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Abstract 

Background:  The availability of massive amount of data enables the possibility of clinical predictive tasks. Deep 
learning methods have achieved promising performance on the tasks. However, most existing methods suffer from 
three limitations: (1) There are lots of missing value for real value events, many methods impute the missing value and 
then train their models based on the imputed values, which may introduce imputation bias. The models’ performance 
is highly dependent on the imputation accuracy. (2) Lots of existing studies just take Boolean value medical events 
(e.g. diagnosis code) as inputs, but ignore real value medical events (e.g., lab tests and vital signs), which are more 
important for acute disease (e.g., sepsis) and mortality prediction. (3) Existing interpretable models can illustrate which 
medical events are conducive to the output results, but are not able to give contributions of patterns among medical 
events.

Methods:  In this study, we propose a novel interpretable Pattern Attention model with Value Embedding (PAVE) 
to predict the risks of certain diseases. PAVE takes the embedding of various medical events, their values and the 
corresponding occurring time as inputs, leverage self-attention mechanism to attend to meaningful patterns among 
medical events for risk prediction tasks. Because only the observed values are embedded into vectors, we don’t need 
to impute the missing values and thus avoids the imputations bias. Moreover, the self-attention mechanism is helpful 
for the model interpretability, which means the proposed model can output which patterns cause high risks.

Results:  We conduct sepsis onset prediction and mortality prediction experiments on a publicly available dataset 
MIMIC-III and our proprietary EHR dataset. The experimental results show that PAVE outperforms existing models. 
Moreover, by analyzing the self-attention weights, our model outputs meaningful medical event patterns related to 
mortality.

Conclusions:  PAVE learns effective medical event representation by incorporating the values and occurring time, 
which can improve the risk prediction performance. Moreover, the presented self-attention mechanism can not only 
capture patients’ health state information, but also output the contributions of various medical event patterns, which 
pave the way for interpretable clinical risk predictions.
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Background
With the increased growth of Electronic Health 
Records (EHRs) both in volume and diversity during the 
last decades, it becomes possible to apply clinical pre-
dictive models to improve the quality of clinical care. 
EHRs are temporal sequence data and consist of diag-
nosis codes, medications, lab results, and vital signs. 
Patient health information contained in the massive 
EHRs is extremely useful in different tasks within the 
medical domain, such as risk prediction [1, 2], patient 
subtyping [3, 4], treatment effect estimation [5, 6], and 
patient similarity analysis [7]. In this paper, we focus 
on clinical risk prediction tasks. Most state-of-the-art 
clinical risk predictive models are based on deep learn-
ing, and trained in an end-to-end way. Recurrent Neu-
ral Network (RNN), a popular deep learning model for 
modeling sequences, has achieved good performance in 
clinical risk prediction tasks recently [8–10]. However, 
there are still some challenges in the field. (1) Most 
existing methods [11, 12] represent medical events as 
embedding vectors, which lose real value information 
of the medical events (e.g., lab tests and vital signs). (2) 
Lab tests are diagnosis-driven and therefore EHRs have 
lots of missing value for lab tests. Many methods [13] 
impute the missing value and then train their models 
based on the imputed values. The models’ performance 
is highly dependent on the imputation accuracy. (3) 
Existing interpretable models are only able to provide 
instance-wise variable importance (i.e., to compute 
each medical event’s contribution to the disease risks) 
rather than pattern-wise importance. It is possible that 
when some clinical events occur simultaneously, it may 
lead to a sharp increase to risk while each event alone 
does not cause high risk.

In this study, we propose a new interpretable Pattern 
Attention model with Value Embedding (PAVE), which 
is totally based on attention mechanism. For each 
patient, medical events, values (e.g., lab test and vital 
sign values) and their corresponding occurring time 
are represented as embedding vectors and projected to 
a medical semantic space. Then a self-attention layer is 
leveraged to capture the meaningful patterns among 
medical events. A pattern attention module is proposed 
to attend to the event patterns and produce an atten-
tion vector for each patient. Finally, we use a fully con-
nected layer to predict a patient’s risk for future clinical 
outcomes. By analyzing the self-attention weights and 
pattern attention weights, our model is able to compute 

the contribution rates of various medical event pat-
terns, thus paving the way for interpretable clinical risk 
predictions.

