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Abstract

Background: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals
within 30 days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the
rates of early readmission, a negative clinical outcome (i.e., a treatment failure) that affects the quality of life of
patient. To implement individualized interventions, it is necessary to predict those individuals at highest risk for 30-
day readmission. In this study, our aim was to conduct a data-driven investigation to find the pharmacological
factors influencing 30-day all-cause, intra- and interdepartmental readmissions after an index psychiatric admission,
using the compendium of prescription data (prescriptome) from electronic medical records (EMR).

Methods: The data scientists in the project received a deidentified database from the Mount Sinai Data Warehouse,
which was used to perform all analyses. Data was stored in a secured MySQL database, normalized and indexed using a
unique hexadecimal identifier associated with the data for psychiatric illness visits. We used Bayesian logistic regression
models to evaluate the association of prescription data with 30-day readmission risk. We constructed individual models
and compiled results after adjusting for covariates, including drug exposure, age, and gender. We also performed digital
comorbidity survey using EMR data combined with the estimation of shared genetic architecture using genomic
annotations to disease phenotypes.
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Results: Using an automated, data-driven approach, we identified prescription medications, side effects (primary side
effects), and drug-drug interaction-induced side effects (secondary side effects) associated with readmission risk in a
cohort of 1275 patients using prescriptome analytics. In our study, we identified 28 drugs associated with risk for
readmission among psychiatric patients. Based on prescription data, Pravastatin had the highest risk of readmission
(OR = 13.10; 95% CI (2.82, 60.8)). We also identified enrichment of primary side effects (n = 4006) and secondary side
effects (n = 36) induced by prescription drugs in the subset of readmitted patients (n = 89) compared to the non-
readmitted subgroup (n = 1186). Digital comorbidity analyses and shared genetic analyses further reveals that
cardiovascular disease and psychiatric conditions are comorbid and share functional gene modules (cardiomyopathy
and anxiety disorder: shared genes (n = 37; P = 1.06815E-06)).

Conclusions: Large scale prescriptome data is now available from EMRs and accessible for analytics that could
improve healthcare outcomes. Such analyses could also drive hypothesis and data-driven research. In this study, we
explored the utility of prescriptome data to identify factors driving readmission in a psychiatric cohort. Converging
digital health data from EMRs and systems biology investigations reveal a subset of patient populations that have
significant comorbidities with cardiovascular diseases are more likely to be readmitted. Further, the genetic architecture
of psychiatric illness also suggests overlap with cardiovascular diseases. In summary, assessment of medications, side
effects, and drug-drug interactions in a clinical setting as well as genomic information using a data mining approach
could help to find factors that could help to lower readmission rates in patients with mental illness.

Keywords: Computational psychiatry, Healthcare data science, Prescriptome, Big data, Digital health, Biomedical
informatics, Pharma informatics, Hospital readmission,

Background
Patients with psychiatric illnesses have an increased risk for
readmission to the hospital following an initial psychiatric
admission, which poses several challenges for optimizing
healthcare delivery [1–7]. Hospital readmission rates are
evolving as a major challenge to delivering high-value and
high-volume healthcare and there remains a need for in-
novative approaches addressing this problem. Rising re-
admission rates directly increase the cost, reduce the
availability of clinical resources, and decrease the quality of
optimized care delivery [8]. The 30-day readmission based
penalization proposal by Centers for Medicare & Medicaid
Services (CMS) exemplifies that healthcare providers need
to use innovative and actionable methods to identify and
minimize factors driving readmission to avoid penalties [9].
Several hospital quality regulatory agencies including the
Agency for Healthcare Research and Quality (AHRQ) -
Healthcare Cost and Utilization Project (HCUP), also con-
siders readmission rates as a metric to evaluate the quality
of care and improve patient outcome. General patient acu-
ity risk estimators like the Charlson Comorbidity Index
(CCI) [10, 11], Modified Early Warning Score (MEWS)
[12], the Probability of Repeated Admission (Pra) [13], or
the LACE index (a composite score of the length of stay,
acuity of admission, comorbidities, and emergency depart-
ment visits) are currently used to as part of the care path-
ways and standard of care of patient populations. While
scores like the LACE have proven to be useful, these
methods do not take into consideration the extensive infor-
mation that could be derived from other data types, like
laboratory test or prescription data. Implementation of

real-time risk assessment tools coupled with automated,
continuous risk estimations using heterogeneous biomed-
ical and healthcare data could enhance the quality of health
care delivery and reduce adverse patient outcomes.

