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Abstract 

Background:  Over 70% of Americans regularly experience stress. Chronic stress results in cancer, cardiovascular 
disease, depression, and diabetes, and thus is deeply detrimental to physiological health and psychological wellbeing. 
Developing robust methods for the rapid and accurate detection of human stress is of paramount importance.

Methods:  Prior research has shown that analyzing physiological signals is a reliable predictor of stress. Such signals 
are collected from sensors that are attached to the human body. Researchers have attempted to detect stress by 
using traditional machine learning methods to analyze physiological signals. Results, ranging between 50 and 90% 
accuracy, have been mixed. A limitation of traditional machine learning algorithms is the requirement for hand-
crafted features. Accuracy decreases if features are misidentified. To address this deficiency, we developed two deep 
neural networks: a 1-dimensional (1D) convolutional neural network and a multilayer perceptron neural network. 
Deep neural networks do not require hand-crafted features but instead extract features from raw data through the 
layers of the neural networks. The deep neural networks analyzed physiological data collected from chest-worn and 
wrist-worn sensors to perform two tasks. We tailored each neural network to analyze data from either the chest-worn 
(1D convolutional neural network) or wrist-worn (multilayer perceptron neural network) sensors. The first task was 
binary classification for stress detection, in which the networks differentiated between stressed and non-stressed 
states. The second task was 3-class classification for emotion classification, in which the networks differentiated 
between baseline, stressed, and amused states. The networks were trained and tested on publicly available data col-
lected in previous studies.

Results:  The deep convolutional neural network achieved 99.80% and 99.55% accuracy rates for binary and 3-class 
classification, respectively. The deep multilayer perceptron neural network achieved 99.65% and 98.38% accuracy 
rates for binary and 3-class classification, respectively. The networks’ performance exhibited a significant improve-
ment over past methods that analyzed physiological signals for both binary stress detection and 3-class emotion 
classification.

Conclusions:  We demonstrated the potential of deep neural networks for developing robust, continuous, and non-
invasive methods for stress detection and emotion classification, with the end goal of improving the quality of life.
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Background
Over 70% of Americans experience stress [1]. Chronic 
stress results in a weakened immune system [2], cancer 
[3], cardiovascular disease [3, 4], depression [5], diabetes 
[6, 7], and substance addiction [8]. Thus, stress is deeply 
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detrimental to physiological health and psychologi-
cal wellbeing. It is of paramount importance to develop 
robust methods for the rapid detection of human stress. 
Such technologies may enable the continuous monitoring 
of stress. As a result, individuals may manage their daily 
activities to reduce stress and healthcare professionals 
may provide more effective treatment for stress-related 
illnesses. Researchers have developed different mecha-
nisms for the detection of human stress. Tzirakis et  al. 
[9] developed a deep neural network model that ana-
lyzed video footage to detect stress. Mirsamadi et al. [10] 
used a recurrent neural network that analyzed speech to 
detect stress.

Researchers have developed many methods to ana-
lyze physiological signals measured from sensors that 
are attached to the human body for stress detection and 
emotion classification [11]. Prior research has shown 
that analyzing physiological signals may reliably indi-
cate human stress [12]. Methods based on the analysis of 
physiological signals offer non-invasive ways to monitor 
stress. As such, these methods have the potential to sig-
nificantly improve humans’ quality of life. Past research 
on the analysis of physiological signals to detect stress has 
primarily used traditional machine learning approaches. 
The results have been mixed. In this article, we present 
two deep neural networks for analyzing physiological 
signals for stress and emotion detection that achieve an 
improved performance over past methods.

Much research has been conducted on using physi-
ological signals to detect stress [13−16]. Almost all past 
approaches analyzed a combination of physiological 
signals, including signals collected from the electrocar-
diogram [17], electrodermal activity [18], and electromy-
ography [19] sensors. These approaches detected stress 
and classified emotions by utilizing traditional machine 
learning algorithms to analyze physiological signals. The 
machine learning algorithms utilized include the deci-
sion tree, support vector machine, K-nearest neighbor, 
random forest, linear discriminant analysis (LDA), and 
others.