In order to demonstrate the effectiveness of the pro-
posed PAVE, we compare our model against both 
traditional machine-learning methods (e.g., logistic 
regression, random forest) and recent deep-learning 
methods (e.g., RETAIN) on sepsis and mortality risk pre-
diction tasks. We conducted experiments on both a pub-
licly available MIMIC-III dataset [14] and our proprietary 
EHRs data. The experimental results show that PAVE 
outperforms all the baselines in both datasets and various 
settings, which demonstrates the effectiveness of the pro-
posed model. Moreover, after PAVE is well trained, it is 
also able to find the EHRs event patterns with high con-
tribution rates to high mortality risks. To highlight the 
handout of the proposed framework is as follows:

•	 We propose a novel interpretable risk prediction 
model PAVE, which is based on a self-attention 
mechanism and achieves better performance than 
the baselines.

•	 The presented self-attention mechanism can auto-
matically capture meaningful patterns and is helpful 
to find the patterns related to high risks. To the best 
of our knowledge, this work is the first attempt to 
identify the contributions of patterns.

•	 We propose a new value embedding that can map 
values into vectors, so we don’t need to impute the 
missing values.

•	 Our medical event embedding module can take med-
ical events’ occurring time into account.

Related work
Due to their promising performance in clinical risk pre-
diction task, deep learning methods have attracted sig-
nificant interest from healthcare researchers. In this 
section, we go through with the existing work related to 
deep learning models, including risk prediction, attention 
mechanism, and clinical models’ interpretability.

Risk prediction for healthcare
Extensive research has shown the potential of early pre-
diction of the risk of diseases from Electronic Health 
Records (EHRs) data, which has tempted substantial 
attention [13, 15–18]. In this section, we mainly focus on 
Recurrent Neural Networks (RNN) based models. RNN 

Availability:  The code for this paper is available at: https​://githu​b.com/yinch​angch​ang/PAVE.
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can be used for patient subtyping [3], phenotyping [19], 
similarity measurement [7], and missing values imputa-
tion [13, 20], which are highly related to risk prediction 
tasks. For some RNN based approaches, the relationships 
between subsequent visits are usually not considered. To 
address the issue, Dipole [11] adopts attention mecha-
nisms to capture the visits’ relations and therefore signifi-
cantly improves the prediction accuracy.

When preprocessing the EHRs data, most existing 
models ignore the time intervals between neighboring 
medical events. However, the time intervals are com-
mon and important in many healthcare applications. 
Therefore, a time-aware patient subtyping model [3] is 
proposed to take into account time intervals in patients’ 
EHRs data. It is demonstrated that taking time inter-
vals into account can significantly improve the model’s 
performance.

Attention mechanism
There are all kinds of medical events (e.g., diagnoses 
and medications) in EHRs data, which includes redun-
dant and useless information. Only the events related to 
some specific diseases are crucial to predict risk. There-
fore, attention mechanism is introduced to automatically 
attend to the useful events [8, 11, 21].

The attention mechanism has been shown to be help-
ful in the natural language processing domain. Vaswani 
et. al. propose Transformer [22] for machine translation 
task. Transformer uses self-attention to capture the rela-
tions between input words inside a sentence. The self-
attention mechanism is highly parallelizable and easy to 
train. This work adopts a self-attention mechanism to do 
clinical risk prediction tasks and simultaneously aims to 
find clinically significant patterns related to sepsis and 
mortality risk with self-attention.

Interpretability
In the clinical domain, models’ interpretability could 
be more important than their performance. Black-box 
approaches, especially deep learning methods, are not 
trusted by doctors and therefore not applied to real clini-
cal situations. It motivates a lot of work focused on the 
interpretability of risk predictive models. RETAIN [8] is 
the first work that can interpret why the model makes 
particular predictions. It utilizes two attention modules 
(i.e., visit-level and code-level attention) that detect influ-
ential visits and significant medical codes. The attention 
weights of events indicate their importance for clinical 
outputs.