Data-driven methods to find pharmacological factors
driving psychiatric readmissions
The use of computational algorithms and predictive
models leveraging big data in health care could help to
identify unique factors contributing to readmission in the
setting of complex diseases. Applications of data-driven
methods to biomedical and healthcare data has improved
our understanding of new factors driving outcomes, rela-
tionship of disease comorbidities, disease subtypes, and se-
quelae in disease networks [14–16]. Previous studies have
assessed various factors driving hospital readmission rates
for psychiatric patients and found that clinical course and
length of stay were associated with various socioeconomic
factors including seclusion, homelessness, and community
health services [17, 18]. However, these studies focused on
variables based on prior clinical knowledge and a priory hy-
pothesis, and hence lack the ability to identify novel factors
driving hospital readmissions. A recent systematic review
and meta-analysis of hospital readmissions has suggested
that including additional parameters could improve the
predictive power of models to assess readmissions [8]. Au-
tomated, predictive modeling and application of computa-
tional approaches that leverage data from electronic
medical records (EMRs) and prescription records could
improve the understanding of available, yet unknown fac-
tors driving complexity of patient profiles. The application
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of data-driven analytics and machine learning approaches
has been useful for precision phenotyping, outcome pre-
diction, treatment response prediction, and sub-type classi-
fication for various diseases [19, 20]. Various methods
including machine learning based methods have already
been applied to various psychiatric conditions. For
example, prediction of the persistence and severity of
major depressive disorder, treatment outcome prediction
in depression, prediction of post-traumatic stress disorder
development, and prediction of psychosis in high-risk
youth [21–23]. Collectively these approaches pave a foun-
dation for computational psychiatry that could improve
the delivery of precision care to the patient populations
[24–28]. In this report, we present a first attempt to evalu-
ate the entire visit (full duration of the index admission)
specific prescription data (longitudinal prescriptome) of
1275 patients hospitalized in a psychiatric unit. We also
assess side effects and drug-drug interactions related to
readmission within a 30-day window after the index
psychiatric admission. Unlike previous analyses targeted at
assessments of individual drugs or drug-class specific ana-
lytics, our approach leverages the repertoire of prescrip-
tome data and assesses every drug reported in the cohort.
Compared to traditional approaches, our method provides
an unbiased view of the role of drugs in readmission risk.
Furthermore, prescription data is easily available at the dis-
posal of the care providers and can be assessed to estimate
future readmission risk.

Methods
The Mount Sinai Institutional Review Board approved the
study as part of a quality control project under the theme
of patient safety assessment using hospital-generated big
data. An author (JJ) acted as the honest data broker to en-
sure privacy during the data management and analytics.
The data scientists in the project received a deidentified
database from the Mount Sinai Data Warehouse. All ana-
lyses were performed using the deidentified data. Data was
stored in a secured MySQL database, normalized and
indexed using a unique hexadecimal identifier associated
with the data for psychiatric illness visits. The data pertain-
ing to the primary encounter of admission to the psychi-
atric unit of Mount Sinai Hospital, NY during 2014 to
indicate readmission status is encoded as a binary variable.

