compute the scores of the objects by com-
bining the segment scores.
Scoring is one of the most important components in

search. It plays a key role in enhancing the quality of the
results. However, in this work, we focus on presenting
the overall system architecture, and leave evaluation of
the scoring function unaddressed for the future work.
Instead, we used simple scoring functions in this work.
The following defines the score of a segment matching to
a query.
Definition 2 (Segment Score)
Given the sets D, S, F, O in Definition 1, the score of seg-
ment sj given query q is defined as follows:

scores(q, sj) = coord(q, sj) ×
∑

fk∈sj
w(fk) ×

∑

ol∈sj
w(ol) × rc (1)

where coord(q, sj) is the coordination factor computed
as the number of query terms that sj contains divided by
the total number of terms in q; w(fk) is the weight of fea-
ture fk in sj; w(ol) is the weight of object ol in sj; rc is the
recency factor based on the difference between the query
time and publication date of the article do containing sj.
In order to approximate the amount of information in

each segment, we simply factored the numbers of objects
and features into the score. The recency refers to the
freshness of the information. The information announced
recently might be more interesting to the users than the
information that is several years old and contains well
known facts. In the future, we plan to explore various
other options, such as information reliability. It is mea-
sured by the number of citations to the article or by the
impact factor of the journal that publishes the article.
Given a query q, scores of all matching segments are

computed using scores(q,.) and aggregated according to
the matching objects. The object score is defined as
below:
Definition 3 (Object Score)
Given the sets S, O in Definition 1, and Soj = {sk|sk ∈ S
that matches to query q and that contains object oj}, the
score of object oj given query q is defined as follows:

scoreo(q, oj) =
∑

sk∈Soj
scores(q, sk) (2)

where scores (q, sk) is the segment score of sk given
query q.

Results
The working prototype
The working prototype of BOSS is available at http://boss.
korea.ac.kr. The current version of BOSS uses Scopus data
set for indexing. This data set consists of abstracts, meta-
data and citation information on peer-reviewed articles.
We indexed more than 20 million articles published dur-
ing last 16 years from 1996 to 2011. The articles are
grouped into 28 different research categories. Among
them, 4 categories are related to biomedical domains
including “Medicine,” “Biochemistry, Genetics and Mole-
cular Biology,” “Pharmacology, Toxicology and Pharma-
ceutics,” and “Immunology and Microbiology.” The
number of journals and conference proceedings included
in the 4 categories amounts almost to 14,000. Articles in
these categories constitute about 30-35% of all the articles
in the dataset. Nonetheless, we indexed entire dataset
including all 20 million articles in all 28 categories for
broader coverage.
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BOSS currently runs on a cluster of 5 servers, each of
which consists of a dual-core 2.00 GHz CPUs, 4 GB
RAM, and 1TB of disks. The total size of the index at
the time of writing is close to 3.7 GB. We constantly
add more articles into the index as new ones become
available.

A use case
BOSS can serve as an effective interface to a large aca-
demic corpus. It can be used as a stand-alone query ser-
vice as well as a complementary tool for existing ones.
For example, a user is interested in ‘acute myeloid leuke-
mia (AML).’ The user can acquire relevant information
effectively through curated databases, such as KEGG
pathway [15] and NCBI OMIM [16]. However, due to the
nature of manual curation, the curated sources may
include only directly relevant information and are likely
to lack remotely related information and/or relatively
new discoveries.
BOSS can complement these by its broader coverage

and timely updates. In fact, BOSS has produced a num-
ber of AML-related genes that were not listed in either
KEGG pathway or OMIM. For example, the 6th ranked
object for query ‘acute myeloid leukemia,’ CSF3 (Colony
Stimulating Factor 3), was not found in either of the two
curated sources (Figure 3-(1)). CSF3 is reported to affect
AML patients’ neutrophil recovery after chemotherapy
[17]. As shown in Figure 3-(1), each entry in the result
page consists of two links to the corresponding object
(protein, drug, etc.) and five snippets extracted from sup-
porting articles. The expression next to the first link,
“397 mentions in 366 articles,” means that among all seg-
ments matching to the query, 397 segments in 366 arti-
cles mentioned CSF3.
If the user wants to learn more about the object, the

user can click on the first link, “CSF3,” which leads to a
detail page presenting CSF3-related information (Figure 3-
(5)). The second link, “CSF3 + acute myeloid leukemia,”
leads to the same CSF3 detail page except that the page
presents CSF3-related information within the query con-
text, ‘acute myeloid leukemia’ (Figure 3-(2)). The detail
pages contain statistics such as the number of articles dis-
cussing CSF3 per year (line chart), interactions mentioned
with CSF3 (term cloud), and frequently co-occurring
objects with CSF3 (bar chart).
The user can click on the bar chart or the co-occur-