Then RETAIN input the weighted average of each 
patient’s events’ embeddings to a fully connected layer 
to predict the risk, which loses temporal information 
(e.g., the visits occurring order in patients’ EHRs data). 

Thus RETAIN achieves limited performance. Inspired 
by RETAIN, Zhang et.al. [21] propose an interpret-
able model to predict the risk of heart failure (IFM). 
IFM presents a position attention layer to capture clini-
cal events’ order. However, IFM ignores the irregular 
time intervals between visits in patients’ EHRs data. 
Both the studies aim to calculate events’ contribution 
to clinical output risk, but ignore medical event pat-
terns’ importance. It is possible that when some clini-
cal events occur simultaneously, it may lead to a sharp 
increase to risk while each event alone does not cause 
high risk. In this study, we adopt self-attention mecha-
nism to capture clinical significant event patterns [23].

Methods
In this section, we give a detailed description of the 
proposed PAVE, which consists of four main parts. 
First, an embedding module represents medical events, 
variable values and the happening time as vectors. 
Then, a self-attention module is used to capture the 
pattern information between events. Next, a pattern 
attention module is followed to fuse all the pattern fea-
tures, which are sent to a fully connected layer to pre-
dict the clinical outcomes. The framework of PAVE is 
shown in Fig. 1.

Problem definition and notation
The risk prediction task can be regarded as a binary clas-
sification problem. Given a sequence of medical events, 
the framework aims to predict if the patient will have a 
certain medical event (e.g., diagnosis codes, mortality) in 
the future.

A patient’s EHRs data consist of two main parts: static 
information and dynamic information. Static information 
is his/her demographics, such as gender and age. We rep-
resent each patient’s demographics as one-hot vectors. 
Patients’ ages are divided into several age groups (e.g., 
20–29, 30–39).

The dynamic information is his/her historical records, 
including diagnosis codes, medications, lab tests, vital 
signs (patients in ICU have vital sign data). Each diagno-
sis code is Boolean-value data and others are real-value 
data. There could be several diagnosis codes, many col-
lections of lab tests and vital sign data in one visit. There 
are usually some missing values in some items of the lab 
test and vital signs in each collection.

Given a patient, his/her data are denoted as (x, 
ŷ ). The input data x includes the input demograph-
ics d and a sequence of n EHRs records, denoted as 
(e1, t1), (e2, t2), . . . , (en, tn) . For each event ei , its happen-
ing time is represented as ti . ŷ is the risk ground truth.
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Embedding module
In this subsection, we present a new event embedding 
with the consideration of variable values, the correspond-
ing happening time and patient demographics. As Shown 
in Fig. 2, the embedding module takes event (as well as 
the values), happening time, demographics as input 
and adopts three embedding layers to project them into 
vectors.

Time embedding
The first embedding layer is time embedding layer, which 
map the happening time ti into a vector vti ∈ Rk . ti is the 
interval time between the happening time of event ei and 
the last event time. The jth dimension of vti  is computed 
as:

where tm is the maximum of time intervals, k denotes the 
dimension of vti .

Value embedding
The second is medical event value embedding layer, 
which map each event ei and its value vi into a vector 
vei ∈ Rk . Given an event and its value, we map the event 
into a vector ve,ei  via a fully connected layer. If the event 
value is Boolean value (e.g., diagnosis code), we directly 
use ve,ei  as vei  . Otherwise for float value events (e.g., lab 
tests), given the value vi of event ei , the value embed-
ding layer generate a vector ve,vi  in the same way as time 
embedding layer. The jth dimension of ve,vi  is computed 
as:

(1)vti,j =







sin
�

ti∗j
tm∗k

�

, if j is even

cos
�

ti∗j
tm∗k

�

, if j is odd,

where vmin and vmax are the minimum and maximum val-
ues of the corresponding variable, k denotes the dimen-
sion of ve,vi  . Given ve,vi  and ve,ei  , a linear function is used to 
combine them to vei :

where Wv ,We ∈ Rk×k and be ∈ Rk are learnable 
parameters.