Patient characteristics
The investigation cohort consists of 1275 patients, aged
18–65, and admitted for psychiatric reasons to one of
the Psychiatry inpatient units of The Mount Sinai Hos-
pital during 2014. The principal diagnosis of psychiatric
illness was used to phenotype the patients in the cohort.
Each patient readmitted to an inpatient unit at The
Mount Sinai Hospital (psychiatric or other medical unit)
within 30-days after the discharge of a psychiatry-related

index admission is defined as a “case” (n = 89). The re-
mainder of patients who were not readmitted to the hos-
pital within 30-days were described as “controls” (n =
1186). Controls have a mean age 40.49 (50.3% male),
and cases have a mean age of 38.78 (59.6% male). Col-
lectively the cohort includes patients diagnosed with a
variety of psychiatric disorders including mood disor-
ders, suicidal ideation, psychotic disorders, etc. The most
common laboratory procedures in the cohort included
complete blood count, urine drug screening,
gamma-glutamyltransferase, and lipase. Patients admit-
ted to other medical facilities within the Mount Sinai
Health System, other hospitals within New York city/
state, other states in the country, or the rest of the world
were not captured. Three authors (MMP-R, RB, and AJ)
phenotyped the cohort and classified the patients into
diagnostic categories as part of a quality control initia-
tive at Mount Sinai Hospital. As an exploratory study
with low case rate, no patient exclusion criteria were
applied to the dataset.

Prescriptome analyses
A flowchart of the analytical approach is provided in
Fig. 1. Three modalities of pharmacological factors were
assessed as follows:

1. Drug exposure: drug exposure is indicated as 1
when a drug is indicated as prescribed in the
prescription record of the patient for the given visit.
Data on medication adherence were not available at
the time of the analyses; hence adherence level is
not accounted for in the model. The drug lists were
compiled and normalized using RxNorm. Individual
drugs were tested using the model. Dose, mode of
administration, and dose-escalation were not
accounted for.

2. Primary side effect of individual drugs: Side
effects of drugs were compiled from Offsides
database (http://tatonettilab.org/resources/tatonetti-
stm.html). Offsides [29] is a compilation of side effect
data compiled from multiple databases including
public databases like Food and Drug Association –
Adverse Event Reporting System (FDA-AERS)
https://open.fda.gov/drug/event/reference/ and
SIDER [30]. A total of 1332 drugs with 10,097 side
effect and 438,801 drug-effect relationships and
similarities are available in the recent release of the
database. Primary side effect data for individual
medication was compiled from the canonical
reference database and not phenotyped using EMR.

3. Predicted secondary side effect based on drug-
drug interactions: Drugs often have new side
effects due to interaction with other drugs [31–35].
For example, metoprolol succinate oral and
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ibuprofen could increase potassium levels in blood
and may reduce the blood pressure level lowering
effect of metoprolol. Drug-drug interactions and
associated side effects can be classified as contraindi-
cations, minor, significant, and serious interactions.
We compiled the drug-drug interaction across the
prescriptome data using the reference database
Twosides (See: http://tatonettilab.org/resources/tato-
netti-stm.html). A total of 634 drugs with 1318 side
effects and 4.6 million drug-drug interaction and side
effect relationships are available in the recent release
of the database. Secondary side effect data for drug-
drug interactions were compiled from the canonical
reference database and not phenotyped using EMR.
For example, if a drug-drug interaction is mentioned
in the reference database for any two drugs the
patients were prescribed, the observation was
considered as a potential side effect.

We used Bayesian logistic regression models to evalu-
ate the association of prescription data with 30-day re-
admission risk. We constructed individual models and
compiled results after adjusting for covariates, including
drug exposure, age, and gender. All statistical analyses
were performed using R language for statistical comput-
ing (http://www.R-project.org.). Data was tabulated using
the data.table package (See: https://cran.r-project.org/
web/packages/data.table/index.html) and logistic regres-
sions were estimated using bayesglm routine in arm
package (See: https://cran.r-project.org/web/packages/
arm/index.html). Models were adjusted for multiple test-
ing corrections using a using the Benjamini-Hochberg
false discovery rate (FDR) method. Binomial proportion
confidence estimates were computed across the observa-
tions and provided in the Supplemental Data for drugs,

primary side effect terms and secondary side effect terms.
A dedicated software package to perform pharmacological
data analyses (PharmaFactors) developed for large-scale
prescriptome datasets was used in this study. PharmaFac-
tors uses an extensible analytical platform for pharmaco-
logical and prescription big data [36]. Drugs were
annotated using ChemoGenomics Enrichment Analyses
(CGEA) workflow [37–40]. The detailed methodology of
pair-wise comorbidity estimation and shared genetic
architectures is described elsewhere [14, 38].