Healey and Picard [20] conducted one of the first stud-
ies that used physiological signals to detect the presence 
of human stress. The researchers used signals collected 
from the electrocardiogram, electromyography, electro-
dermal activity, and respiratory rate sensors. 22 features 
were hand-crafted from the aforementioned physiologi-
cal signals. The LDA machine learning algorithm was 
used for binary classification between a stressed condi-
tion and a non-stressed condition. Gjoreski et  al. [21] 
used a wrist-worn device that contained the accelerom-
eter (ACC), blood volume pulse (BVP), electrodermal 
activity, heart rate, and skin temperature sensors. 63 
features were extracted from these signals and used as 

inputs for the machine learning algorithm. The random 
forest machine learning algorithm was used for classifi-
cation, and the algorithm achieved a 72% accuracy rate. 
Kim et al. [22] used physiological signals from the elec-
tromyography, speed and cadence, electrocardiogram, 
and respiratory rate sensors for emotion classification. In 
the experiment run by Kim et al., human participants lis-
tened to different songs in order to trigger different emo-
tions. The researchers manually generated hand-crafted 
features for the machine learning algorithms and used the 
LDA machine learning algorithm for emotion classifica-
tion. The authors achieved a subject-independent correct 
classification ratio of 70%. More recently, Schmidt et al. 
[17] conducted extensive research on stress and emo-
tion detection using physiological signals. They investi-
gated using physiological signals measured from sensors 
attached to the chest and wrist. The tasks of binary clas-
sification, which distinguished between a stressed state 
and a non-stressed state, and 3-class classification, which 
distinguished between a baseline state, a stressed state, 
and an amused state, were performed using multiple 
machine learning algorithms. For each of the two tasks, 
the performances of machine learning algorithms such 
as the decision tree, random forest, AdaBoost, LDA, and 
K-nearest neighbor were compared. The machine learn-
ing algorithms’ best performance for 3-class classifica-
tion were 75.21% and 76.60% accuracy rates for the wrist 
and chest cases, respectively. The machine learning algo-
rithms’ best performance for binary classification were 
87.12% and 92.83% accuracy rates for the wrist and chest 
cases, respectively.

A primary drawback for all traditional machine learn-
ing approaches is the requirement for hand-crafted fea-
tures to be manually generated. Almost all of previous 
research uses certain characteristics and statistics of the 
physiological signals [21, 23]. For instance, for signals 
collected from the electrocardiogram sensor, heart rate, 
heart rate variability, and related statistics including the 
mean, variance, and the energy of low, middle, and high 
frequency bands were used as features. For signals col-
lected from the respiratory rate sensor, the mean and 
standard deviation of inhalation duration, exhalation 
duration, and respiration duration were used as features. 
For signals collected from the electromyography sen-
sor, the skin conductance level and skin conductance 
response were extracted from the raw electromyogra-
phy signals, and the related statistics for these traits such 
as their mean, standard deviation, and dynamic range 
were used as features. Computing these manually gener-
ated features is not a trivial matter since a different set 
of features must be manually generated from the physi-
ological signals collected from each sensor. More impor-
tantly, these features have not been proven to accurately 
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represent the physiological signals. There is also no guar-
antee that the features used by the previous approaches 
cover the entire feature space of the signal for machine 
learning algorithms being used.

Methods
To address the challenges in manual feature engineer-
ing, we developed a deep 1D convolutional neural net-
work and a deep multilayer perceptron neural network 
for stress detection and emotion classification. Instead 
of using hand-crafted features, the physiological signals 
were formatted into vectors and directly fed into the 
neural networks. Through supervised training, the dif-
ferent layers of the network learned how to represent 
features. The datasets from Schmidt et al. [24] were used 
for neural network training and testing. The deep neu-
ral networks’ performance for binary stress detection 
and 3-class emotion classification were compared with 
the best performances of the traditional machine learn-
ing algorithms used by Schmidt et al. [24]. The points of 
comparison between the deep neural networks and the 
traditional machine learning algorithms were the accu-
racy and F1 score of each approach.

