
RESEARCH Open Access

Identification of plasma lipid species as
promising diagnostic markers for prostate
cancer
Xiaoli Chen1,2†, Yong Zhu3,2†, Mayumi Jijiwa4* , Masaki Nasu4, Junmei Ai2, Shengming Dai1,4, Bin Jiang3*,
Jicai Zhang5*, Gang Huang6* and Youping Deng4*

From The 20th International Conference on Bioinformatics & Computational Biology (BIOCOMP 2019)
Las Vegas, NV, USA. 29 July-01 August 2019

Abstract

Background: Prostate cancer is a very common and highly fatal in men. Current non-invasive detection methods
like serum biomarker are unsatisfactory. Biomarkers with high accuracy for diagnostic of prostate cancer are
urgently needed. Many lipid species have been found related to various cancers. The purpose of our study is to
explore the diagnostic value of lipids for prostate cancer.

Results: Using triple quadruple liquid chromatography electrospray ionization tandem mass spectrometry, we
performed lipidomics profiling of 367 lipids on a total 114 plasma samples from 30 patients with prostate cancer, 38
patients with benign prostatic hyperplasia (BPH), and 46 male healthy controls to evaluate the lipids as potential
biomarkers in the diagnosis of prostate cancer. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database
was used to construct the potential mechanism pathway. After statistical analysis, five lipids were identified as a panel
of potential biomarkers for the detection of prostate cancer between prostate cancer group and the BPH group; the
sensitivity, specificity, and area under curve (AUC) of the combination of these five lipids were 73.3, 81.6%, and 0.800,
respectively. We also identified another panel of five lipids in distinguishing between prostate cancer group and the
control group with predictive values of sensitivity at 76.7%, specificity at 80.4%, and AUC at 0.836, respectively. The
glycerophospholipid metabolism pathway of the selected lipids was considered as the target pathway.
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Conclusions: Our study indicated that the identified plasma lipid biomarkers have potential in the diagnosis of
prostate cancer.
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Background
Prostate cancer is the most frequently diagnosed cancer in
men and the second leading cause of cancer-related death
among men in the United States [1, 2]. Like other cancers,
early detection is the key to successful treatment for pros-
tate cancer. The serum/plasma biomarkers have the advan-
tages of being noninvasive and highly reproducible at low
costs. Thus, the diagnostic value of serum/plasma bio-
markers in various cancers is a hotspot in recent research.
The concentration of serum prostate-specific-antigen (PSA)
is widely used in prostate cancer screening. However, the
performance of serum PSA for the screening of prostate
cancer is not satisfactory. The lack of specificity of PSA
screening for diagnosing prostate cancer leads to a large
number of false positive results. Many patients are sub-
jected to unnecessary prostate biopsies which increase
health-care costs [3]. Moreover, many patients with
advanced prostate cancer often have normal PSA levels in
clinical trials [4]. That makes patients miss the best time for
treatment and thus subsequently results in poor prognosis.
Therefore, new serum or plasma biomarkers with high
accuracy are urgently needed.
Lipids, as a vital component of human biology, are in-

volved in regulating many physiological activities, such as
energy storage, structure, apoptosis, and signaling [5].
Many studies have been reported that the dysregulation of
lipid metabolism was associated with various diseases [6–
9]. Therefore, lipids and their metabolites can be consid-
ered as indicators to distinguish between health and dis-
ease. Lipidomics was proposed as one of the important
research fields of metabolomics in 2003 [10]. Its research
interest mainly focuses on the relative changes between
composition and concentration of lipids in cells and in
biological fluids [11], which can play an important diag-
nostic role in various cancers, such as ovarian cancer [12],
kidney cancer [13], esophageal squamous cell carcinoma
[14] and lung cancer [15, 16]. Furthermore, many studies
have shown the correlation between dyslipidemia and
BPH or prostate cancer [17–20]. Therefore, detection and
evaluation of the lipid species in patients with prostate
cancer are the hotspots in current researches.
In our study, we evaluated the lipid species in plasma

taken from healthy people as control and patients with
BPH or prostate cancer. As far as we know, this is the first
comprehensive evaluation of plasma lipid profiles for BPH
patients. Based on the comparison between prostate can-
cer and BPH or healthy control, we could provide more

detailed classification of lipid biomarkers. The predomin-
ant metabolic map (map 00564) of all the selected lipid
species was a glycerophospholipid pathway by Kyoto
Encyclopedia of Genes and Genomes (KEGG). Our data
indicated that the lipid species could be used as potential
biomarkers in the diagnosis of prostate cancer.