Results
Patient characteristics
Patient cohort in this study includes all individuals aged
18–65, hospitalized for psychiatric complications in an in-
patient psychiatric unit at Mount Sinai Hospital in New
York City, NY during the year of 2014 (Fig. 2). A total of
1275 discharges were captured during this time. In the in-
patient cohort, 1186 patients (no-readmission subset:
93.01%) did not have a 30-day readmission and the
remaining 89 patients (readmitted subset: 6.98%) had been
readmitted to the same hospital within 30 days of the
index psychiatric readmission. Prescription data was com-
piled from EMRs. It should be noted that the lower
re-admission rate is an artifact of the study design--the
10–14% national rate is rate of all readmissions per pa-
tient, whereas our rate is just re-admission to one hospital.

Insights from prescriptome analytics
Drug exposure
A total of 888 medications were prescribed for
no-readmission patients and 483 medications for
readmitted patients. Readmitted patients had higher mean
of number of prescriptions (12.47) per patients compared
to no-readmission patients (6.31) (P < 2.2e-16). Logistic

Fig. 1 Systematic prescriptome data mining method used in the study
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regression models revealed that exposure to 28 drugs are
significantly associated with readmission status (See Fig. 3).
We have tested drug classes based on diseases and mech-
anism of action using Anatomical Therapeutic Chemical
(ATC) classification, however these broad drug classes
were not significant and hence not included as a finding.

Primary and secondary side effect enrichments
Side effect enrichment analyses revealed primary side
effects and secondary side effects associated with readmis-
sion risk status using prescription data analytics. Exposure
to pravastatin was associated with the highest odds ratio
for readmission (OR = 13.10; 95% CI (2.82, 60.8); P =
0.017;) and chlorpromazine was highly significant with
moderate odds ratio (OR = 4.53; 95% CI (2.66, 7.37; P <
0.001). Electrocardiagram ST segment depression was one
of the primary side effects associated with readmission
ratio. Fatigue, rheumatoid arthritis, and cardiac ischemia
were significant secondary side effects associated with
readmission. A subset primary and secondary side effect

are compiled in Fig. 3. The complete list of drugs, primary
side effects and secondary side effects are provided in the
Supplementary Data.

Discussion
Our results provide the first line of evidence that con-
firms the role of current cardiovascular pharmacological
treatment as an indicator of potential complexity and
higher risk for early readmission in psychiatric patients
[41, 42]. The impact and association of cardio-metabolic
therapies and outcome of psychiatric patients has been
discussed in previous studies. However, most of these
studies only focused on specific drug classes (e.g. ACE
inhibitors). The role of cardiovascular therapeutics to in-
duce depression and suicidal tendencies has previously
been suggested. Many commonly prescribed drugs have
neurological complications as primary side effects and
drug-drug interactions could lead to contraindications
and further side effects due to pharmacogenomic varia-
tions [43, 44]. Also, many drugs commonly used to treat