Demographic embedding
The third embedding layer is demographic embed-
ding layer, which embeds d into a matrix vd ∈ R|d|×k . A 

(2)ve,vi,j =







sin
�

(vi−vmin)∗j
(vmax−vmin)∗k

�

, if j is even

cos
�

(vi−vmin)∗j
(vmax−vmin)∗k

�

, if j is odd,

(3)vei = ve,vi Wv + ve,ei We + be,

Fig. 1  Framework of PAVE. Given a patient, the event embedding module takes his/her demographics (i.e., age and gender) and medical events 
plus occurring time (e1, t1), (e2, t2), . . . , (en , tn) as inputs and generates a sequence of embedding vectors q = {q1, q2, . . . , qn} ∈ Rn×k . Then three 
fully connected layers are followed to map q to queries Q ∈ Rn×k , keys K ∈ Rn×k and values V ∈ Rn×k . Next, a self-attention module is adopted 
to attend to meaningful patterns between medical events and output attention results P = {P1, P2, . . . , Pn} ∈ Rn×k , which are sent to a pattern 
attention module to generate the attention result h ∈ Rk . Finally, a fully connected (FC) layer and Sigmoid layer are leveraged to output the clinical 
outcome risk

Fig. 2  Embedding module. For each event i, we embed its 
happening time into vector vti  , and its event value into vector vei  . 
Then vei  is used to attend to the patient’s demographic information. 
The attention result vji , v

e
i  , vti  are concatenated and a fully connected 

layer is followed. The output vector qi is the embedding vector for the 
event i 



Page 5 of 10Kamal et al. BMC Med Inform Decis Mak 2020, 20(Suppl 11):307

demographic attention mechanism is leveraged to attend 
to the demographic information.

where Wv,d ,Wv,e ∈ Rk are learnable parameter, vdj ∈ Rk 
denotes the jth dimension of vd , vd,ai ∈ Rk is the demo-
graphic attention result.

Given the embedding and attention results (i.e., vei  , v
t
i  

and vd,ai  ), using a concatenation operation and a fully 
connected layer, the ith event and the patient’s demo-
graphics are projected into an embedding vector qi ∈ Rk.

where Wq,e,Wq,t ,Wq,d ∈ Rk×k and bq ∈ Rk are learnable 
parameters.

Self attention module
Given a patient, his/her sequence of final embeddings 
of events q = {q1, q2, . . . , qn} are input to self-atten-
tion module to capture useful patterns between related 
events. Three fully connected layers are used to map q 
into three matrices Q,K ,V ∈ Rn×k , which are queries, 
keys and values respectively. The self-attention output 
is computed as a weighted sum of the values, where the 
weight assigned to each value is computed by a compat-
ibility function of the query with the corresponding key. 
Specifically, we compute the dot products of each query 
Qi with other keys Kj and calculate the attention weight 
αij with a softmax function. Obtaining the weight, the 
sum of query event’s value and attention result of key 
events’ values is output as the pattern attention outcome 
P ∈ Rn×k . The ith dimension P is computed as follows:

where WQ,WK ,WV ∈ Rk×k and bQ, bK , bV ∈ Rk are 
learnable parameters. Given two events i and j, the 
product between query Qi and key Kj represents their 

(4)

vd,ai =

|d|
∑

j=1

vdj ∗ α
d,i
j

α
d,i
j =

exp(βd,i
j )

∑|d|
j=u exp(β

d,i
u )

β
d,i
j = vdj Wv,d + vei Wv,e,

(5)qi = vei Wq,e + vtiWq,t + vd,ai Wq,d + bq ,

(6)

Pi = Vi +
∑

j

αijVj

αij =
exp(βij)

∑

l exp(βil)

βij = QiK
T
j

Qi = qiWQ + bQ

Ki = qiWK + bK

Vi = qiWV + bV ,

relevance βij . A softmax layer is followed to generate the 
attention weight αij . Finally, a soft attention layer is used 
to produce the pattern vector Pj . The self-attention mod-
ule can capture two-event patterns. By stacking more 
self-attention layer, PAVE also has the potential to cap-
ture more complex medical patterns with more events.