The accuracy of a particular approach is defined as 
the percentage of correct predictions achieved by the 
approach. The equation for accuracy is shown below:

The F1 score of a particular approach is defined as the 
harmonic mean of the precision and recall. The equation 
for the F1 score is shown below:

The equations for precision and recall are shown below:
Precision =

True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives
.

.

Data collection
The data analyzed in this project were downloaded from 
the Machine Learning Repository hosted by the University 
of California at Irvine. The data were made publicly avail-
able by researchers Schmidt et al. [24]. In those researchers’ 
experiment, 15 human participants experienced baseline, 
amused, and stressed conditions. The baseline condition 
was aimed at inducing a neutral affective state. Under the 
amused condition, the participants watched a series of vid-
eos designed to provoke amusement. Under the stressed 
condition, the participants underwent the Trier Social 
Stress Test [25]. During the Trier Social Stress Test, each 

Accuracy =
True Positives + True Negatives

Total Population
.

F1 Score = 2 ·
Precision · Recall

Precision+ Recall
.

participant was asked to perform stress-inducing tasks. 
These tasks included delivering a five-minute speech and 
counting the integers from 2023 to zero in descending steps 
of 17. Two datasets were collected from sensors attached 
to each participant’s body. The first dataset was collected 
from sensors attached to each participant’s chest. The sen-
sors included the electrocardiogram sensor, electrodermal 
activity sensor, electromyography sensor, skin temperature 
sensor, respiratory rate sensor, and 3-axis accelerometer. 
Each sensor collected samples at a sampling rate of 700 Hz. 
The second dataset was collected from sensors in a wrist-
worn device. The sensors included the BVP, electrodermal 
activity, skin temperature, and ACC sensors. The sensors 
collected samples at the following sampling rates: 64  Hz 
(BVP), 32  Hz (ACC), 4  Hz (electrodermal activity), and 
4 Hz (skin temperature).

Neural networks
Neural networks have seen growth and found success in 
many areas of application in recent years. Deep neural net-
works possess key advantages in their capabilities to model 
complex systems and utilize automatically learning features 
through multiple network layers. As such, deep neural net-
works are used to carry out accuracy-driven tasks such as 
classification and identification [26].

This article presents two deep neural networks that 
were developed for stress and emotion detection through 
the analysis of sensor-measured physiological signals. The 
physiological signals were directly input into the neural 
networks. This approach differs from traditional machine 
learning approaches in that traditional approaches have 
relied on the use of hand-crafted features as inputs.

A deep convolutional neural network primarily consists 
of filter layers, activation functions, pooling layers, and 
fully connected layers [26]. A deep convolutional neural 
network optimizes its parameters using supervised train-
ing. A convolution by the filtering operation and activation 
function is shown below:

Here w and a represent the vectors for filter coefficients 
and inputs, respectively. b is the bias. g represents the acti-
vation function. There are several activation functions 
commonly used in neural network architecture. The Recti-
fied Linear Unit (ReLU) is one of the most popular activa-
tion functions used in neural network architecture and is 
defined as follows [26]:

z[l] = w[l]
· a[l] + b[l]

a[l] = g
(

z[l]
)

g(z) = max(0, z).
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The softmax function is another activation function. 
This function is primarily used in the last layer of a neu-
ral network that performs multi-class classification and is 
defined as follows:

In the softmax function, zk represents the output of the 
k th unit of the last layer in the neural network.

