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Abstract

Background: Although alert fatigue is blamed for high override rates in contemporary clinical decision support
systems, the concept of alert fatigue is poorly defined. We tested hypotheses arising from two possible alert fatigue
mechanisms: (A) cognitive overload associated with amount of work, complexity of work, and effort distinguishing
informative from uninformative alerts, and (B) desensitization from repeated exposure to the same alert over time.

Methods: Retrospective cohort study using electronic health record data (both drug alerts and clinical practice
reminders) from January 2010 through June 2013 from 112 ambulatory primary care clinicians. The cognitive
overload hypotheses were that alert acceptance would be lower with higher workload (number of encounters,
number of patients), higher work complexity (patient comorbidity, alerts per encounter), and more alerts low in
informational value (repeated alerts for the same patient in the same year). The desensitization hypothesis was that,
for newly deployed alerts, acceptance rates would decline after an initial peak.

Results: On average, one-quarter of drug alerts received by a primary care clinician, and one-third of clinical
reminders, were repeats for the same patient within the same year. Alert acceptance was associated with work
complexity and repeated alerts, but not with the amount of work. Likelihood of reminder acceptance dropped by
30% for each additional reminder received per encounter, and by 10% for each five percentage point increase in
proportion of repeated reminders. The newly deployed reminders did not show a pattern of declining response
rates over time, which would have been consistent with desensitization. Interestingly, nurse practitioners were 4
times as likely to accept drug alerts as physicians.

Conclusions: Clinicians became less likely to accept alerts as they received more of them, particularly more repeated
alerts. There was no evidence of an effect of workload per se, or of desensitization over time for a newly deployed
alert. Reducing within-patient repeats may be a promising target for reducing alert overrides and alert fatigue.
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Background
Clinical decision support systems (CDSS), which provide
alerts at the point of ordering, can reduce medication
errors and adverse drug events [1, 2]. Integrating CDSS
into electronic health records (EHRs) allows medication
information to be combined with patient information to

create alerts about drug-drug interactions, drug allergy
contraindications, and other important situations [3]. As
a result of this promising history, as well as the federal
EHR incentive program (the “meaningful use” program)
[4], contemporary EHR products routinely integrate e-
prescribing with CDSS. Clinical reminders, such as best-
practice alerts to provide preventive services, are also
becoming common in EHRs as a result of demonstrated
efficacy in improving rates of evidence-based care [5, 6].
In practice, however, 49–96% of alerts are overridden

[7], raising questions about the effectiveness of decision
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support. Although overrides are frequently justified, they
can be associated with medication errors and serious
adverse events (including death) if clinically important
information is inadvertently ignored [7–9]. It is widely
accepted that “alert fatigue” explains high override rates
[7, 9–14]. However, alert fatigue has been conceptualized
in different ways, with different implications.
One conceptual model, which we label cognitive over-

load, is that alert fatigue is caused by receipt of a large
quantity of information along with insufficient time or
cognitive resources to distinguish relevant from irrele-
vant information [7, 15]. Alerts that are not informative
contribute to this overload. Uninformative alerts are
similar to false alarms, and it is well-established in the
human factors literature that false alarms reduce respon-
siveness to alarms and may also reduce overall perform-
ance on tasks interrupted by alarms. [16–18] A second
conceptual model of alert fatigue is that repeated expos-
ure to alerts leads to declining responsiveness [9, 19, 20],
a phenomenon that can be called desensitization. Ac-
cording to this model, an alert is most effective when it
is first noticed, and steadily becomes less effective as the
individual becomes acclimatized to it over time.
These definitions are not mutually exclusive, yet they

are sufficiently different to suggest different strategies to
reduce alert fatigue. If overrides are explained primarily
by cognitive overload, response rates could be increased
by reducing frequency of uninformative alerts and redu-
cing workload or work complexity. By contrast, if
desensitization is a strong factor, response rates could be
improved by discontinuing older alerts or changing the
presentation of an alert to increase its apparent novelty.
Surprisingly, neither of these hypotheses has been

