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Abstract

high sensitivity.

Advanced sequencing techniques make large genome data available at an unprecedented speed and reduced
cost. Genome data sharing has the potential to facilitate significant medical breakthroughs. However, privacy
concerns have impeded efficient genome data sharing. In this paper, we present a novel approach for
disseminating genomic data while satisfying differential privacy. The proposed algorithm splits raw genome
seqguences into blocks, subdivides the blocks in a top-down fashion, and finally adds noise to counts to preserve
privacy. The experimental results suggest that the proposed algorithm can retain certain data utility in terms of a

Introduction

Recent advances in genome sequencing techniques have
the potential to speed up scientific discoveries and
enable significant medical breakthroughs. Meanwhile,
they also raise important concerns about the privacy of
individuals. For example, Homer’s attack [1] demon-
strated that it is possible to identify a genome-wide
association study (GWAS) participant from the allele
frequencies of a large number of single-nucleotide poly-
morphisms (SNPs). Due to these and other potential
privacy risks, NIH has forbidden public access to most
aggregate research results to protect privacy. Wang et
al. [2] showed an even higher risk that individuals could
be actually identified from a relatively small set of statis-
tics such as those routinely published in GWAS papers.
There are many other attacks revealed recently [3-5],
which could result in harm to the privacy of individuals.
It is a big challenge to promote privacy-preserving data
sharing for genomic research. In the United States, the
Health Insurance Portability and Accountability Act
(HIPPA) [6] establishes the Privacy Rule to protect
health information. The Privacy Rule establishes an
operational approach, called Safe Harbor that removes
18 HIPAA-specified identifiers to achieve some degree
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of “de-identification”. Since genome data are biometrics,
it would be natural to remove these data from “de-iden-
tified” data sets. However, there is no explicit clarifica-
tion of de-identified genomic data by the Institute of
Medicine (IOM) or HIPAA regulations. There have
been long and vigorous debates [7,8] about the current
privacy rules for Human Genomic Studies (HGS). Some
researchers contend that existing privacy rules are not
adequate for the protection of genomic information
[2,9], as the technological evolution and the increasing
accessibility of data cause the “de-identified” genome
data to be re-identifiable. Others complain that privacy
regulations impede effective data access and use for
research, as genomic data are most useful when pre-
sented in high quality, sufficient samples, and associated
with an individual’s medical history, etc. Recently, the
Presidential Commission for the Study of Bioethical
Issues published a report about privacy and progress in
Whole Genome Sequencing (WGS) [10]. The report
concludes that under current privacy rules, genome
privacy is not adequately protected and that at the same
time genomic researchers and data owners cannot effec-
tively access and share them. To address these limita-
tions, there have been several efforts on developing
practical privacy-preserving technology solutions.
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Problem statement

Suppose a data owner has a data table D(A’, Asn*) and
wants to release an anonymous data table [) to the
public for data analysis. The attributes in D are classified
into two categories: (1) An explicit identifier attribute
that explicitly identifies an individual, such as SSN, and
Name. These attributes are removed before releasing the
data as per the HIPAA Privacy Rule [11]. (2) A set of
SNPs (genomic data), which is denoted by A*, for each
individual in the data table D.

Given a data table D, our objective is to generate an
anonymized data table [ such that (1) [ satisfies E-
differential privacy, and (2) preserves as much utility as
possible for data analysis. Next, we introduce differential
privacy and data utility models.

Privacy protection model

Differential privacy is a recent privacy definition that
provides a strong privacy guarantee. It guarantees that
an adversary learns nothing more about an individual
from the released data set, regardless of whether her
record is present or absent in the original data. Infor-
mally, a differentially private output is insensitive to any
particular record. Therefore, from an individual’s point
of view, the output is computed as if from a data set
that does not contain her record.

Definition (e-Differential Privacy) [12] A randomized
algorithm Ag is differentially private if for all data sets D
and D’ whose symmetric difference contains at most
one record (i.e, |[D A D’| < 1), and for all possible anon-
ymized data sets D,

Pr[Ag(D) = D] < re® x Pr[Ag(D') = D] (1)

A standard mechanism to achieve differential privacy
is to add random noise to the true output of a function.
The noise is calibrated according to the seusitivity of the
function. The sensitivity of a function is the maximum
difference of its outputs from two data sets that differ
only in one record. This is also known as Laplacian
mechanism [12].