ring object list to see the object within the context of
the co-occurring object. Figure 3-(3) shows the example
page of CSF3 in the context of co-occurring object LIF
and the query ‘acute myeloid leukemia.’ LIF, leukemia
inhibitory factor, whose relation with CSF3 is quite
obvious in the query context, was the second most fre-
quently co-occurring object. The most frequent co-
occurring object was cytarabine, a chemotherapy agent

used in the treatment of AML and non-hodgkin lym-
phoma [18] (bar chart in Figure 3-(2)). It seems natural
that cytarabine co-occurs frequently with CSF3 that
affects AML patients’ neutrophil recovery.
On the other hand, Figure 3-(5) illustrates the query-

independent detail page of CSF3. In this case, the most
frequently co-occurring object was erythropoietin that is
a glycoprotein hormone which controls red blood cell
production. Figure 3-(6) shows the detail page of CSF3
in the context of erythropoietin independent of the
query context. Finally, in order to see the object in the
context of interaction, the user can click on the interac-
tion link, for example “CSF3 - <activate >.” Figure 3-(4)
shows the page presenting CSF3 with ‘activate’ in the
context of acute myeloid leukemia while Figure 3-(7)
shows the same independent of the query context.

Discussion
For general-purpose search on academic literature, there
exist open-domain search engines such as Google Scho-
lar and Microsoft Academic Search, and domain-specific
search engines such as PubMed. There also exist many
special-purpose deep search systems that provide infor-
mation pre-extracted from academic references, such as
PPI-finder [7] for protein-protein interactions, and
STRING [8] and iHOP [9] for protein networks.
Apart from these efforts, there also have been attempts

to address the “object search” problem mainly by data-
base communities. Chakrabarti et al. proposed a method
for mapping keywords to objects indirectly through the
documents that describe the target objects [19]. Cheng et
al. employed the information extraction technique to
locate object instances from documents for each prede-
fined target entity type, and returns the matching object
instances for queries in the form of <keyword, entity type
>(e.g., “Amazon #phone” for retrieving phone numbers
of Amazon.com) [20,21]. The relevance scores for the
matching instances are computed based on the frequen-
cies and proximity to the matching keywords.
The major difference between our work and these

object search systems lies in the explicit handling of rela-
tions. The previous object search systems tackle the
implicitly defined “ISA” relation alone. For example, what
returned to the query “Amazon #phone” are the phone
numbers of Amazon. In the field of biomedical applica-
tion, it is important to understand the relational context
for each object instance. However, considering the struc-
ture of the previous systems, it would be very difficult to
support queries that contain explicit relations, such as
biomedical objects that “inhibit” EGFR. In order to sup-
port those queries, the relation between the keyword and
the matching objects should be explicitly defined. More-
over, the context of the relations should be defined not
by proximity, but by semantics. For example, let us

Choi et al. BMC Medical Informatics and Decision Making 2012, 12(Suppl 1):S7
http://www.biomedcentral.com/1472-6947/12/S1/S7

Page 6 of 8



suppose that we have a sentence “the protein A promotes
the protein B, while suppresses the protein C.” For the
query, proteins that “the protein A suppresses” return the
protein C alone without the protein B. The inability
under the previous solutions comes from the failure to
define relations explicitly and to define semantics-driven
context for the relations.

Conclusion
We introduced a new platform, BOSS, for search on bio-
medical objects. BOSS is designed to fill the gap between
the two opposite ends of the spectrum: general-purpose
and domain-specific deep search systems. The general-
purpose systems, such as PubMed, allow users to express
any types of keyword queries; however, they simply return
numerous matching documents, and leave the rest of the
query-answering task to users. On the other hand, the
deep search systems, such as iHOP and PPI Finder, pro-
duce precompiled information in a structured way; how-
ever, the precompiled information is typically limited to
some predefined contexts, and, thus, they are incapable of
answering queries outside of the confinement.

BOSS enables users to freely express any types of
queries, and still returns the matching results in a struc-
tured way. Furthermore, since it is implemented on top
of a conventional information retrieval system upon
straightforward extension of its indexing model, BOSS
achieves scalability as high as the conventional document
search engines offer. In the future, we plan to investigate
scoring methods for ranking objects in order to further
refine the quality of the results.
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