extensively tested, and few effect sizes have been pub-
lished. Examples of quantitative research supporting the
overload explanation include studies finding that over-
ride rates decreased overall after irrelevant alerts were
discontinued [21], that ability to remember alerts
declined as number of different alerts rose [22], and that
inappropriate overrides were associated with number of
noncritical alerts delivered at the same time [23]. Yet
other studies appear to show no evidence of overload.
An influential systematic review of CDSS override rates
noted that across studies there was no evidence of a re-
lationship between alert volume and percentage overrid-
den [7]. Bryant and colleagues also recently found that
alert volume was not correlated with override rate [24].
One study supporting the desensitization explanation
showed that response to clinical trial recruiting alerts in
the EHR declined by approximately 2.7% per week, fall-
ing from about 50% to about 35% over 36 weeks [19].
Many other studies lack physician-level or pre-post data
needed to distinguish between the explanations or esti-
mate effect sizes [25, 26], or else report override rates

and their predictors without directly addressing alert
fatigue [8, 27, 28]. Most work has focused on medication
alerts rather than clinical reminders, and has been
conducted in academic medical centers.
We had two objectives: (1) to test contrasting hypoth-

eses about alert fatigue arising from the cognitive over-
load and desensitization models, and; (2) to estimate
effect sizes associated with alert fatigue. We conducted
the study in an EHR data set from community primary
care clinicians that included both medication alerts and
clinical reminders.

Methods
Design and setting
This retrospective cohort study employed EHR data
from the Institute for Family Health (IFH), a network of
federally qualified health centers providing safety net
care in and around New York City. IFH employs more
than 100 physicians and has a patient population of
more than 120,000. IFH has been using the EpicCare
electronic health record since 2003. Additional details
from this study are published elsewhere [29, 30]. The
study was approved by the IRBs of Weill Cornell
Medical College and IFH.

Study sample
The study sample included all IFH clinicians who (1)
met the criteria for “eligible provider” under the Medic-
aid meaningful use program, and (2) had at least one pa-
tient encounter at IFH between January 1, 2010 and
June 30, 2013. We excluded the few IFH clinicians who
were not in family practice to increase homogeneity.
Data used included encounters with billing diagnoses,
alerts fired, and response to each alert. The Johns
Hopkins Aggregated Diagnosis Groups (ADG) count of
comorbidities was computed on billing diagnoses [31].
In this EHR, best-practice advisories (BPAs) were

clinical reminders about recommended care usually pre-
sented to a clinician when he or she opened the patient
record. These included reminders for preventive services
(such as vaccines and cancer screening), disease manage-
ment (such as lipids testing in diabetes), and compliance
with quality initiatives (e.g., reminder to subclassify
asthma type to comply with meaningful use quality met-
rics). BPAs were triggered by patient characteristics (age,
sex, diagnosis) at appropriate time intervals (e.g., annu-
ally for a flu vaccine reminder, or quarterly for certain
diabetes tests). A BPA was considered accepted if the
clinician clicked “accept” or opened the order set
highlighted in the alert.
The system also included e-prescribing medication

alerts. For these e-prescribing alerts, we included only
drug-drug interaction (DDI) and drug-allergy interaction
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(DAI) alerts because other types had very high override
rates [29].

Cognitive overload hypotheses
The cognitive overload hypothesis was that likelihood of
accepting alerts would decrease with increases in amount
of work, complexity of work, and number of uninforma-
tive alerts. No validated measures exist to capture these
constructs in EHR data. We therefore developed novel
clinician-level markers which were approved by our
clinician co-authors as having face validity.

� For amount of work, we included number of unique
patients seen and number of encounters per year.
Both of these were intended to provide rough
estimate of how much work the clinician did at this
organization, and allowed us to compare at an
ordinal level clinicians who worked more than other
clinicians at this organization.

� As markers of complexity of work, we included
alerts received per encounter and comorbidity index
of the clinician’s patients. The comorbidity index
was calculated via the Johns Hopkins Aggregated
Diagnosis Groups (ADG) algorithm, a well validated
case mix metric for ambulatory populations [31].
These 2 indicators were considered likely to be
correlated with how complex each encounter was
for a clinician, because the existence of multiple
comorbidities would require additional evaluation
and management, and because it is likely that the
additional comorbidities (and corresponding
medications) would trigger more alerts for an
individual patient.