Privacy attack model

The likelihood ratio test [13] provides an upper bound
on the power of any method for the detection of an
individual in a cohort, using the following formula:

R O SN BN e
L—;(leogpj+(l x])logl_pj),

where x; is either O (i.e., major allele) or 1 (i.e., minor
allele), m is the number of SNPs, p; is the allele fre-
quency of SNP j in the population and f; is that in a
pool.
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Utility criteria
We use a case-control association test to evaluate the
utility of a differentially private data. The test has the

rc (03 — Eij)’
following form: 2 = Z Z ”E Y where r is
i j i

the number of rows, c is the number of columns, O, is
observed frequencies, and E;; is expected frequencies.
Algorithm 1 Genomic Data Anonymization
- Input: Raw data set D, privacy budget ¢, and number
of specializations &
- Output: Anonymized genomic data set D
: Divide the genome data into blocks;
: Generate the taxonomy tree for each block;
: Initialize every block in D to the topmost value;
: Initialize Cut; to include the topmost value;
:fori=1tohdo
Select v € UCut; randomly;
Specialize v on D and update UCut;
: end for
: return each leaf node with noisy count (C + Lap(1/E))

VPN U WN e

Genomic data anonymization

In this section, we first present our genomic data anon-
ymization algorithm as described in Algorithm 1 and
prove that the algorithm is E-differentially private. We
then analyze the runtime complexity of the algorithm.

Anonymization algorithm
The proposed algorithm first divides the genomic data into
blocks and then generalizes each block. Thus, the algo-
rithm divides the raw data into several equivalence groups,
where all the records within a group have the same block
values. Finally, the algorithm publishes the noisy counts of
the groups. Next we elaborate each line of the algorithm.
Dividing the raw data (Line 1). Algorithm 1 first
divides the raw genomic data into multiple blocks. Each
block consists of a number of SNPs. For example, the
raw genomic data of Table 1 can be divided into 4
blocks as shown in Table 2, where each block consists

Table 1 Raw genome data

ID Genomic data

AG CC CC GG CT GG AA CC
AG CC CC GG TT GG AA CC
AA CC CC GG TT GG AA CC
AG CT CT AG CT AG AG CT
GG CT CT AG CC GG AA CC
AA CC CC GG TT GG AA CC
AG CT CT AG CT AG AG CT
AA CC CC GG TT GG AA CC
GG CT TT AG CC AG AA CC
AG CT CT GG CT AG AA CC

O 0 N O L b W N —
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Table 2 Genome data partitioned into blocks

ID Genomic data

Block 1 Block 2 Block 3 Block 4
1 AG CC CC GG CT GG AA CC
2 AG CC CC GG 1T GG AA CC
3 AA CC CC GG TT GG AA CC
4 AG CT CT AG CT AG AG CT
5 GG CT CT AG CC GG AA CC
6 AA CC CC GG TT GG AA CC
7 AG CT CT AG CT AG AG CT
8 AA CC CC GG TT GG AA CC
9 GG CT TT AG CC AG AA CC
10 AG CT CT GG CT AG AA CC

of two SNPs. These blocks are treated like different
attributes and thus enable the proposed algorithm to
anonymize high-dimensional genomic data effectively.
We denote each block by Af"p and thus A" = UA?"",

Note that the sizes of all the blocks do not need to be
equal. For example, if there were nine SNPs in Table 1
instead of 8, it would be impossible to have all blocks of
size two. In such a case, the last block can be bigger
than the other blocks. In principle, each block may have
a different size, and the proposed algorithm can handle
such a scenario.

We do not use any heuristic to determine the size of
each block. Experimental results suggest that six SNPs
per block yield good result. However, this number may
vary depending on the data set in question. It is an
interesting research problem to design a heuristic that
can determine the optimal size of each block so as to
maximize the data utility for a given data set.

Generating the taxonomy tree (Line 2). A taxonomy
tree of a block A:"p specifies the hierarchy among the
values. Figure 1 presents the taxonomy trees of Blocks 1
- 4 (ignore the dashed curve for now) in Table 2. A cut
of the taxonomy tree for a block Af"p , denoted by Cut;
contains exactly one value on each root-to-leaf path
(more discussion follows).