The sigmoid function is another activation function. It 
can be considered as a special case of the softmax func-
tion that is primarily used in the last layer in a neural 
network that performs binary classification. The sigmoid 
function is defined as follows:

Deep convolutional neural network for signals 
from chest‑worn sensors
A deep 1D convolutional neural network was developed 
for stress detection and emotion classification. The key 
reason for using a convolutional neural network was the 
advantage of parameter-sharing that a convolutional neu-
ral network offers. In a convolutional neural network, a 
small number of filters can be used for feature extraction 
across entire inputs. This convolutional neural network 
was designed to receive and analyze physiological signals 
from 6 sensors attached to the human chest. The sensors 
include the electrocardiogram, electrodermal activity, 
electromyography, respiratory rate, and skin tempera-
ture sensors to measure physiological information, as 
well as the 3-axis ACC sensor to measure 3-dimensional 
body movement information. The set of signals collected 
from each axis of the 3-axis ACC sensor was used as a 
separate input, so a total of 8 signals were used as inputs 
for the deep 1D convolutional neural network. The data 
collected from each of the sensors was divided into seg-
ments of window length 5 s. The data segments from all 
of the sensors simultaneously formed the inputs for the 
convolutional neural network. The convolutional neural 
network was designed to either detect a stressed state or 
a non-stressed state in a binary classification format or 
perform 3-class classification by distinguishing a baseline 
state, a stressed state, and an amused state.

The network contains 8 identical 1D convolutional 
blocks. Each block processes one of the 8 inputs. For 5 of 
the convolutional blocks, each input into 1 of the 5 blocks 
correlates to data collected from 1 out of the following 5 
sensors: electrocardiogram, electrodermal activity, elec-
tromyography, respiratory rate, and skin temperature. 
For the remaining three convolutional blocks, each input 

g(z)j =
ezj

∑K
k=1 e

zk
.

g(z) = sigmoid(z) =
1

1+ e−z
.

into 1 of the 3 convolutional blocks correlates to physi-
ological data collected from either the x-, y-, or z- axis of 
the ACC sensor.

As shown in Table 1, the 1D convolutional block con-
sists of 3 1D convolutional layers and 3 1D max pooling 
layers. The first layer of the 1D convolutional block con-
tains 8 1D filters, each with filter size of 15 and stride size 
of 2. Each filter output uses the ReLU activation function. 
The layer is followed by a 1D max pooling layer with win-
dow size of 4 and stride size of 4. The second layer of the 
1D convolutional block contains 16 1D filters, each with 
filter size of 7 and stride size of 2. Each filter output uses 
the ReLU activation function. The layer is followed by a 
max pooling layer with window size of 4 and stride size of 
4. The third layer of the 1D convolutional block contains 
32 1D filters, each with filter size of 3 and stride size of 1. 
Each filter output uses the ReLU activation function. The 
layer is followed by a max pooling layer with window size 
of 2 and stride size of 2. Data is input into the convolu-
tional block in the form of a 3500 × 1 vector. The outputs 
of the convolutional block are 32 17 × 1 vectors.

As shown in Fig.  1, the deep convolutional neural 
network contains 3 fully connected layers after the 1D 
convolutional blocks. The data from all the sensors are 
combined by flattening all the output vectors from each 
1D convolutional block (Fig. 2) and all the data are con-
catenated into one vector, which is fed into a fully con-
nected layer with 32 units. Each unit uses the ReLU 
activation function. The first layer is followed by the 
second fully connected layer with 16 hidden units. Each 
unit uses the ReLU activation function. The last fully 
connected layer is the output layer. In the case of binary 
stress detection, it has one hidden unit, using the sigmoid 
as its activation function. For three class emotion detec-
tion, the last layer has three hidden units, all using the 
softmax activation function.

Multilayer perceptron neural network for signals 
from wrist‑worn sensors
The sensors on the wrist-worn device include BVP, 
electrodermal activity, skin temperature, and ACC. One 
key difference between the chest-worn and wrist-worn 

Table 1  Configuration of 1D convolutional block

Layer 1 Layer 2 Layer 3

Number of filters 8 16 32

Filter size 32 7 3

Filter stride 2 2 1

Activation function ReLU ReLU ReLU

Pooling size 4 4 2

Pooling Stride 4 4 2
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sensors is the size of the input signals from the sen-
sors. The inputs from wrist-worn sensors are sampled 
at a much lower sampling rate, which results in a much 
smaller input size. The small input size makes using a 
multilayer perceptron network realistic, since the net-
work will not have to perform as many calculations as 

a network faced with a larger input size. Another differ-
ence between the chest-worn and wrist-worn sensors is 
that the signals measured from the sensors attached to 
the wrist have different sampling frequencies. Thus, the 
neural network analyzing the data collected from wrist-
worn sensors should be designed to handle multiple 