� As a proxy for low-information alerts, we assessed
the proportion of repeated alerts. It would have been
ideal to manually review alerts to distinguish appro-
priate/informative from inappropriate/uninformative
alerts, but this was not feasible with the current
study, which included more than 1 million alerts.
Instead, we captured the proportion of repeated
alerts, defined as alerts presented to the same clin-
ician for the same patient in the same year. This was
because a substantial body of work [7, 8, 32, 33] sug-
gests that repeated CDSS alerts are less likely to be
informative (that is, they are often equivalent to false
alarms). The human factors literature in other
settings shows that high false alarm rates reduce re-
sponsiveness as the individual learns, consciously or
unconsciously, that the alarm is unreliable [16–18].
Furthermore, some studies suggest that a high rate
of false alarms can also reduce overall performance
on tasks, due to increased cognitive burden as the
individual’s attention becomes divided between rele-
vant and irrelevant information [17]. As a result, we

considered it likely that repeated alerts caused
additional cognitive overload because of the need to
review and dismiss them, even if the clinician tended
to dismiss them without reading them.

� For drug alerts only, an additional 2 variables were
markers of the complexity of the work: order sets
used per encounter and lab tests ordered per
encounter. The rationale for these was the same as
the rationale for the complexity of work markers
listed above. However, these 2 ordering metrics were
included only for the drug alert analyses, because
many BPAs contained recommendations to place an
order via an order set (e.g., reminders to test
hemoglobin A1c in diabetes).

Desensitization over time hypothesis
We hypothesized that, if desensitization over time occurred,
the likelihood of accepting an alert would be highest during
the initial months of its deployment, followed by a decline.
To test this hypothesis, we selected newly deployed alerts
that had sufficient longitudinal information. We restricted
the sample to BPAs that were newly launched within the
study timeframe, were available continuously for 6 months
or more, and were presented to at least 10 clinicians 5 or
more times each. This produced a sample of 6 new BPAs
and monthly acceptance rates for 46 clinicians which could
be graphed and analyzed over time.

Construction of variables
Analyses were conducted at the clinician level because
all hypotheses were at the clinician level. Average alert
acceptance rates (outcome variable) were computed per
clinician. Patients were attributed to the provider that
they saw most frequently. Patient comorbidity scores
were computed using the patient’s documented comor-
bidities the end of each calendar year, and then the aver-
age comorbidity for the clinician’s patient panel (using
the attribution described in the previous sentence) was
calculated. The other covariates were also computed at
the clinician level: total number of encounters per year,
average number of alerts received per encounter, average
number of those alerts that were repeats (i.e., same clin-
ician, same patient, same year), and average number of
order sets employed during an encounter.

Statistical analyses
The primary outcome of interest was the clinician-level
alert acceptance rates, which were modeled with nega-
tive binomial models. For each model, the model
employed an offset which was the natural logarithm of
the number of alerts fired. (Additional details on meth-
odology are available in previous papers from the same
cohort study [29, 30]). Results are reported as the inci-
dent rate ratio (IRR). The incident rate ratio is the alert
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acceptance rate for clinicians in one category divided by
the alert acceptance rate for clinicians in a second
category, and it is interpreted more or less like an odds
ratio. For example, an IRR of 4.0 for nurse practitioners
versus doctors would mean that nurse practitioners were
4 times as likely to respond to an alert as doctors were
(see Table 2 for examples). Confidence intervals were
calculated from standard errors robust to clustering at
the clinician level to account for the correlation of alert
acceptances across the 4 years for each clinician [34, 35].
We assessed bivariate and multivariable relationships be-
tween the outcome of interest and each of the predictors
(nurse practitioner versus physician, attested for mean-
ingful use, female versus male, number of patients seen
per year, encounters per year, average alerts received per
encounter, average comorbidity count of patients in the
panel, percent of all alerts that were within-patient
repeats, average number of order sets used per encoun-
ter, and number of lab tests ordered per encounter;
Table 2). In the multivariable models, one variable was
dropped to avoid collinearity; details in Table 2 footnote.
For the desensitization hypothesis, alert acceptance

rates were computed per provider per month, and we
then normalized the month such that time zero was the
time of alert deployment. Lowess-smoothed graphs are
provided showing these rates from time zero through
the lifetime of the alert or study end. To model the trend
(Fig. 1), slopes over time were estimated with Poisson,
zero-inflated Poisson, negative binomial, or zero-inflated
negative binomial models (best-fitting model selected on
the basis of a likelihood ratio test followed by a Vuong
test). For all models, the offset was the log of number of
alerts fired. In these models, cluster-robust errors within

clinician could not be calculated because some of the
clusters (that is, clinicians) had high frequencies of no
response (they did not accept any alerts in a given
month). Instead, robust standard errors were used [35].
Under the desensitization hypothesis, trendline slopes
should have been negative after an initial peak represent-
ing high average acceptance rates.
Analyses were performed in SAS 9.3 and Stata 13.