Block 1 Block 2
. Any, = Any,
| ™ |__|_\
AGCC AACC AGCT GGCT = GG GG =w-r-- CTAG -,
Block3 Block 4 \
FERTEEEE R LT Anya_= )))))))) Any’4 ‘FJ
CTGG TTGG CTAG CCGG - < AACC 1esee:- AG CT--"
Figure 1 Taxonomy tree of blocks.
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Ideally, the data owner should provide a taxonomy
tree for each block as the knowledge of the taxonomy
tree is domain specific. However, if no taxonomy tree is
provided, Algorithm 1 can generate it by scanning the
data set once for each block. For each unique value that
appears in the data set, a leaf node is created from the
root node Anyl. For example, four unique values (i.e.,
AG CC, AA CC, AG CT, and GG CT) appear in Table
2 for Block 1; therefore, the corresponding taxonomy
tree also has four leaves as shown in Figure 1. All the
generated taxonomy trees have only two levels (i.e., root
and the leaf nodes). However, a data owner can define a
multilevel taxonomy tree for each block [14]. Multilevel
taxonomy tree provides more flexibility and may pre-
serve more data utility; further investigation is needed
to validate the benefit of multilevel taxonomy trees.

Data anonymization (Lines 3-8). Anonymization
starts by creating a single root partition by generalizing
all values in UAf"p to the topmost value in their taxon-
omy trees (Line 3). The initial Cuti contains the top-
most value for each block A} (Line 4).

The specialization starts from the topmost cut and
pushes down the cut iteratively by specializing some
value in the current cut. The general idea is to anon-
ymize the raw data by a sequence of specializations,
starting from the topmost general state as shown in
Figure 2. A specialization, denoted by v — child(v),
where child(v) is the set of child values of v, replaces
the parent value v with a child value. The specialization
process can be viewed as pushing the “cut” of each tax-
onomy tree downwards. Figure 1 shows a solution cut
indicated by the dashed curve corresponding to the
anonymous Table 3.

At each iteration, Algorithm 1 randomly selects a can-
didate v € UCut; for specialization (Line 6). Candidates
can be selected based on their score values, and differ-
ent heuristics (e.g., information gain) can be used to
determine candidates’ scores. In future work, we will
investigate how to design a scoring function tailored to
a specific data utility requirement.

Then, the algorithm specializes v and updates UCut;
(Line 7). Algorithm 1 specializes v by recursively distri-
buting the records from the parent partition into dis-
joint child partitions with more specific values based on
the taxonomy tree. The algorithm terminates after a
given number of specializations.

Example 1 Consider Table 1 with ¢ = 1 and h = 2.
Initially the algorithm creates one root partition contain-
ing all the records that are generalized to (Any,, Any,,
Anys, Any,). UCut; includes {Any,, Any,, Anys, Any,}. Let
the first specialization be Any, — {CC GG, CT AG}. The
algorithm creates two new partitions under the root, as
shown in Figure 2, and splits data records between them.
UCut; is updated to {Any,, Anys, Any,}. Suppose that the
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Figure 2 Tree for partitioning records.

N
Block 1 Block 2 Block 3 Block 4
Any Any Any Any
Any CC GG Any Any Any CTAG Any Any
Any CCGG Any AACC Any CC GG Any AGCT Any CTAG Any  AACC Any CTAG Any AG CT

J

next specialization is Any, — {AA CC, AG CT }, which
creates further specialized partitions, as illustrated in
Figure 2.

Returning the noisy counts (Line 9). Finally, Algo-
rithm 1 computes the noisy count of each leaf partition
to construct the anonymous data table [) as shown in
Table 3. The number of leaf partitions is at least 2 and
the exact number depends on the taxonomy tree of the
blocks.

Publishing the true counts of each partition violates dif-
ferential privacy; therefore, a random variable Lap(Af/e)
is added to the true count of each leaf partition, where
Af=1.

Privacy analysis

We now analyze the privacy implication of each of the
above steps and quantify the information leakage in
terms of privacy budget.

Line 1. The algorithm divides the raw data into
blocks, where the block size is a given constant irrespec-
tive of the given data set. Since the block generation
process is data independent, this step does not require
any privacy budget. However, if a heuristic were used to
determine the block size, then a portion of privacy bud-
get should be allocated to satisfy differential privacy.

Line 2. We assume that the data owner provides the
taxonomy trees. In such a case, this step incurs no priv-
acy leakage and no privacy budget is consumed as the
taxonomy trees are generated from public knowledge
that is independent of any particular data set.