Fig. 1  The diagram of the proposed deep 1D convolutional neural network

Fig. 2  The diagram of one block in the proposed deep 1D convolutional neural network
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sensor inputs, each with a different number of inputs. 
We designed a multilayer perceptron neural network 
for processing physiological signals from wrist-worn 
sensors (Fig. 3).

As shown in Fig.  3, the data from sensors BVP and 
ACC are fed into their respective fully connected lay-
ers. The data from the BVP sensor goes through 2 hid-
den layers with 64 and 32 hidden units, while the data 
from the ACC sensor goes through 1 hidden layer 
with 32 hidden units. Each hidden unit uses the ReLU 
activation function. The outputs of the BVP and ACC 
sensors from their respective hidden layers are con-
catenated with signals from the electrodermal activity 
and temperature sensors and fed into three consecutive 
fully connected layers. For the first two of these hid-
den layers, each unit uses the ReLU activation function. 
Depending on the task being performed by the network 
(emotion classification vs. stress detection), the third 
hidden layer will use a different activation function. In 
the case of 3-class emotional classification, the layer, 
which maps from 8 hidden units to 3 hidden units, uses 
the softmax activation function. In the case of stress 
detection, the layer, which maps from 8 hidden units to 
1 hidden unit, uses the sigmoid activation function.

Neural network training
The major components related to the training of our neu-
ral networks are as follows:

Training and Testing Data: The entire dataset was 
randomly scrambled and divided into a training data-
set and a testing dataset with a 7 to 3 ratio.
Optimization: Adam
Loss Function (Binary Stress Detection):

Binary Cross Entropy
Loss Function (3-Class Emotion Classification):

Categorical Cross Entropy
Epoch Size: 100
Batch Size: 40
Validation: tenfold cross validation
Deep Learning Library: Keras, run on Google Colab

Results
The performances of the two trained deep neural net-
works with regard to binary stress detection and 3-class 
emotion classification were evaluated. The performances 
were evaluated for two cases: a case in which the sig-
nals from the 3-axis ACC sensor were included and a 
case in which the signals from the 3-axis ACC sensor 
were not included. The test dataset was used for all of 

Fig. 3  The diagram of the proposed multilayer perceptron neural network
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the performance evaluations. The results are compared 
with the best results of machine learning methods evalu-
ated in the work of Schmidt et  al. [11]. The key reason 
for comparing our study to the work of Schmidt et  al. 
is that both the work of those resources and our work 
are based on the same data set. As such, this allows for 
apples-to-apples comparison. In addition, Schmidt et al.’s 
work is comprehensive in terms of the machine learning 
algorithms examined, and their results are comparable to 
what has been reported recently on using machine learn-
ing approaches for stress detection [16].

In both cases evaluated for 3-class emotion classifica-
tion, using signals from chest-worn sensors, the proposed 
deep 1D convolutional neural network outperformed the 
best performance of the traditional machine learning 
algorithms as reported by Schmidt et al. For the case of 
using all physiological signals, including signals from the 
ACC sensor, the proposed deep neural network achieved 
an accuracy rate of 99.55% and an F1 score of 99.46%. 
This compares to the accuracy rate of 76.50% and the 
F1 score of 72.49% achieved by the LDA machine learn-
ing algorithm as reported by Schmidt et al. For the case 
of using all physiological signals except signals from the 
ACC sensor, the proposed deep neural network achieved 
an accuracy rate of 97.48% and an F1 score of 96.82%. 
This compares to the accuracy rate of 80.34% and the 
F1 score of 72.51% achieved by the AdaBoost machine 
learning algorithm as reported by Schmidt et al.