Fig. 2 Summary of patient characteristics: a Gender distribution of no-readmission subset; b Gender distribution of readmitted subset c Summary
of diagnoses reported from EHR d Summary of procedure description compiled from EHR
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psychiatric disorders, such as antipsychotics, have known
cardiovascular effects [45, 46]. Also, several antipsychotics
have known cardiovascular effects [47]. Psychiatric
medications are also known to cause cardiometabolic side
effects including substantial weight gain, as well as
adiposity-dependent and possibly adiposity-independent
changes in insulin sensitivity and lipid metabolism, which
increase the risk of diabetes and cardiovascular disease [20,
21]. Alternatively, cardiac medications may have direct ef-
fects on brain function. For example, the anti-thrombotic
clopidogrel (OR 10.14, FDR = 0.009) disrupts neural plasti-
city likely by inhibiting microglial-neural interactions [48].
Individuals admitted for psychiatric reasons may be par-
ticularly susceptible to perturbation of neural plasticity by
clopidogrel and alternative anti-thrombotic agents with re-
duced ability to cross the blood-brain-barrier, such as Tica-
grelor [49], should be considered. Drug repositioning [39,

40] of the hypertension medication sodium nitroprusside
has been demonstrated to have a beneficial impact on
schizophrenia patients [50]. Similar beneficial effects of
cardiovascular disease medication could be driven shared
genetic architecture driving both diseases and warrant
further targeted investigation [15, 27].

Integrating systems pharmacology and systems biology
of disease comorbidities
Drugs have pleiotropic roles in the human physiology
and it is widely understood that drug-drug interactions
may lead to adverse events. Balancing the efficacy and
side effects are key for optimizing a treatment regime.
Our systematic prescription data analytics suggests that
patients prescribed with certain cardiovascular medica-
tions are at higher risk for readmission.

Fig. 3 Drug exposure associated with risk for 30-day hospital readmission of psychiatric patients; full list of 888 drugs and odds ratios are
provided in Supplementary Data; a) Individual drugs associated with readmissions b) Predicted secondary side effects enriched in patients
readmitted to an inpatient psychiatric unit c) Overlap of different side effect ontologies used in the study. NS = not significant NA = the side
effect term was present only in one side effect database
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We noted that drug exposures significantly associated
with readmission includes antipsychotics indicates mul-
tiple classes of drugs including antipsychotics (chlorpro-
mazine, clozapine and haloperidol); ACE inhibitor
(lisinopril); beta blocking agent (propranolol), anti-
emetics and antinauseants (ondansetron), and laxative
(bisacodyl) antipruritics including antihistamines and an-
esthetics (diphenhydramine). From the perspective of
drug-target interactions: these drugs shared multiple,
common targets. For example histamine receptor H1
(HRH1) is a target of laxative and psycholeptics. The
5-Hydroxytryptamine Receptors (HTR1A, HTR1B,
HTR1E and HTR2A) is a common target of laxatives,
psycholeptics, antiemetics and antinauseants and
beta-blockers. Dopamine receptors including DRD1,
DRD2 and DRD3 are also targets of multiple drug clas-
ses (contact laxatives, phenothiazines with aliphatic
side-chain and diazepines, oxazepines, thiazepines and
oxepines). Collectively, the target space of the drugs in-
dicates that pleiotropic drugs and drug targets may play
a key role in manifesting the common side effects [38,
40]. Complete list of drugs, with their targets and mech-
anism of action is provided in the Supplementary Data.
To understand the epidemiological and genomic under-