Pattern attention module
There are various patterns in each patient’s EHRs data, 
only some are useful for risk prediction goal. Given the 
pattern embeddings P ∈ Rn×k , a pattern attention mech-
anism is used to attend to the meaningful patterns.

where Wp ∈ Rk and bp ∈ R is learnable parameters. 
Given a medical event pattern i for a patient, a fully con-
nected layer is adopted to compute its relevance θi to the 
risk prediction task. Then a softmax layer is followed to 
compute the weights for different patterns. Finally a soft 
attention is used to combine various patterns and pro-
duce a vector h, which contains the patient’s clinical risk 
information.

Objective function
A fully connected layer and sigmoid layer are followed to 
predict the risk probability:

where Wh ∈ Rk and bh ∈ R are learnable parameters. The 
cross-entropy between ground truth ŷ and predicted 
result y is used to compute loss:

Interpretability
The interpretability is that PAVE can compute each pat-
tern’s contribution to the output. Given pattern (i, j), 
including event i and event j, the contribution Cij is cal-
culated as follows:

Results and discussion
In order to evaluate the effectiveness of the pro-
posed PAVE, we compare our model with some state-
of-art methods on two real-world clinical datasets: 
publicly available MIMIC-III [14] and a proprietary 

(7)

h =
∑

i

γiPi

γi =
exp(θi)

∑

j exp(θj)

θi = PiWp + bp,

(8)y = sigmoid(hWh + bh),

(9)L(y, ŷ) = −(ŷlog(y)+ (1− ŷ)log(1− y)).

(10)Cij = γiαij .
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EHRs database. The experiments are conducted on two 
different tasks: sepsis onset prediction and mortality 
prediction.

Datasets
Both the datasets of sepsis prediction and mortality pre-
diction tasks are from Intensive Care Unit (ICU).

Sepsis prediction
The first dataset is extracted from a real-world propri-
etary EHRs database. We use patients’ demographics 
information and 27 kinds of time series features includ-
ing vital signs and lab tests to predict sepsis onset after 
several hours. Sepsis is one of the leading causes of mor-
tality in hospitalized patients. We follow the sepsis 2 defi-
nition [24]. The sepsis 2 patients must meet at least two 
of the following four SIRS criteria:

•	 Body temperature > 38.0 or < 35.0
•	 Respiratory rate > 20 or PaCO2 < 32 mmHg
•	 Heart rate > 90/min
•	 WBC > 12k or < 4k or Band > 10%.

Mortality prediction
The second dataset is publicly available dataset MIMIC-
III [14]. We use patients’ demographics and 8 vital signs 
data to predict the mortality in the coming hours. For 
each case patient (with sepsis 2 onset or mortality) on 
both datasets, 3 patients with the same age and gender 
are chosen as the controls. For both cases and controls, 
our model predicts whether the patients suffer from sep-
sis onset or mortality after a hold-off prediction window 
(e.g., 10, 8, 6, 4  h). PAVE and baselines take patients’ 
observed variables during the last 48 h as inputs (the data 
in the hold-off windows are excluded). The statistics of 
the selected datasets are listed in Table  1. The selected 
variables are listed in Table 2.

Methods for comparison
To validate the performance of PAVE, we compare it with 
the following models, including three traditional machine 
learning methods and four deep learning methods. In 
order to demonstrate the effectiveness of the proposed 
time embedding and event embedding, we also imple-
ment three versions of PAVE.

Random forest (RF): We represent each patient’s 
demographics into a vector. For each variable, we extract 
the minimum and maximum value. The concatenation 
vectors of the values of patients are used to train the Ran-
dom Forest model.

Logistic regression (LR): We train the logistic regres-
sion model with the same vectors as random forest. The 
logistic regression is trained with five various solvers, 
including lbfgs, new-cg, liblinear, sag and saga. We choose 
the solver with the best performance in validation set.