On the other hand, the alternative approach that we
outlined, for a scenario when the taxonomy trees are
not provided, needs additional treatment to satisfy dif-
ferential privacy. It is because, for a different data set
D, a taxonomy tree may have one more or less leaf

Table 3 Anonymous data (¢ = 1, h = 2)

Genomic data
Any CC GG Any AA CC 3
Any CC GG Any AG CT 2

1
3

Noisy Count

Any CT AG Any AA CC
Any CT AG Any AG CT

node. We argue that taxonomy trees represent the
domain knowledge, and therefore, should be part of
public information.

Lines 3-8. The algorithm selects a candidate for spe-
cialization randomly (Line 7) and iteratively creates
child partitions based on the given taxonomy trees (Line
8). Both operations are independent of the underlining
data set (the selection process is random and the parti-
tioning process is fixed due to the given taxonomy
trees), and therefore no privacy budget is required for
the & number of iterations.

Line 9. The algorithm adds Laplace noise Lap(1/e) to
the true count of each leaf partition and the requisite
privacy budget is ¢ due to the parallel composition prop-
erty [15]. The Parallel composition property guarantees
that if a sequence of computations are conducted on
disjoint data sets, then the privacy cost does not accu-
mulate but depends only on the worst guarantee of all
the computations. Since the leaf partitions are disjoint
(i.e., a record can fall into exactly one leaf partition), the
total privacy cost (i.e., the budget required) for this step
is e.

In conclusion, Line 1, Line 2, Lines 3-8, and Line 9
use 0, 0, 0, and ¢ privacy budgets, respectively. Accord-
ing to the sequential composition property of differential
privacy [15], any sequence of computations that each
provides differential privacy in isolation also provides
differential privacy in sequence. Therefore, Algorithm 1
satisfies e-differential privacy.

Computational complexity

The proposed algorithm is scalable and the runtime is
linear to the size of the data set. This is an important
property to achieve in the age of big data. In this sec-
tion, we present a brief analysis of the computational
complexity of Algorithm 1.

Line 1. Algorithm 1 generates the blocks from the raw
data. This can be done by scanning the data set once.
Thus, the runtime of this step is O(|D| x m), where |D|
is the number of records and m is the number of SNPs.

Line 2. In case, algorithm 1 can also generate the tax-
onomy trees (if not given) by scanning the data set
once. This is can be achieved simultaneously with the
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previous step (Line 1); hence, there is no additional cost
for generating taxonomy trees.

Lines 3-8. Candidates are selected randomly in each
iteration, which requires constant O(1) time (Line 6).

To perform a specialization v — child(v), we need to
retrieve D,, the set of data records generalized to v. To
facilitate this operation we organize the records in a tree
structure as shown in Figure 2. Each leaf partition
(node) stores the set of data records having the same
generalized block values. This will allow us to calculate
the noisy counts in Line 9.

Initially, the tree has only one leaf partition containing
all data records, generalized to the topmost value on
every block. In each iteration we perform a specializa-
tion by refining the leaf partitions and splitting the
records among the new child partitions. This operation
also requires scanning all the records once per iteration.
Thus, the runtime of this step is O(|D| x /). The value
of & is constant and usually very small (around 10), and
therefore, can be ignored.

Line 9. The cost of adding Laplace noise is propor-
tional to the number of leaf nodes, which is at least 2",
For a small value of /, the number of leaf nodes is insig-
nificant with respect to the size of the data set |D|. We
therefore can ignore the cost of this step. Note that, we
can easily determine the true count of a leaf partition as
it keeps track of the set of data records it represents.

Hence, the total runtime of the algorithm is O(|D| x
m + |D|) = O(|D| x m).

Experimental results

The goal of the proposed framework is to generate dif-
ferentially private data that can mitigate the attack of
likelihood ratio tests, while preserving highly significant
SNPs as much as possible. Two data sets (i.e., chr2 and
chr10) with 200 participants in case, control and test
groups were used in our experiments, which were
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obtained from the Human Genome Privacy Challenge
[16]. Besides, the chr2 and chr10 data sets contain 311
SNPs and 610 SNPs, respectively.

Experimental results

The number of specializations used in our experiment
was 5. SNP data were split evenly into N/6 blocks,
where N is the number of SNP. All the results are based
on the average of 100 trials.