Results
Characteristics of subjects
Characteristics of subjects are summarized in Table 1.
Our study contained 114 subjects, composed of 30 pa-
tients with prostate cancer, 38 patients with BPH, and
46 healthy controls. The average age of prostate cancer
group was 62.3 ± 5.5, BPH group was 64.7 ± 5.5, and
healthy control group was 63.70 ± 6.28, respectively. The
prostate cancer group had 23 (76.7%) Caucasian and 7
(23.3%) African American. In the BPH group, there were
30 (78.9%) Caucasian and 8 (21.1%) African American.
Among the control group, there were 36 (78.3%) Cauca-
sian and 10 (21.7%) African American. There was no sig-
nificant age or racial bias among the three groups (aP,
bP > 0.05). Most of the prostate cancer patients had
Gleason score of 6 or 7 (83.3%) (Gleason score of 6 in
14 patients, 7 in 11 patients, and above 8 in 5 cases).

Profiling of lipid species
Plasma lipid profiles, including 367 lipid species from
14 classes of phospholipids and 1 class of cholesterol
ester, were identified in all subjects by lipidomics.
The concentrations of lipid species in all subjects
were analyzed. In the prostate cancer versus BPH
group, the most significant difference of mean plasma
concentration was seen in PC (44:2) (Fig. 1e, p =
0.004). The significant fold change was seen in PA
(38:3) (Table 2, fold-change = − 2.34). In the prostate
cancer versus healthy control group, the most signifi-
cant difference in mean plasma concentration was
seen in PS (34:2) (Fig. 2c, p = 0.002). The significant
fold change was PA (36:3) (Table 2, fold-change = −
3.60). In the prostate cancer versus the non-cancer
group (BPH group + control group), the most signifi-
cant difference in mean plasma concentration was
seen in PC (44:2) (Fig. 3c, p < 0.001). The significant
fold change was PA (36:3) (Table 2, fold-change = −
3.45). These results indicated that lipid species could
be served as biomarkers for the diagnosis of prostate
cancer.
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Identification of lipid species as biomarkers
According to the inclusion criteria described in Materials
and methods section, five lipid species were selected as po-
tential biomarkers for diagnosis of prostate cancer to distin-
guish prostate cancer from BPH, and another five lipid
species to distinguish prostate cancer from healthy control.

Six lipid species were selected as potential biomarkers that
can detect prostate cancer out of non-cancer lesion. How-
ever, we did not observe significant difference of any lipid
level between the BPH group and the control group (Data
not shown). The concentration distribution of these
selected lipid species was shown in Figs. 1, 2 and 3.

Table 1 Characteristics of subjects

Cancer BPH Control aP-value bP-value

Age range (years, mean ± SD) 62.3 ± 5.5 64.7 ± 5.5 63.7 ± 6.3 0.490 0.175

Race

Caucasian 23 30 36 0.822 0.871

African American 7 8 10

Gleason Score

6 14 – – – –

7 11 – – – –

8–10 5 – – – –

BPH benign prostatic hyperplasia, SD standard deviation, aP-value for cancer vs. BPH, bP-value for cancer vs. control

Fig. 1 Plasma concentrations of 5 lipid species in the diagnosis of prostate cancer for prostate cancer group versus the BPH group
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Using the Weka 3.6 software, we could conduct predict-
ive model to predict the diagnostic efficiency for the se-
lected lipid species. As shown in Table 2, the diagnostic
efficiency of the single lipid was not satisfactory. However,
it might be significantly improved by the combination of
the selected lipid species. From the results, we could find
that the six selected lipids as potential markers to distin-
guish prostate cancer from non-cancer group (PA, PS, PE,
LPE, PC (44:5) and PC (44:2)). Four out of those six lipids
overlapped with prostate cancer vs. BPH or control group.
According to the predictive model conducted by the Bag-
ging classification algorithm and 10-fold cross validation
between prostate cancer group and the BPH group, the al-
gorithm correctly classified 53 out of 68 cases (a correct
classification rate of 77.9%). The sensitivity, specificity,
and AUC of five lipids-combined species in prostate can-
cer patients related to the BPH group were 73.3, 81.6%,
and 0.800 (Table 2, Fig. 4a), respectively. For discriminat-
ing prostate cancer group from healthy control group, we
correctly classified an overall 60 out of 76 patients (a cor-
rect classification rate of 78.9%), and five lipids-combined
species showed a sensitivity of 76.7%, specificity of 80.4%
and AUC of 0.836 (Table 2, Fig. 4b). According to the pre-
dictive model conducted by ADTree classification algo-
rithm and 10-fold cross validation between prostate
cancer and non-cancer group, the algorithm correctly
clarified 91 out of the 114 cases (a correct classification
rate of 79.8%). The sensitivity, specificity, and the AUC of

these six lipid species in prostate cancer patients related to
the non-cancer group were 73.3, 82.1%, and 0.837 (Table 2,
Fig. 4c), respectively. These results indicated that the se-
lected lipid species had certain value in the diagnosis of
prostate cancer when combined.