Results
The sample included 112 clinicians: 93 physicians and
19 nurse practitioners (Table 1). The data set contained
1,266,325 BPAs and 326,203 DDI/DAIs from 430,803
encounters with 99,649 patients. Clinicians typically
received more than 4,000 BPAs and 1,000 drug alerts
per year (Table 1).
More than a quarter of BPAs were repeats for the

same clinician for the same patient within the same year
(median 26.2% per clinician; interquartile range [IQR]
16.5% to 35.1%). Similarly, of all DDI/DAI received by a
clinician, almost 1/3 represented repeats for the same
patient within the same year (median 31.8% per
clinician; IQR 25.6% to 38.2%).

Cognitive overload hypothesis
For BPAs, acceptance rates went down with increases in
the total number of BPAs and repetition of BPAs
(Table 2). BPA acceptance rates were also significantly
lower with increased average patient complexity (comor-
bidity count) in the univariate analysis, although this fac-
tor narrowly lost significance in the multivariable model
(IRR = 0.49, P = .06). With every additional BPA per en-
counter, the likelihood a clinician would accept any BPA

Table 1 Characteristics of study sample

All years 2010 2011 2012 Jan – Jun 2013

Clinicians, n 112 55 70 90 87

Nurse practitioners, n (%)* 19 (17) 6 (11) 8 (11) 12 (13) 15 (17)

Female, n (%) 71 (63) 32 (58) 44 (63) 56 (62) 54 (62)

Attested for meaningful use, n (%)† 42 (38) 33 (60) 42 (60) 42 (47) 41 (47)

Annual patients per clinician, median (Q1-Q3) 791 (406-1269) 968 (424-1336) 896 (429-1341) 758 (354-1337) 521 (391-794)

Annual encounters per clinician, median (Q1-Q3) 1357 (630-2287) 1850 (840-2416) 1695 (834-2562) 1580 (508-2389) 882 (511-1277)

Patient comorbidity score, median (Q1-Q3)‡ 0.3 (0.2-0.4) 0.3 (0.2-0.4) 0.3 (0.2-0.4) 0.4 (0.2-0.5) 0.3 (0.2-0.4)

BPAs in use, total 126 93 94 98 93

Annual BPAs received per clinician, median (Q1-Q3) 4227 (2057-6897) 5265 (2739-7652) 5075 (2602-8070) 4310 (1756-7249) 2486 (1625-3799)

Percent BPAs accepted per clinician, median (Q1-Q3) 19.4 (11.8-28.5) 18.6 (13.0-27.0) 19.6 (12.6-30.0) 20.9 (10.7-30.0) 18.6 (10.4-26.0)

DDI/DAI alerts in use, total 3213 2045 1599 1819 1364

Annual alerts received per clinician, median (Q1-Q3) 966 (407-1762) 1116 (580-2169) 1140 (547-2131) 1231 (310-1831) 622 (255-969)

Percent accepted per clinician, median (Q1-Q3) 0.0 (0.0-0.3) 0.0 (0.0-0.4) 0.0 (0.0-0.4) 0.0 (0.0-0.2) 0.0 (0.0-0.2)

DDI drug-drug interaction, DAI drug-allergy interaction
*All other clinicians are MDs or DOs
†All of these attested during 2012
‡Comorbidity score calculated by Johns Hopkins aggregated diagnosis group algorithm
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dropped by 30% (IRR = 0.70; p < .001; Table 2). With
each 5% increment in proportion of BPAs that repre-
sented within-patient repeats, the likelihood of BPA ac-
ceptance dropped by 10% (IRR = 0.90; p < .001; Table 2).

Associations with similar effect sizes were evident in
DDI/DAI but statistical significance was lower because
of low acceptance rates (overall less than 1%; Table 2).
(Low acceptance rates created what is known as a floor

Table 2 Associations between alert acceptance and clinician characteristics and workload

Predictor Median value of
continuous predictors

Acceptance rates (yes vs. no
or above vs. below median)

Bivariate models Multivariable model

IRR (95% CI) P IRR (95% CI) p

For best practice advisories (BPAs)

Clinician characteristics

Nurse practitioner (vs physician) – 22.7% vs 21.0% 1.08 (0.74, 1.57) .69 0.79 (0.57-1.10) .16