In both cases evaluated for 3-class emotion classifica-
tion, using signals from wrist-worn sensors, the proposed 
deep multilayer perceptron neural network outper-
formed the best performance of the traditional machine 
learning algorithms as reported by Schmidt et al. For the 
case of using all physiological signals, including signals 
from the ACC sensor, the proposed deep neural network 
achieved an accuracy rate of 98.38% and an F1 score of 
97.96%. This compares to the accuracy rate of 75.21% 
and the F1 score of 64.12% achieved by the AdaBoost 
machine learning algorithm as reported by Schmidt et al. 
For the case of using all physiological signals except sig-
nals from the ACC sensor, the proposed deep neural net-
work achieved an accuracy rate of 93.64% and an F1 score 
of 92.44%. This compares to the accuracy rate of 76.17% 
and the F1 score of 66.33% achieved by the Random For-
est machine learning algorithm as reported by Schmidt 
et al.

In both cases evaluated for binary stress detection, 
using signals from chest-worn sensors, the proposed 
deep 1D convolutional neural network outperformed 
the best performance of the traditional machine learning 
algorithms as reported by Schmidt et al. For the case of 
using all physiological signals, including signals from the 
ACC sensor, the proposed deep neural network achieved 

an accuracy rate of 99.80% and an F1 score of 99.67%. 
This compares to the accuracy rate of 92.83% and the 
F1 score of 91.07% achieved by the LDA machine learn-
ing algorithm as reported by Schmidt et al. For the case 
of using all physiological signals except signals from the 
ACC sensor, the proposed deep neural network achieved 
an accuracy rate of 99.14% and an F1 score of 98.61%. 
This compares to the accuracy rate of 93.12% and the F1 
score of 91.47% achieved by the LDA machine learning 
algorithm as reported by Schmidt et al.

In both cases evaluated for binary stress detection, 
using signals from wrist-worn sensors, the proposed 
deep multilayer perceptron neural network outper-
formed the best performance of the traditional machine 
learning algorithms as reported by Schmidt et al. For the 
case of using all physiological signals, including signals 
from the ACC sensor, the proposed deep neural network 
achieved an accuracy rate of 99.65% and an F1 score of 
99.42%. This compares to the accuracy rate of 87.12% and 
the F1 score of 84.11% achieved by the Random Forest 
machine learning algorithm as reported by Schmidt et al. 
For the case of using all physiological signals except sig-
nals from the ACC sensor, the proposed deep neural net-
work achieved an accuracy rate of 97.62% and an F1 score 
of 96.18%. This compares to the accuracy rate of 88.33% 
and the F1 score of 86.10% achieved by the LDA machine 
learning algorithm as reported by Schmidt et al.

Discussion
Comparison between deep neural networks 
and traditional machine learning algorithms
The results shown in Tables 2, 3, 4 and 5 demonstrate that 
the deep 1D convolutional neural network and deep mul-
tilayer perceptron neural network achieve superior per-
formance over traditional machine learning approaches. 
The networks have higher accuracy rates and F1 scores 
for both binary stress detection and 3-class emotion clas-
sification. The superior performance was achieved in 
both the case of using all physiological signals, including 

Table 2  Performance comparison for  emotion 
classification from chest-measured signals

Best performance 
of Schmidt et al

Performance of deep 
1D convolutional neural 
network

ML 
algorithm

LDA AdaBoost

Including 
ACC 
sensor (%)

Not 
including ACC 
sensor (%)

Including 
ACC 
sensor (%)

Not 
including ACC 
sensor (%)

Accuracy 76.50 80.34 99.55 97.48

F1 Score 72.49 72.51 99.46 96.82
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signals from the 3-axis ACC sensor, and the case of using 
all physiological signals except signals from the 3-axis 
ACC sensor. The deep neural networks’ superiority to 
traditional machine learning algorithms was demon-
strated in multiple aspects.