Selected lipids and pathway analysis
Among these three groups, the selected lipid species were
so similar to the LPEs, the subclasses of PEs. Based on the
identified lipid markers, a metabolic pathway analysis was
performed by KEGG pathway database, revealing the in-
terrelationships of these selected lipid species. As shown
in Fig. 5, all these selected lipid species were of great sig-
nificance in the glycerophospholipid metabolism pathway.
Further analyses revealed that PA was derived from PC
and PE via the phospholipase D1/2 (Fig. 5). PS was derived
from PC via the phosphatidylserine synthase 1. PE and PS
were transmuted into each other via various enzymes.

Discussion
A total of 114 subjects in our study were included. Al-
though there were more Caucasian than African American
among three groups, there was no significant difference in
race and age (P > 0.05). Human plasma contains thousands
of individual lipid molecular species. We could detect vari-
ous lipid molecules in biological samples through liquid
chromatography electrospray ionization tandem mass
spectrometry (LC-ESI-MS/MS). Quehenberger et al. had

Table 2 The detection of lipid species as potential biomarkers for diagnosis of prostate cancer

Group Lipid species P value Fold-change Sensitivity Specificity PPV NPV ROC Area

Cancer vs. BPH LPE (20:0) 0.034 − 1.81 80.0% 44.7% 53.3% 73.9% 0.543

PA (38:3) 0.018 −2.34 73.3% 55.3% 56.4% 72.4% 0.643

PS (34:2) 0.009 −2.26 80.0% 57.9% 60% 78.6% 0.689

PC (44:5) 0.014 −2.21 83.3% 50.0% 56.8% 79.2% 0.624

PC (44:2) 0.004 −1.79 43.3% 89.5% 76.5% 66.7% 0.686

Combination of 5 lipids – – 73.3% 81.6% 75.9% 79.5% 0.800

Cancer vs. Control PE (32:2) 0.009 2.29 43.3% 84.8% 65% 69.6% 0.653

PA (36:3) 0.007 −3.60 86.7% 47.8% 52% 84.6% 0.672

PS (34:2) 0.002 2.91 80% 60.9% 57.1% 82.4% 0.704

PE (40:3) 0.042 −1.43 23.3% 89.1% 58.3% 64.1% 0.628

PC (44:2) 0.017 −1.72 40% 87% 66.7% 69.0% 0.661

Combination of 5 lipids – – 76.7% 80.4% 71.9% 84.1% 0.836

Cancer vs. Non-cancer PA (36:3) 0.011 −3.45 76.7% 44% 32.9% 84.1% 0.646

PS (34:2) 0.001 −2.62 76.7% 59.5% 40.4% 87.7% 0.633

PE (32:2) 0.010 2.04 30% 92.9% 60% 78.8% 0.614

LPE (20:0) 0.021 −1.79 70.0% 41.7% 30.0% 79.5% 0.578

PC (44:5) 0.021 −2.19 86.7% 39.3% 33.8% 89.2% 0.613

PC (44:2) 0.001 −1.75 3.3% 94% 16.7% 78.8% 0.661

Combination of 6 lipids – – 73.3% 82.1% 59.5% 89.6% 0.837

BPH benign prostatic hyperplasia, PPV positive predictive value, NPV negative predictive value, ROC receiver operating characteristic curve
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reported reference values of 500 plasma lipid species which
were obtained from the pooled plasma of 100 healthy
people by a lipidomics analysis [21]. In our study, we had
quantified 367 lipid species in each sample, and most of
them were overlapped with these 500 lipid species. Due to
the lack of significant difference between the BPH group
and the control group, the changes of concentration of lipid
species had specificity for the diagnosis of prostate cancer.
Different from many other cancer types, the prostate can-

cer predominantly utilizes fatty acids, rather than glucose,
as energetic substrates [22]. Zaidi et al. reported that the
lipids were essential for its supportive role in prostate can-
cer cell proliferation [23]. Interestingly, miRNA-21 and
-152 did not show any expression changes in prostate can-
cer compared to BPH or normal control, though many
miRNAs have shown altered expression levels in various
adenocarcinomas of breast, lung, colorectal, and prostate
cancers as well [24–27]. This fact suggests that the roles of
these two miRNAs may elicit the differences in prostate
cancer and other adenocarcinomas. It may be worth