Tables 4 and 5 illustrate the results of the proposed
method on chr2 and chrl0 data sets with privacy budget
of 1.0, where power indicates the ratio of identifiable indi-
viduals using the likelihood ratio test in the case group. In
Tables 4 and 5, cutoff p-value thresholds of 5E-2, 1E-2,
1E-3, 1E-5 were used in our experiment, for which four
measurements (accuracy, sensitivity, precision and F1-
score) were calculated under each method. The last col-
umn corresponds to the number of significant SNPs dis-
covered in the original data without adding noise. We can
see that the proposed results showed high sensitivities but
low precisions on both data sets, which means our method
can correctly preserve most true significant SNPs, but with
a large amount of false positive reports.

Figures 3 and 4 show the box plots of the data utility
in terms of sensitivity and precision for both testing
data sets with privacy budget of 1.0 under different cut-
off p-values. We can see that the proposed method
achieved high sensitivity on both data sets for all cutoff
p-values. Moreover, Figures 3 and 4 depict that the pre-
cision decreases as the cutoff p-value decreases.

Figures 5 and 6 present the test statistics calculated on
case, control and test groups (i.e., individual unrelated to
both case and control) for both chr2 and chr10 data sets.
An individual in the case group can be re-identified with a
high confidence if the test statistic obtained from his/her
SNP sequence is significantly higher than these of the test
group using likelihood ratio test [1]. Figures 5 and 6 depict

Table 4 Data utility of chr2 data set with privacy budget of 1.0 and power of 0.01

Cutoff p-value Accuracy Sensitivity Precision F1-score # of significant SNPs
5E-02 0.178 1.000 0.079 0.147 22
1E-02 0211 0.999 0.075 0.140 20
1E-03 0250 0.948 0.072 0.134 19
1E-05 0.297 1.000 0.060 0.114 14

Table 5 Data utility of chr10 data set with privacy budget of 1.0 and power of 0.09

Cutoff p-value Accuracy Sensitivity Precision F1-score # of significant SNPs
5E-02 0301 0.956 0.092 0.168 45

1E-02 0317 0.903 0.048 0.091 23

1E-03 0431 1.000 0.041 0.080 15

1E-05 0577 1.000 0.030 0.058 8
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Figure 3 Boxplots of data utility of chr2 data with different p-
values.
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Figure 4 Boxplots of data utility of chr10 data with different p-
values.

2 case individuals were identified in chr2 with privacy budget 1.0
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Figure 5 Privacy risk of chr2 data. The star and diamond markers
represent the test value of a specific individual in the case (left) or
test (right) group, respectively. The horizontal line indicates the 0.95
confidence level for identifying case individuals that are estimated
based on the test statistic values of test individuals.

18 case individuals were identified in chr10 with privacy budget 1.0
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Figure 6 Privacy risk of chr10 data. The star and diamond
markers represent the test value of a specific individual in the case
(left) or test (right) group, respectively. The horizontal line indicates
the 0.95 confidence level for identifying case individuals that are
estimated based on the test statistic values of test individuals.
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Figure 7 Comparison of data utility and privacy risk for chr2
data with different privacy budget.
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Figure 8 Comparison of data utility and privacy risk for chr10
data with different privacy budget.

that 2 and 18 case individuals have higher test statistic
values than 95% test individuals (i.e., a 5% false positive
rate) in both data sets. The results suggest that the proposed
method provides a better privacy protection on a small data
set (i.e., chr2 data set) under the same privacy budget.

Finally, Figures 7 and 8 show both utility and privacy
risk for chr2 and chr10 data sets. By changing privacy
budget from 0.1 to 1, we observw no performance gain
of sensitivity nor privacy risk change on chr2 data set,
as shown in Figure 7. We also tested the proposed algo-
rithm on a larger data set (i.e., chr10). Figure 8 shows
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that the proposed algorithm achieves the best sensitivity
and the highest number of re-identification risk with
privacy budget of 1.0.

Conclusions

In summary, we developed a novel approach to dissemi-
nate genomic data in a privacy-preserving manner. The
privacy guarantee is guarded by the rigorous differential
privacy model. Our approach uses a top-down structure
to split long sequences into segments before adding noise
to mask record owners’ identity, which demonstrates
promising utility with desirable computational complex-
ity. The experimental results suggest that the proposed
algorithm can retain data utility with a high sensitivity.
The proposed algorithm can also be used to protect het-
erogeneous data, such as records consisting of both med-
ical and genomic data. The proposal framework also has
limitations. For example, the precision performance of
the proposed framework is relatively poor. Further
improvement is possible by refining the heuristic for
splitting sequences and by introducing a scoring function
in the data specialization process.
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