First, the two deep neural networks performed sig-
nificantly better on both tasks than traditional machine 
learning algorithms. Both of the deep neural networks 
achieved between 6 and 12% improvement over tradi-
tional machine learning algorithms in terms of accuracy 
for binary stress detection. The accuracy improvement 

of the deep neural networks over traditional machine 
learning algorithms in 3-class emotion classification was 
even more prominent. Both of the deep neural networks 
achieved between 17 and 23% improvement in terms 
of accuracy for 3-class emotion classification. For both 
tasks, the superior performance represents both the case 
of using physiological signals without the 3-axis ACC 
sensor and the case of using physiological signals with 
the 3-axis ACC sensor.

Second, the two deep neural networks are far more 
architecturally consistent than traditional machine learn-
ing algorithms. For either the chest or wrist cases, only 
one neural network is able to carry binary stress detec-
tion and 3-class emotion classification successfully with 
consistent superior performance. The only difference in 
the neural networks between binary stress detection and 
3-class emotion classification is the composition of the 
last layer in each deep neural network. In binary stress 
detection, the sigmoid activation function is used in the 
last layer, so the last layer of each deep neural network 
has 1 unit. In three-class emotion classification, the soft-
max activation function is used in the last layer, so the 
last layer of each deep neural network has 3 units. This 
architectural consistency contrasts with that of the tra-
ditional machine learning algorithms, as reported by 
Schmidt et al. [11] and shown in Tables 2, 3, 4 and 5. The 
tables indicate that different traditional machine learning 
algorithms achieved best performance under different 
configurations. For instance, for the task of 3-class emo-
tion classification, based on the analysis of physiologi-
cal signals from a wrist-worn device, the random forest 
algorithm achieved the best performance for analyzing 
physiological signals, not including signals collected from 
the 3-axis ACC sensor, whereas the AdaBoost algorithm 
achieved the best performance for analyzing physiologi-
cal signals, including signals collected from the 3-axis 
ACC sensor. The downside of this trait of the traditional 
machine learning algorithms is that developing a real-
world product for stress detection and emotion classifi-
cation would be challenging because multiple machine 
learning models would need to be implemented to han-
dle different types of tasks. Therefore, the two deep neu-
ral networks may be more suited towards real-world 
application than traditional machine learning algorithms.

Third, the two deep neural networks consistently dem-
onstrate high performance. A slight performance drop 
between binary stress detection and 3-class emotion 
classification is expected, as multi-class classification 
is a more challenging task than binary classification. As 
shown in Tables 2, 3, 4 and 5, the performance drop, in 
terms of accuracy, from binary stress detection to 3-class 
emotion classification, ranges from 0.25 to 3.98%. On 
the other hand, traditional machine learning algorithms 

Table 3  Performance comparison for  emotion 
classification from wrist-measured signals

Best performance 
of Schmidt et al

Performance of multilayer 
perceptron neural network

ML 
algorithm

AdaBoost Random 
forest

Including 
ACC 
sensor (%)

Not 
including ACC 
sensor (%)

Including 
ACC 
sensor (%)

Not 
including ACC 
sensor (%)

Accuracy 75.21 76.17 98.38 93.64

F1 Score 64.12 66.33 97.96 92.44

Table 4  Performance comparison for  stress detection 
from chest-measured signals

Best performance 
of Schmidt et al

Performance of deep 
1D convolutional neural 
network

ML 
algorithm

LDA LDA

Including 
ACC 
sensor (%)

Not 
including ACC 
sensor (%)

Including 
ACC 
sensor (%)

Not 
including ACC 
sensor (%)

Accuracy 92.83 93.12 99.80 99.14

F1 Score 91.07 91.47 99.67 98.61

Table 5  Performance comparison for  stress detection 
from wrist-measured signals

Best performance 
of Schmidt et al

Performance of multilayer 
perceptron neural 
network

ML 
algorithm

Random 
forest

Random forest

Including 
ACC 
sensor (%)

Not 
including ACC 
sensor (%)

Including 
ACC 
sensor 
(%)

Not 
including ACC 
sensor (%)