pinnings of this finding, we have performed a digital co-
morbidity survey combined with assessment of shared
genetic architecture between disease pairs. Based on our
analyses we noticed that pair-wise comorbidity is prevalent
across psychiatric and cardiovascular diseases (e.g. coronary
artery disease and sleep disorder; OR = 1.75; P = 1.41E-09;
hypertension and sleep disorder; OR = 2.82; P = 4.86E-46;
See Fig. 4). Shared genetic architecture analyses suggest that
psychiatric conditions share genetic modules with cardio-
metabolic diseases. For example: Schizophrenia and brady-
cardia (SEMA3A, KCNJ3, KCNE1, CYP2D6, KCNH2,
KCNQ1, ADRB1, KCNE2); Schizophrenia and coronary ar-
tery diseases (PTGS2, CRP, ACE, HP, PTGS1, AGT, ABCB1,
CYP2C19, ITGB3, NOS3, MTHFR, IL6R, LTA, TNF,
CYP3A4, CYP3A5, CYP2C9, IL1RN, CYP1A2, ESR1, PON1,
IL6, NPY, MMP9, MMP3); Major depressive disorder and
cardiomyopathy (CCL2, SLC6A2, ACE, SLC6A4, ADORA1,
HP, EGFR, IL6, MAP 2 K1, IL1B, AGT, ADORA2A, APOE,
STAT3, CYP2D6, TTR, PSEN1, PPARGC1A, ADRA2C,
HTR2A, TGFB1, CTLA4, NOS3, SOD2, IFNG, CHRM2,
LTA, TNF, VEGFA, AGTR2, ESR2, ESR1, IL10, GPX1,
ADRB2, ADRB3, APC, AGTR1, AR); Psychotic disorder
and coronary artery disease (TOMM40, SLC6A4, AGER,
NQO1, AKT1, BDNF, ADIPOQ, DLG2, CACNA1C,
ADRA2C, SOD2, ENPP1, PER2, PER1, KCNN3, CYP3A4,
CYP3A5, SLC2A9, TCF7L2, NPY, MTRR, DBP, CRP,
HLA-B, HLA-A, GRIA1, PDGFB, IL6, MC4R, ARNTL,
ADORA2A, APOE, CYP2D6, EGR3, HTR2A, HTR2C,
HRH1, SIRT1, PRKAB2, PRKAB1, PPARG, INSIG2, FGF2,
FTO, IL1RN, TNFRSF1B, GSTT1, ESR1, HNF4A, PRODH,

CBS, SLC22A3, VWF, ACE, CLOCK, TBX1, AKAP13, IL1B,
HFE, CNR1, BSN, PDYN, MTHFR, COMT, LEPR, ADM,
CYP2C9, CYP1A2, F5, GSTM1, GRIK4, CAPN10, LEP,
BCL11A, PRKAA2, PRKAA1, GCLM, NPAS2, ABCB1,
RGS2, NOS1, NR3C1, NOS3, MTR, TNF, PLA2G4A, PON1,
GSTP1, ANK3). The complete list of pair-wise disease
comorbidities and shared genetic architecture along with
drugs annotated using CGEA workflow is included in the
Supplementary Data.

Data-driven risk mitigation of hospital readmission
Implementing effective policies and strategies for reducing
rates of readmission is an important quality indicator of
healthcare delivery. Leveraging hospital big data for ana-
lytics and developing hyperlocal predictive models may
help to predict, preempt and potentially prevent readmis-
sions [51]. In a recent work, we have shown that machine
learning-based predictive models built using EMR-wide
data could augment prediction of hospital readmission
[51]. Using a Naïve Bayes model build using data from
diagnoses, medications, procedures and laboratory tests.
Stratifying patients at-risk for cardiometabolic disease and
developing a discharge process including a cardiology con-
sultation for at risk patients may help to reduce the re-
admission rates. Specifically, identifying cardiovascular
medications that do not cross the blood-brain-barrier may
minimize side effects in this population. Stratifying pa-
tients at risk for cardiometabolic disease and developing a
discharge process including a cardiology consultation for
at risk patients may help to reduce the readmission rates.
Furthermore, using genomic information and ascertaining
pharmacogenomic and polygenic risk associated with car-
diovascular disease risk and providing these to informa-
tion to a psychiatry consultant may also help. Further,
using genomic information and ascertaining pharmacoge-
nomic and polygenic risk associated with cardiovascular
disease risk and providing this information to psychiatry
primary clinicians and consultants may also help. Further
utilizing drug-drug interaction software capable of provid-
ing high-risk interactions could also help to understand
and potentially reduce the pharmacological risks driven by
drug repositioning [52–54].

Clinical implications of the findings
From a clinical point of view in looking at the primary and
secondary side effects with the highest OR and why clinic-
ally they may be associated with psychiatric readmission:

1. Fatigue and other quality of life related side effects
might result in non-adherence with medications-
resulting in increasing psychiatric symptomatology
resulting in readmission.