Attested for meaningful use
(vs not attested)

– 22.9% vs 19.3% 1.19 (0.94, 1.51) .15 1.06 (0.88-1.28) .50

Female (vs male) – 23.0% vs 18.4% 1.25 (0.98, 1.59) .07 1.06 (0.88-1.27) .54

Markers of workload

Patients per year 790 20.7% vs 21.7% 1.002 (0.98, 1.02)c .85 —f

Encounters per year 1357 21.8% vs 20.6% 0.999 (0.99, 1.01)d .92 1.01 (1.00-1.02) .21

Markers of complexity

BPAs received per encounter 3.2 15.8% vs 26.7% 0.65 (0.55, 0.77)a <.001 0.70 (0.60-0.82) <.001

Drug alerts received per encounter 0.7 22.7% vs 19.8% 1.17 (0.80, 1.72)a .41 1.91 (1.39-2.64) <.001

Average ADG comorbidity count
of patients

0.3 18.9% vs 23.5% 0.27 (0.10, 0.71)b .008 0.49 (0.23-1.03) .06

Percent of BPAs that are within-
patient repeats

26.2 17.0% vs 25.4% 0.90 (0.87, 0.94)e <.001 0.90 (0.86-0.95) <.001

For drug alerts (DDI and DAI)

Clinician characteristics

Nurse practitioner (vs physician) – 0.9% vs 0.2% 3.97 (1.64, 9.62) .002 4.56 (1.72-12.06) .002

Attested for meaningful use
(vs not attested)

– 0.3% vs 0.3% 0.92 (0.40, 2.11) .85 0.96 (0.49-1.88) .91

Female (vs male) – 0.4% vs 0.2% 1.72 (0.82, 3.60) .15 0.85 (0.37-1.95) .71

Markers of workload

Patients per year 790 0.3% vs 0.3% 0.99 (0.94, 1.04)c .60 ———f

Encounters per year 1357 0.3% vs 0.4% 0.98 (0.96, 1.01)d .12 1.00 (0.97-1.04) .82

Markers of complexity

BPAs received per encounter 3.2 0.3% vs 0.3% 1.10 (0.78, 1.56)a .59 1.49 (1.03-2.17) .04

Drug alerts received per encounter 0.7 0.2% vs 0.4% 0.69 (0.29, 1.67)a .42 1.39 (0.44-4.39) .57

Average ADG comorbidity count of
patients

0.3 0.3% vs 0.4% 0.15 (0.03, 0.80)b .03 0.37 (0.05-2.74) .33

Percent of alerts that are within-
patient repeats

31.8 0.3% vs 0.4% 0.87 (0.76, 0.998)e .046 0.84 (0.68-1.03) .09

Order sets used per encounter 1.1 0.3% vs 0.3% 1.20 (0.44, 3.23)a .72 1.68 (0.76-3.71) .20

Labs ordered per encounter 0.9 0.3% vs 0.3% 0.89 (0.43, 1.83)a .75 0.80 (0.41-1.56) .51
a. IRR computed per 1 additional unit
b. IRR computed per 1 additional ADG
c. IRR computed per 100 additional patients
d. IRR computed per 100 additional encounters per year
e. IRR computed per 5 percentage point increment
f. Patients per year omitted from multivariable model to avoid collinearity with encounters per year
NOTE: An IRR (incident rate ratio) is the ratio of 2 rates and is interpreted similarly to a relative risk or odds ratio. For example, the adjusted IRR of 4.56 above
indicates that nurse practitioners are more than 4 times as likely to accept drug alerts as physicians are, in a model that controlled for patient comorbidity and
proportion of repeated alerts
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or basement effect, meaning the acceptance rate could
not go much lower without hitting 0, analogous to the
more familiar ceiling effect, describing situations in
which a statistic cannot increase without hitting the
upper limit.) Percentage of repeated alerts and patient
complexity were both significant predictors of lower
alert acceptance rates in the bivariate analysis; in the
multivariable model, the effect sizes were similar but the
factors lost statistical significance. Also, for DDI/DAI,
nurse practitioners had markedly higher acceptance rates
than physicians (IRR 4.56, p = .002; Table 2).
An unexpected finding was that BPA acceptance was

higher among providers who received more drug alerts
per encounter (IRR = 1.91; P <.001). It is possible that
this is due to an unmeasured confounder, for example,
polypharmacy at the patient level (which would be likely
to be related to complex medical conditions and also
lead to higher rates of drug alerts).
Among repeated BPAs (i.e., BPAs presented to the

same clinician for the same patient within the same
year), if the first instance was overridden, the chance of
subsequent instances being overridden was 87.9%. Con-
versely, if the first instance was accepted, the chance of
subsequent instances being overridden was 51.9%. Simi-
larly, among repeated drug alerts, if the clinician over-
rode the first instance, the chance of overriding
subsequent instances was 99.9%, whereas if the first in-
stance was accepted, the chance of overriding subse-
quent instances was 58.4%.