Accuracy 87.12 88.33 99.65 97.62

F1 score 84.11 86.10 99.42 96.18



Page 9 of 10Li and Liu ﻿BMC Med Inform Decis Mak 2020, 20(Suppl 11):285

do not consistently demonstrate high performance. The 
accuracy rates of the traditional algorithms drop more 
than 10% when switching from binary stress detection 
to 3-class emotion classification. For both the deep 1D 
convolutional neural network and the deep multilayer 
perceptron neural network, virtually an identical network 
structure is used for both binary stress detection and 
3-class emotion classification, except for the number of 
activation units and the activation function used in the 
last layer of each neural network. Thus, the consistent 
performance demonstrated by the two deep neural net-
works for both binary stress detection and 3-class emo-
tion classification indicates that the two neural networks 
are able to “learn” the underlying features of the physi-
ological signals relatively well.

Fourth, the neural networks’ performance improves 
when the signals from the 3-axis ACC sensor are added to 
the inputs of each neural network, as shown in Tables 2, 
3, 4 and 5. This is in contrast to the performance drop for 
the machine learning algorithms, as shown in Tables 2, 3, 
4 and 5. The performance drop of the traditional machine 
learning algorithms occurs for both binary stress detec-
tion and 3-class emotion classification, measuring physi-
ological data from both the chest-worn sensors and the 
wrist-worn sensors. This performance drop ranges from 
0.29% to 3.84%. However, adding signals from the ACC 
sensor should improve the performance of an ideal 
model, as more data points are being analyzed in the 
tasks performed. Thus, the two deep neural networks, 
which appropriately utilize the information gathered by 
the additional ACC sensor, are likely superior models to 
the traditional machine learning algorithms.

Comparison of the two deep neural networks
Tables  2, 3, 4 and 5 also provide a comparison of the 
two deep neural networks developed in this experiment. 
The tables indicate that the deep 1D convolutional neu-
ral network, which analyzed physiological signals from 
chest-worn sensors, performed marginally better than 
the deep multilayer perceptron neural network, which 
analyzed physiological signals from wrist-worn sensors. 
This was expected for two reasons. First, the total num-
ber of physiological signals being input into the deep 1D 
convolutional neural network was higher than the total 
number of physiological signals being input into the mul-
tilayer perceptron neural network. Second, the signals 
from the chest-worn sensors are sampled at much higher 
frequencies and so are of a higher quality. Thus, the deep 
1D convolutional network processed a greater amount of 
higher quality data, implying that the network would per-
form better than the deep multilayer perceptron neural 
network. Nevertheless, even with a fewer number of less 
frequently sampled signals being input, the multilayer 

perceptron neural network’s high performance demon-
strates the network’s capabilities.

Limitations and implications for future research
To extend on this experiment in future research, the two 
neural networks must be trained and tested on much 
larger datasets with diverse human populations. This 
would increase the robustness of the networks, as they 
would be exposed to a more accurate representation of 
the overall human population. The datasets used in this 
project were collected from 15 human participants [11], 
which may not adequately represent the overall human 
population. The rationale for exposing the neural net-
works to a dataset representative of the entire human 
population is that the sensitivity level of stress condi-
tions (i.e., under what circumstances a person experi-
ences stress) is individual-based and varies from person 
to person.

Conclusions
We developed two deep neural networks: a deep 1D 
convolutional neural network and a deep multilayer 
perceptron neural network. The networks analyzed 
physiological signals measured from chest-worn and 
wrist-worn sensors to perform the two tasks of binary 
stress detection and 3-class emotion classification. The 
performance of the two deep neural networks were eval-
uated and compared with that of traditional machine 
learning algorithms used in previous research [11]. The 
results indicate that the two deep neural networks per-
formed significantly better for both tasks than the tra-
ditional machine learning algorithms. We demonstrated 
the potential of deep neural networks for developing 
robust, continuous, and noninvasive methods for stress 
detection and emotion classification, with the end goal of 
improving the quality of life.
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