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Abstract 

In this introduction, we first summarize the Fourth International Workshop on Semantics-Powered Data Mining and 
Analytics (SEPDA 2019) held on October 26, 2019 in conjunction with the 18th International Semantic Web Confer-
ence (ISWC 2019) in Auckland, New Zealand, and then briefly introduce seven research articles included in this sup-
plement issue, covering the topics on Knowledge Graph, Ontology-Powered Analytics, and Deep Learning.
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Background
In the era of big data, the volume, the variety, as well as 
the velocity of data being generated have posed major 
challenges for people to leverage multiple data sets for 
decision making [1]. Ontologies and semantic standards 
have been widely used to tackle some of the challenges 
in big data analytics such as data integration and knowl-
edge discovery [2]. In the biomedical domain, ontologies 
and controlled vocabularies are a cornerstone for health 
information systems including clinical decision support 
systems and electronic health record (EHR) systems [2, 
3]. Moreover, rich vocabularies and semantic informa-
tion embedded in the ontologies have been leveraged to 
extract clinically meaningful information from heterog-
enous data from various sources. In particular, they are 
instrumental in natural language processing and text 
mining [4]. As a notable example, the Unified Medical 

Language System, developed and maintained by the 
U.S. National Library of Medicine, has been widely used 
in informatics research and applications using data in 
social media, scientific literature, and EHRs [5]. Applica-
tions like PubMed, which uses the UMLS indirectly, has 
been used by millions of users worldwide for biomedical 
research.

The International Workshop on Semantics-Powered 
Data Mining and Analytics (SEPDA) has been estab-
lished as an important venue for experts to discuss 
semantic-based methods and applications in health data 
analytics [6–8]. To continue our momentum, SEPDA 
2019 was held on October 26, 2019, in conjunction 
with the 18th International Semantic Web Conference 
(ISWC 2019). Submissions were solicited on the topics 
including Semantics-Based Data Mining and Analytics, 
Ontologies and Controlled Vocabularies, Data Integra-
tion, and Applications. After the peer review by the pro-
gram committee members, 11 papers were accepted for 
presentation and publication in the SEPDA 2019 work-
shop proceedings [9]. After the workshop, the authors 
of seven selected papers were invited to extend their 
workshop papers to journal papers by adding additional 
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experiments and greater details of the methods, results, 
and discussion. Each of the extended papers was subse-
quently reviewed by two experts in the field followed by 
multiple rounds of revisions to ensure the highest scien-
tific rigor and clear presentation.

In this editorial, we summarize the papers included 
in this supplement. We categorize them into three main 
themes: Knowledge Graph, Ontology-Powered Analytics, 
and Deep Learning.

Knowledge graph
The majority of biomedical knowledge is still locked in 
text format such as those from textbook and scientific 
literature, while downstream applications such as those 
that provide clinical decision support still heavily rely on 
structured discrete data. Systems that curate knowledge 
graphs and knowledge bases from biomedical literature 
are rational intermediate steps. The paper from Rossanez 
et  al. [10] introduced and evaluated a semi-automatic 
natural language processing (NLP) method that can gen-
erate knowledge graphs from biomedical texts. Their case 
study focused on Alzheimer’s disease and their evalua-
tion results demonstrated reasonable performance of the 
ontology-linked knowledge graphs.

Deep learning, which can classify nodes in the knowl-
edge graph with good predictive performance, suffers 
from poor interpretability. In the healthcare domain, 
interpretability of AI models is critical for clinical deci-
sion making. Vandewiele et  al. [11] presented a new 
method called MINDWAL, an inherently interpretable 
technique for classifying nodes in a knowledge graph. 
This technique uses a recursive algorithm to induce mul-
tiple decision trees and then decouple the modeling with 
multiple using informative random walks, which will 
create high-dimensional binary features that can feed 
a classification algorithm. This model has an improved 
interpretability and a competitive performance in terms 
of accuracy compared to other baseline techniques (e.g., 
decision tree, random forest, transform + logistic regres-
sion, transform + random forest). This technique can be 
applied to knowledge graphs in the biomedical domain to 
classify nodes in the graph.