Support vector machine (SVM): We train the support 
vector machine model with the same vectors as random 
forest. The support vector machine is trained with four 

Table 1  Statistics of datasets

Note that average number of events and average number of collections are 
calculated based on the last 48 h data for each patient

Sepsis Mortality

No. of case patients 10,000 5000

No. of control patients 30,000 15000

No. of male/female 21,628/18,372 10,720/9280

AVG age 62.7 68.4

No. of unique events 27 8

AVG no. of events 225.8 190.9

AVG no. of collections 43.7 34.1

Table 2  Selected variables used for  sepsis onset 
and mortality prediction

Variables Sepsis Mortality

Anion gap
√

Blood urea nitrogen
√

Braden scale
√

Chlorine
√

Creatinine
√

CO2
√

Diastolic blood pressure
√ √

FiO2
√

Glasgow coma score
√

Glucose
√ √

Heart rate
√ √

Hematocrit
√

Hemoglobin
√

MAP
√

MCH concentration
√

Mean blood pressure
√ √

Pain score
√

Platelet
√

Potassium
√

Pulse
√

RBC
√

Respiratory Rate
√ √

Sodium
√

SPO2
√ √

Systolic blood pressure
√ √

Temperature
√ √

WBC
√
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different kernels, including poly, rbf, linear and sigmoid. 
The kernel with the best performance in the validation 
set is used to predict the risk in the test set.

GRU and LSTM: GRU [25] and LSTM [26] are clas-
sical RNN based models, which both introduce various 
gates to improve RNN’s performance.

RETAIN: The REverse Time AttentIoN model 
(RETAIN) [8] is the first work that tries to interpret 
model’s disease risk prediction results with two attention 
modules. The attention modules generate weights for 
every medical event. The weights are helpful to analyze 
different events’ contributions to the output risk.

IFM: IFM [21] is an interpretable heart failure risk pre-
diction model, which is also based on attention mecha-
nism and leverages the attention weights to interpret the 
outputs. In this work, we modify the IFM to predict sep-
sis onset and mortality.
PAVE

−T : PAVE−T removes the time embedding mod-
ule when predicting patient risks.
PAVE

−V  : PAVE−V  removes the variable value embed-
ding. The method prefills the missing values with mean 
values and takes the prefilled values as inputs but not the 
value embeddings.

PAVE: PAVE is the main version of the proposed 
model.

Implementation details
We implement all the baselines and our proposed PAVE 
models with PyTorch 0.4.11 and scikit-learn.2 For the tra-
ditional machine learning approaches (i.e., LR, RF and 
SVM), a grid search is adopted to find the best param-
eter settings. For the deep learning approaches (i.e., 

GRU, LSTM, RETAIN, IFM and PAVE), we use Adam 
optimizer with a mini-batch of 64 patients and train on 
1 GPU (TITAN XP) for 50 epochs, with a learning rate of 
0.0001. We randomly divide the datasets into 10 sets. All 
the experiment results are averaged from tenfold cross-
validation, in which 7 sets are used for training every 
time, 1 set for validation and 2 sets for test. The valida-
tion sets are used to determine the best values of param-
eters in the training iterations. We use the area under the 
receiver operating characteristic curve (AUROC) in the 
test sets as a measure for comparing the performance 
of all the methods in two datasets. The dimensions of 
embedding and hidden vectors used in the deep-learning 
baselines and proposed PAVE are set as 512. We only use 
1 layer of self-attention operation for PAVE to capture 
two-event patterns. The numbers of the trainable param-
eters of GRU, LSTM, RETAIN, IFM and PAVE are about 
3.6 M, 4.4 M, 8.4 M, 1.2 M and 1.9 M respectively.

Results of risk prediction
As is shown in Table 3, the proposed model PAVE out-
performs all the baselines, which demonstrates the effec-
tiveness of our model.