2. Cardiovascular conditions including atrial
fibrillation and cardiac ischemia- these are
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Fig. 4 Disease network of psychiatric conditions across three different races highlighting differences in pair-wise comorbidity (a = European
Americans; b = Hispanic Latinos; c = African Americans). Red nodes indicate neuropsychiatric disorders
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significant medical complications which may
resulted in a medical hospitalization or at the least
significant physical symptoms which increases risk
of worsening psychiatric symptoms- hence resulting
in increased risk of psychiatry re-admission.

Limitations
As a proof of concept study, this study introduces
large-scale prescriptome analytics method and initial
results. We are in the process of replicating the finding for
additional years and in another site. The overall number of
patients is an apparent limitation of the current study. Fur-
thermore, the percentage of psychiatric inpatient readmis-
sion (7.5%) observed in the cohort is lower than the
national and worldwide average (10–14%). Also, the pre-
scription data is based on prescription order, and we can-
not evaluate whether patient filled it or the medication
adherence. Lack of the medication adherence data is an in-
formation gap and represents an overall issue with EMR
based prescription data. Given that different drugs and
drug combinations contribute to identical or similar side
effects, our current analytics approach is not possible to
delineate individual drug-based secondary side effects due
to drug-drug interactions. Performing similar analyses by
integrating data from multiple years of evidence and vari-
ous hospitals would further enhance the findings and allow
a more robust design of interventions and policies to
evaluate the role of prescription data in readmission risk. It
should also be noted that the prevalence of side effects
identified in the study should be accurately assessed in the
target population and clinical interventions need to be
adopted per hospital depending on the specific prevalence
rates. In the future, predictive models to determine
readmission probabilities of patients could include
therapeutic features.

Conclusions
Patients with mental illnesses have complex comorbidity
profiles. Somatic comorbidities, which are common among
psychiatric patients, are a potential predictor of early re-
admission. Inter-individual variations in acuity and comor-
bidity profiles exist amongst psychiatric patients. Ideally,
medical care should be able to provide an optimal therapy
to tailor to a specific patient’s phenotype. However, at this
point our available treatments do not match the complexity
of chronic diseases. We simply do not have enough tools in
most cases to effectively address patients’ differences in an-
cestry, environmental exposures, lifestyle, etc. Thus, the de-
livery of precision medicine requires discovery of new
predictors and algorithms to implement in a clinical set-
ting. It is much more feasible to find and implement medi-
cations based on drug repositioning or other real-world
evidence or integrate new treatment algorithms than to get
a new drug certified. Understanding how medications, their

side effects, and adherence patterns are related could im-
prove outcomes in a number of different potential psychi-
atric cohorts. Indeed, this is an area of recurrent interest.
Here, we identified drugs, primary side effects, and second-
ary side effects associated with readmission by mining pre-
scription data of patients admitted to an inpatient
psychiatry unit in an urban hospital. Our intriguing con-
nection to two different cardiovascular diseases with quite
large effect estimates (Odds ratios of approximately 13
and 11) suggest that cardiovascular disease is a major
component that could be better managed in the psychi-
atric setting. It is widely understood that a number of
chronic cardiovascular conditions are related to psychi-
atric disease. Interestingly, from our medication-based
analysis it remains unclear whether the increased readmis-
sion odds are related to the medication itself and potential
interactions or to the conditions, which required a phys-
ician to prescribe the medication initially. Teasing apart
this relationship will be an important theme that requiring
further research. In summary, we assume our analyses
would direct care providers to assess the continuum of
diseases associated psychiatric patients and evaluate and
reconcile the medication lists, and medication adherence
as a way to further reduce the readmission. This study also
illustrates the impact of translational bioinformatics stud-
ies to integrate large-scale healthcare data with biological
data to understand new biological insights including bio-
logical pathways, candidate genes with functional role in
disease phenotypes and drug targets.
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