Desensitization over time hypothesis
As described in the methods section, there were only 6
newly deployed alerts with sufficient duration and sam-
ple size to include in this longitudinal analysis of accept-
ance rates for individual alerts over time. Only one of 6
alerts showed an early peak in response rate followed by
a drop (Fig. 1; slope estimates ranging from +0.16 to
-0.34; P values ranging from .03 to .24). This was the
2012 flu immunization reminder for patients over age
65, and it seems likely that the decrease was due to pa-
tients reporting that they had received immunizations
elsewhere. Two others showed slow rises over the first
6 months followed by slow declines, and the others had
no clear temporal pattern.

Discussion
A clinician’s likelihood of accepting best practice re-
minders dropped markedly with increases in the number
of reminders, number of repeated reminders for the
same patient, and overall patient complexity. For drug
alerts, acceptance rates showed similar negative correla-
tions with number of repeated alerts and panel complex-
ity, although the low acceptance rates overall led to floor
effects and meant that the pattern was weaker. Override

rates were not linked to indicators of general workload,
such as number of patients seen and number of encoun-
ters. For best practice advisories, the clinician’s accept-
ance rate decreased by about 30% with each additional
alert received per patient encounter and by 10% for
every five percentage point increment in percent of re-
peated alerts. Repeats (a specific alert or reminder deliv-
ered to one clinician multiple times in a year for the
same patient) were extremely common, representing one
quarter of the best practice advisories and one third of
the drug alerts.
These findings are consistent with the hypothesis that

alert fatigue is connected to complexity of work and pro-
portion of repeated (and likely uninformative) alerts. In-
creased cognitive workload may make it more
challenging for clinicians to identify relevant information
within a large quantity of less relevant information.
By contrast, the desensitization hypothesis was not

supported. When examining the response patterns for
newly deployed alerts, we did not observe a decrease in
the acceptance rate over time. This argues against the
explanation that repeated exposure to the same alert
causes acclimatization and alert fatigue. Of 6 new alerts
included in this part of the analysis, 1 showed an early
peak followed by a negative slope. However, it was an
annual flu immunization reminder, and it seems likely
that response rate was shaped by seasonality rather than
desensitization. Patients presenting late in flu season are
more likely to report having received their immunization
elsewhere.
The current study contributes to the CDSS literature

by testing hypotheses about predictors of alert overrides
that arise from different theories of alert fatigue, by
examining both medication alerts and clinical reminders,
by estimating effect sizes for alert fatigue, and by study-
ing alert fatigue in a meaningful-use era EHR in commu-
nity settings.
Our findings suggest that responses to textual alerts in

EHRs are similar to previously documented responses to
audible and visual alarms. [16–18] In other settings, low
alarm informativeness and increased cognitive workload
predict poor alarm response. Informativeness describes
the ability of the alarm/alert to identify an important
hazard; an uninformative alert is essentially a false alarm.
Response rates may reflect probability matching, a cog-
nitive phenomenon in which likelihood of acting in re-
sponse to a stimulus becomes calibrated to pay-off
likelihood [16, 36]. We could not measure informative-
ness or false-positive alarm rates directly through man-
ual review in a data set that contain more than 1 million
alerts. Instead, we captured the proportion of alerts re-
peated for the same patient in the same year, finding that
one quarter of clinical reminders and one third of drug
alerts were repeats. Duplicate alerts have previously been
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identified as potentially uninformative [7, 8, 32]. Others
have previously noted that clinicians are less likely to
accept drug interaction alerts for patient who had previ-
ously received the same medication [28], which suggests
that duplicating the alert at prescription renewal may
not provide useful information to the prescriber.
Previous small studies are compatible with the con-

cept of cognitive overload as the combination of low
alert informativeness and increased work complexity.
For example, a retrospective chart review in which
expert reviewers identified inappropriate DDI over-
rides found the only factor associated with inappro-
priate overrides to be number of noncritical alerts
received at the same time [23]. In a laboratory study,
van der Sijs and colleagues invited clinicians to use a