The deep learning approaches outperform the tradi-
tional machine-learning approaches that take vectors as 
inputs but not sequence data. Traditional machine-learn-
ing approaches’ inputs lose the temporal information of 
EHR data, which are very important in the risk prediction 
tasks, while deep learning models are good at modeling 
temporal data. Thus, the deep learning baselines achieves 
better performance. Among the deep learning baselines, 
attention-based models (i.e., RETAIN and IFM) perform 
better than other models in the mortality prediction task, 
while LSTM and GRU perform better in the sepsis onset 
prediction task. We speculate that mortality is easier to 
predict based on several vital sign features, such as heart 

Table 3  AUROC mean ± std on sepsis and mortality prediction

Sepsis prediction Mortality prediction

10 h 8 h 6 h 4 h 10 h 8 h 6 h 4 h

LR .713 ± .017 .739 ± .013 .744 ± .017 .753 ± .018 .803 ± .014 .820 ± .017 .843 ± .014 .866 ± .017

RF .726 ± .014 .741 ± .016 .759 ± .019 .762 ± .016 .813 ± .016 .829 ± .020 .856 ± .016 .873 ± .017

SVM .701 ± .021 .754 ± .019 .761 ± .021 .763 ± .018 .802 ± .021 .835 ± .015 .853 ± .020 .863 ± .018

GRU​ .748 ± .011 .761 ± .009 .766 ± .008 .767 ± .009 .836 ± .011 .842 ± .009 .861 ± .010 .882 ± .010

LSTM .750 ± .011 .763 ± .010 .767 ± .011 .770 ± .011 .857 ± .009 .862 ± .011 .873 ± .009 .884 ± .011

RETAIN .741 ± .011 .756 ± .009 .758 ± .008 .759 ± .008 .848 ± .007 .860 ± .008 .875 ± .009 .895 ± .008

IFM .746 ± .009 .760 ± .010 .763 ± .009 .765 ± .009 .866 ± .007 .873 ± .008 .882 ± .008 .892 ± .007

PAVE−V .754 ± .006 .768 ± .005 .769 ± .005 .770 ± .006 .886 ± .006 .886 ± .005 .897 ± .005 .915 ± .006

PAVE−T .756 ± .007 .770 ± .006 .770 ± .006 .774 ± .006 .889 ± .008 .892 ± .008 .903 ± .008 .918 ± .007

PAVE .763 ± .005 .773 ± .006 .778 ± .004 .780 ± .004 .897 ± .005 .904 ± .004 .913 ± .005 .922 ± .005

1  https​://pytor​ch.org/.
2  https​://sciki​t-learn​.org/stabl​e/.

https://pytorch.org/
https://scikit-learn.org/stable/
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rate and respiratory rate in recent hours. Attention-based 
models do well in capturing important events and thus 
achieves better performance. Sepsis is a complex disease 
that is more difficult to be predicted than mortality. The 
prediction of sepsis onset is related to changes in patients’ 
health states during a relatively longer period. LSTM and 
GRU are better at modeling the long time changes of the 
states, while RETAIN and IFM lose some temporal infor-
mation with the attention mechanisms. In the clinical 
domain, models’ interpretability could be more impor-
tant than their performance. Thus, the interpretable risk 
prediction models (i.e., PAVE, RETAIN and IFM) are 
more suitable for real-world clinical applications. Com-
pared with RETAIN and IFM, PAVE leverages attention 
mechanism to focus on important events, and incorpo-
rates time information with time embedding, so it out-
perform RETAIN and IFM by 1.5 percent and 3 percent 
for sepsis and mortality prediction tasks respectively.

Among the three versions of the proposed model, 
PAVE−T performs worse than PAVE, which means that 
with the time embedding, PAVE can capture more time 
information of time intervals. PAVE also outperforms 
PAVE−E , which takes the imputed values as inputs, but 
not value embeddings. The imputation strategy may 
introduce bias and thus be harmful to the final risk pre-
diction tasks.

Medical event pattern analysis
PAVE is able to analyze the patterns’ contributions to 
the prediction. We compute each pattern’s contribu-
tion to the risk of mortality for each patient according to 
Eq. (10). For each variable, their values are divided into 
five ranges. By comparing each item value to its normal 
range, the item value is mapped into three ranges (e.g., 
low, normal and high). Then the high-value range is 

divided into two parts (i.e., high and very high) by com-
paring the value to the median of all the high values. The 
low-value range is divided in the same way. We display 
the top 10 patterns with the highest average contribution 
rates among all the case patients to mortality (10-h mor-
tality prediction) in Table 4. The patterns are verified by 
clinicians to be high-risk signals to mortality, which dem-
onstrate PAVE can find useful patterns in the prediction 
tasks.