examining the relationship between these miRNAs and our
lipids.
Since the LPEs belong to the subclasses of PEs, the se-

lected lipid species in our study was so similar. However,
our result showed that the plasma concentrations of lipid
species were not the same, even in the same lipid class. The
individual heterogeneity might be the major reason for the
differences. After pathway analysis, we could find that these
selected lipid species play a key role in the glycerophospho-
lipid metabolism. Glycerophospholipids are the main com-
ponent of biological membranes. Becoming a structural
component of cell membranes for glycerophospholipid is
one of its functions. PC is the major glycerophospholipid in
eukaryotic cells and is an essential component in all cellular
membranes [28]. It has great impact on membrane-
mediated cell signaling and phosphatidylcholine transfer
protein activation of other enzymes [29]. PE is significant in
membrane fusion and disassembly of the contractile ring
during cytokinesis in cell division [30]. PE acts as an im-
portant precursor, substrate, or donor in several biological

Fig. 2 Plasma concentrations of 5 lipid species in the diagnosis of prostate cancer for prostate cancer group versus the male control group
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pathways [31]. PS is a vital phospholipid membrane com-
ponent which plays a key role in cell cycle signaling, specif-
ically in relationship to apoptosis [32]. PA is the precursor
for the biosynthesis of many other lipids, which acts as a
signaling lipid, recruiting cytosolic proteins to appropriate
membranes (e.g., sphingosine kinase 1) [33]. Therefore, we
could understand why the selected lipid species could be
used as diagnostic biomarkers for prostate cancer. As re-
ported by Zhao et al., if we were to perform a plasma RNA
gene expression profile and combine it with our lipid meta-
bolic pathways, it may clarify the significance of these lipids
in prostate cancer [34].
In the present study, it was observed that single lipid

species was unlikely to perform well in distinguishing
prostate cancer from non-malignant BPH or health indi-
viduals. However, the combination of lipid species had
higher diagnostic value in prostate cancer. For the lack of
plasma PSA level in our study, we were unable to compare
the diagnostic efficiency of the selected lipid biomarkers

with that of PSA in the same study cohort. According to
the systematic calculation from American Cancer Society,
the sensitivity of a PSA cutoff of 4.0 ng/mL was 21% for
detecting any prostate cancer and 51% for detecting high-
grade cancers (Gleason ≥8). In our study, the sensitivity
and specificity for the combination of selected lipid species
are all above 70%. Therefore, the combined selected lipids
in our study as a panel for the diagnosis of prostate cancer
was better than PSA. Fang et al. reported that the combin-
ation of the peptide hormone prolactin (PRL) with the
tumor markers Carcinoembryonic antigen (CEA) and
cytokeratin 19 fragment (CYFRA21) increased the diag-
nostic efficacy of identifying non-small cell lung cancer
(NSCLC) [35]. In a similar way, it may be possible to use
our lipids as a companion tool for PSA.
Apart from the sensitivity and specificity, the receiver

operating characteristic (ROC) curve is used as an im-
portant index in comprehensive evaluation on the diag-
nosis value of a method [36]. The AUC, as the indicator

Fig. 3 Plasma concentrations of 5 lipid species in the diagnosis of prostate cancer for prostate cancer group versus the non-cancer group
(benign prostatic hyperplasia plus healthy controls)
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for summarizing ROC, is bounded between 0.5 and 1
[37]. The AUC of the combination of selected lipid spe-
cies for cancer vs. BPH group, cancer vs. control group,
and cancer vs. non-cancer group was 0.800, 0.836 and
0.837, respectively. A similar result was reported by Min
HK et al. [38], who found that a few phospholipids in
urine were identified as potential markers for prostate
cancer using shotgun lipidomics, and Zhou et al. [39],
who reported that three classes of plasma phospholipids
could be considered as biomarkers in diagnosis of pros-
tate cancer by lipidomics and bioinformatics.
Our study also provided evidences that the combin-

ation of lipid species had a certain value in prostate

cancer diagnosis. With the use of more bioinformatic
examination, the ratio-based method proposed by Deng
et al. may be an appropriate means to create novel bio-
markers for prostate cancer [40].
Together with all these advantages of LC-ESI-MS/MS

technology and lipidomics, this diagnostic model could
be used for high-speed screening of a large number of
samples for prostate cancer. These results provided a
guideline to screen potential markers in diagnosis of
prostate cancer.
However, this study still had some limitations. Firstly,

the sample size was too small to conduct correlation
analysis between the lipid species and tumor size due to
the lack of related information of the prostate cancer pa-
tients. Secondly, the diagnostic value of lipid species in
early-stage prostate cancer patients was not elevated.
Therefore, the results still needed to be confirmed in
further studies with rigorous design, larger sample size,
and multiregional cooperation.