simulated system [15]. Under time constraints, 8 of
211 alerts (13%) were handled incorrectly because of
skill-based errors (that is, automated actions without
conscious attention) that suggested alert fatigue. A
pre-post study showed that after irrelevant alerts were
retired, pharmacist alert override rates decreased from
93% to 86% [21]. A relevant study outside of health
IT was a randomized trial of public health messages
delivered by email, fax, or text message. Baseman and
colleagues demonstrated that for each 1-message-per-
week increase, the odds of recalling message content
dropped by 41% [22].
Different hypotheses about alert fatigue suggest different

potential solutions. If desensitization were a strong pre-
dictor, then response could be improved by discontinuing

Fig. 1 The average acceptance rate across clinicians over time for a specified alert show no clear pattern that would suggest desensitization over
time, with the potential exception of the flu immunization alert (see text for interpretation). The curves represent the average acceptance rates
(lowess smoothed). Each dot represents one clinician’s acceptance rate for the alert during one month; these are displayed to demonstrate that
the alerts included in this analysis had different numbers of clinicians and different numbers of months. The zeros on the x-axis indicate the initial
month that the alert was deployed
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older alerts or changing presentation to increase salience
and apparent novelty. However, we did not find evidence
in favor of desensitization. Instead, our study shows strong
effects of work complexity and repeated alerts. One
approach that is both supported by the current data and
potentially feasible is to reduce the frequency of the same
alert being delivered to the same clinician for the same
patient.
A novel finding of this study is that drug alert accept-

ance rates were much higher among NPs than among
family practice physicians in the same setting. Nurse prac-
titioners have been reported to be more likely to follow
guidelines and document care [37, 38]. In addition, NPs
may be more likely to accept CDSS recommendations
about drugs as a result of having less pharmacology train-
ing than physicians [39]. In our study, NPs tended to have
less complex patients, but the findings remained statisti-
cally significant after controlling for patient complexity,
suggesting this difference does not explain the findings.

Limitations
This was an observational study, and we developed novel
metrics because no validated metrics existed for this pur-
pose. The clinicians used a single commercial EHR with
interruptive alerts, which might reduce generalizability to
other systems or types of alerts. No information was avail-
able about severity of DDI or DAI in the alerts, and no
manual review was conducted to distinguish appropriate
from inappropriate overrides. Many overrides are known
to be appropriate, as they are informed by clinical know-
ledge not captured in structured EHR data [10, 40]. Thus,
we cannot conclude definitively that reducing override
rates would reduce rate of inappropriate overrides.
We considered alerts that were repeated the same year

as potentially uninformative, following the work of pre-
vious researchers who have identified repeated alerts as
duplicative and likely to have low relevance [7, 8, 32,
33]. However, alert relevance always depends upon the
clinical situation.
The best practice advisories studied here generally

appeared in the electronic health record upon opening
the patient chart, which may or may not have been ideal
in terms of clinical workflow and may have contributed
to override decisions.
In this secondary analysis of EHR data, we could

capture only some of the factors that could influence
clinicians. For example, we had no information about
ambient noise, interruptions, time pressure, quality of
patient-clinician interaction, or multi-tasking. However,
this limitation is likely to have biased our findings
toward the null. Finally, our participants were exposed
to a large number of BPAs and drug alerts, which may
have produced ceiling effects for overload as well as
desensitization.

As described in the methods, for the desensitization
hypotheses, we were forced to use robust rather than
cluster-robust errors within clinician. However, even
with the robust errors, we rejected the hypothesis, so the
additional conservatism of the cluster-robust standard
errors (i.e., their greater width) would not have changed
our conclusions about the desensitization hypothesis.

Conclusions
Primary care clinicians became less likely to accept alerts
as they received more of them, particularly as they
received more repeated (and therefore probably un-
informative) alerts. Complexity of the patients was also a
factor in bivariate analyses, although not in the multivari-
able models. These findings are consistent with a model of
alert fatigue caused by a high proportion of uninformative
alerts combined with complex work that makes it challen-
ging to distinguish relevant from irrelevant alerts. There
was no evidence of desensitization or of a general effect of
workload. Approaches to reduce the numbers of within-
patient repeats could be a promising target for reducing
alert override rates and alert fatigue.
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