We conducted the experiments lots of times and found 
some patterns always have relatively high weights. For 
example, the weight of the pattern (very high tempera-
ture and very low respiratory rate) is always much higher 
than other random patterns, which is consistent with 
clinical knowledge that the patients with very high tem-
perature and very low respiratory rate simultaneously 
have high risk of mortality.

Case study
We applied PAVE to predict the mortality risk of a 
patient from the test set, who suffered mortality after 
10  h. We display the observed variables during the last 
24  h in observation window in Fig.  3. RETAIN is also 
used to predict the mortality risk for comparison. Both 
PAVE and RETAIN accurately predict the patient’s mor-
tality after 10 h. In this case study, we mainly focus on the 
interpretability of the detected medical events or patterns 
with high contribution risks. The black stars in Fig.  3 
represent observed abnormal values with high instance-
wise contribution risks generated by RETAIN, while the 
colored squares are medical event patterns detected by 
PAVE. In the case, PAVE found three patterns with high 
contribution risks: (1) high SysBP and high temperature 
in orange squares; (2) high heart rate and high temper-
ature in red squares; (3) stable high heart rate and high 
respiratory rate in blue squares. The events sharing the 
same colors are detected patterns. Note that only the pat-
terns with relatively high contribution risks are shown in 
the figure. The sizes of black stars and colored squares 
denote the corresponding values of contribution risks. 
Both the models successfully detect some crucial medical 
events related to high mortality risks, such as high heart 
rates and high temperature. PAVE focuses much more on 
the observed variables during the last 10 h in the obser-
vation window (e.g., the stable high heart rate and high 
respiratory rate in blue squares), while RETAIN attends 
to lots of earlier events but ignore the latter high heart 
rate and high respiratory rate in the last three collec-
tions. It means PAVE learn an knowledge that both the 
latter medical events and the abnormal values are more 
useful for accurate mortality prediction, while RETAIN 
only focuses on abnormal values. Moreover, when some 
crucial patterns (e.g., high heart rate and high respiratory 

Table 4  Top 10 patterns with  the  highest average 
contribution rates (AVG-CR) to mortality

Note SysBP, DiasBP and MeanBP denote systolic blood pressure, diastolic blood 
pressure and mean blood pressure respectively

EVENT 1 EVENT 2 AVG-CR (%)

Very low respiratory rate Very high temperature 10.1

Very low respiratory rate High SysBP 9.5

High temperature High SysBP 8.7

Very low temperature Very low MeanBP 8.3

Low temperature High MeanBP 6.8

Very high SysBP Low SPO2 6.5

Very high SysBP Very low DiasBP 5.9

Very high respiratory rate Very high heart rate 5.3

High DiasBP Very high MeanBP 5.2

Very high SysBP High heart rate 5.0
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rate in blue squares) appear, PAVE assigned more atten-
tion weights to the patterns than RETAIN (the colored 
squares have bigger size than the corresponding stars), 
which demonstrate that PAVE are effective for mining 
relative and important patterns, and pay more attention 
to the meaningful patterns.

Conclusion
In this work, we proposed PAVE, an interpretable pat-
tern attention model with value embedding to predict 
disease risk. PAVE takes into account real-value medi-
cal events (e.g., lab tests and vital signs) by embedding 
the values into vectors, and therefore does not need to 
impute the missing values. Moreover, PAVE is based 
on attention mechanisms and the attention weights 
can be used to interpret the model’s clinical outputs. 
To the best of our knowledge, PAVE is the first inter-
pretable deep learning model that can provide medical 
pattern-wise interpretability but not only instance-wise 
interpretability. Event patterns may cause a much 
higher risk than each single event in the pattern. We 
conducted expensive experiments on two real-world 
datasets and PAVE achieved better performance than 

state-of-art models. Moreover, the experimental results 
show that PAVE is able to detect lots of medical event 
patterns with high contribution rates to mortality and 
sepsis onset, which paves the way for interpretable clin-
ical risk predictions.
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