Ontology‑powered analytics
The needs to integrate diverse data sources across dif-
ferent domains (e.g., genetic factors and environmental 
exposures) and levels (e.g., individual traits as well as their 
interactions with the community) are growing so that a 
comprehensive examination of all potential risk factors 
is possible. The number of these multi-level integrative 
data analysis (mIDA) studies is increasing; nevertheless, 
the data integration processes in these mIDA studies are 
inconsistently performed and poorly documented. Zhang 

et al. [12] developed the ATTEST check list for standard-
ized reporting of the variable and data source selection 
and subsequently the data integration processes. The 
novel piece of their study is the proposal to standardize 
the reports using an ontology, OD-ATTEST, that paves 
the way to enable sharing of mIDA study reports among 
researchers. Only when the selection and integration 
choices are clearly documented, the transparency and 
reproducibility of the studies can be warranted.

In [13], Zhang et al. proposed a semantic relationship 
mining method among disorders, genes, and drugs from 
different biomedical datasets. First, multiple heterogene-
ous biomedical datasets were converted and integrated 
into a resource description framework (RDF) storage sys-
tem. Second, nine query patterns about genes, disorders, 
and drugs were presented. Third, the gene-disorder-drug 
semantic relationship mining algorithm was designed 
with these query patterns. The method was verified on 
SemMedDB, PharmGKB, KEGG, and Uniprot for Par-
kinson’s disease semantic relationship mining. The results 
demonstrated that the method has advantages in mining 
and integrating heterogeneous biomedical datasets.

Amith and colleagues utilized their dialogue ontology 
called the Patient Health Information Dialogue Ontology 
(PHIDO) [14] to control a software engine for dialogue 
management (“Conversational Ontology Operator”). 
Using utterance data collected from past Wizard of OZ 
simulations [15, 16], they described how their ontology-
driven software engine could power various software 
agents to preform dialogue tasks from health-based 
counseling for the HPV vaccine [17]. Their paper also 
outlines a question-answering sub-system (“FOQUS”) 
that supplements the automated counseling of HPV vac-
cine where patients may ask questions. FOQUS utilizes 
a previous developed ontology knowledge base of HPV 
vaccine [18] to supply answers and was tested with ques-
tion utterances from the aforementioned simulation. 
Their prototype engine presents some early showing of 
an ontology-based system to manage counseling meth-
ods for machines. Their future goal is to deploy this sys-
tem to a live speech-enabled system to demonstrate its 
functional potential.

Deep learning
Deep learning has transformed medicine in the past few 
years [19]. Predicting treatment effects based on patients’ 
personalized clinical status is vital in disease manage-
ment. Traditional randomized controlled trials (RCT) 
usually are limited to a focused population and only eval-
uated the treatment effects after they have occurred [20]. 
EHRs containing large amounts of fine-grained clinical 
data provide a rich source to predict treatment effects. 
Chu et  al. [21] proposed an adversarial deep treatment 
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effect prediction (ADTEP) model based on auto-encoder 
and adversarial learning (AL). They encoded physi-
cal condition and treatment information for individual 
patients. An AL schema was also adopted to align the 
generated treatment with the actual performed treat-
ments. The ADTEP model was evaluated on two clini-
cal datasets and the results demonstrated its superiority 
compared with state-of-the-art methods.

Cancer survivors often experience emotional stress, 
post-traumatic stress disorder (PTSD), and other men-
tal health issues. As such, they are at a high risk of self-
destruction and harming others [22]. Early detection of 
mental health issues and early intervention would help 
prevent these undesired consequences. Social web such 
as Twitter allows people to share their experiences and 
opinions while keeping anonymous. Therefore, it is a 
great source for identifying cancer survivors with PTSD 
or other mental health issues. Ismail and colleagues [23] 
developed and evaluated a technique based on convo-
lutional neural networks (CNN) to automatically clas-
sify tweets related to cancer survivors living with PTSD 
using word embeddings for text representation. The 
CNN-based model with word embeddings was trained 
to extract text features related to PTSD using a transfer 
learning approach and a depression lexicon. The results 
showed that the proposed model outperformed baselines 
including NBC, SVM, MLP, and CNN with n-grams for 
classifying the tweets.

Discussion and conclusions
In this supplement of selected articles from the Fourth 
International Workshop on Semantics-Powered Data 
Mining and Analytics (SEPDA 2019), seven papers were 
accepted after a rigorous peer review process. These 
papers demonstrated the power of the semantic meth-
ods in various applications, many of which are address-
ing critical challenges in healthcare such as predicting 
treatment effect, identifying cancer survivors living with 
PTSD, and mining relationships among disorders, genes, 
and drugs from biomedical databases. We hope these 
papers will have sustainable impacts not only on biomed-
ical and health informatics but also other related fields. 
We also hope more researchers will be motivated by these 
exciting results and join our effort to improve population 
health and advance biomedical research with semantics-
powered data analytics over disparate datasets.
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