Conclusion
This study assessed the combination of lipid species as a
panel for the diagnosis of prostate cancer. These findings
suggest that the combination of the identified lipid bio-
markers plays an important role in the diagnosis of pros-
tate cancer and may provide a new diagnostic strategy
for prostate cancer patients.

Materials and methods
Patients and plasma samples collection
The plasma samples were obtained from the Rush Univer-
sity Medical Center during 2011–2013. The Institutional
Review Board (IRB) of Rush University Medical Center ap-
proved our study. Before collecting plasma samples, written
informed consents were obtained from patients and control
individuals. Subjects were divided into three groups. The
prostate cancer group comprised 30 patients diagnosed by
subsequent prostate biopsy or prostatectomy. The prostate
biopsy was performed according to the conventional
method. Patients who were suspicious for having cancer
underwent needle biopsy. Ten to 12 specimens were taken
and processed for pathological diagnosis. The BPH group
comprised 38 patients with BPH, who were also pathologic-
ally diagnosed by biopsy during the same period. Finally,
the healthy control group comprised 46 male individuals
who were health check-up examinees and showed no clin-
ical manifestations of prostate diseases. The subjects with
other diseases which might affect lipid metabolism such as
hyperlipidemia, diabetes, and other cancers were excluded.
Other clinical information for each patient was also re-
corded, including age, race, and pathological diagnosis, as
shown in Table 1. All the patients should be fasted for 12 h
before blood collection. In all the subjects, the whole blood
was collected in a vacuum blood collection tube containing

Fig. 4 ROC curve of the combination of lipid species in prediction
of prostate cancer. a. Prostate cancer versus benign prostatic
hyperplasia. b. Prostate cancer versus healthy controls. c. prostate
cancer versus non-cancer group (benign prostatic hyperplasia plus
healthy controls)
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ethylene diamine tetra acetic acid (EDTA) (BD, Franklin
Lakes, NJ) as anticoagulant. The plasma was promptly iso-
lated after being collected and stored at − 80 °C immedi-
ately. All plasma samples were transported to the Kansas
Lipidomics Research Center (KLRC) with dry ice for lipid
analysis.

LC-ESI-MS/MS lipid profiling
Triple quadruple liquid chromatography electrospray
ionization tandem mass spectrometry (LC-ESI-MS/MS)
(API 4000, Applied Biosystems, Foster City, CA) was
used to detect lipid species profile. The details of lipid
profiling were described in our previous article [41].

Statistics analysis
SPSS 20.0 was used to analyze the data. Mean, range,
and standard deviation were used for descriptive statis-
tics. The student’s t-test was used to compare mean
plasma concentrations of 367 apparent lipid species with
the mean ages among the three groups of subjects. The
chi-square test was used to compare the differences be-
tween the races of the African American and Caucasian.
The P value < 0.05 was considered to be statistically

significant. Scatter plots were described by GraphPad
Prism Version 5 for Windows.
Weka 3.6 software was used to perform further analysis.

Simple logistics classification algorithm and 10-fold cross
validation were used to estimate the performance of a pre-
dictive model. The satisfactory model was used to predict
the diagnostic efficiency of selected lipid species. The sen-
sitivity, specificity, and AUC of the lipid species were cal-
culated in accordance with the predictive model.
Two inclusion criteria for selecting the lipid species bio-

markers from hundreds of lipid species were as following:
(1) the P value was statistically significant (P < 0.05) and
the absolute value of the fold-change was > 1.4; (2) the
positive predictive value (PPV) or negative predictive value
(NPV), and ROC curve were all above 0.0%.
KEGG pathway database was used to perform meta-

bolic pathway analysis. All the selected lipid species were
taken into account. The copyright permission was ap-
proved by the Kanehisa laboratory.

Abbreviations
BPH: Benign prostatic hyperplasia; KEGG: Kyoto Encyclopedia of Genes and
Genomes; AUC: Area under curve; PSA: Prostate-specific-antigen;
EDTA: Ethylene diamine tetra acetic acid; PPV: Positive predictive value;

Fig. 5 The potential mechanisms for the selected lipid species. The lipid species in the glycerophospholipid metabolic pathway were labeled
with different color: PC (blue), PE (yellow), PS (pink) and PA (red)
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