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Abstract 

Background:  Electrocardiogram (ECG) signal, an important indicator for heart problems, is commonly corrupted by 
a low-frequency baseline wander (BW) artifact, which may cause interpretation difficulty or inaccurate analysis. Unlike 
current state-of-the-art approach using band-pass filters, wavelet transforms can accurately capture both time and 
frequency information of a signal. However, extant literature is limited in applying wavelet transforms (WTs) for base‑
line wander removal. In this study, we aimed to evaluate 5 wavelet families with a total of 14 wavelets for removing 
ECG baseline wanders from a semi-synthetic dataset.

Methods:  We created a semi-synthetic ECG dataset based on a public QT Database on Physionet repository with ECG 
data from 105 patients. The semi-synthetic ECG dataset comprised ECG excerpts from the QT database superimposed 
with artificial baseline wanders. We extracted one ECG excerpt from each of 105 patients, and the ECG excerpt com‑
prised 14 s of randomly selected ECG data. Twelve baseline wanders were manually generated, including sinusoidal 
waves, spikes and step functions. We implemented and evaluated 14 commonly used wavelets up to 12 WT levels. 
The evaluation metric was mean-square-error (MSE) between the original ECG excerpt and the processed signal with 
artificial BW removed.

Results:  Among the 14 wavelets, Daubechies-3 wavelet and Symlets-3 wavelet with 7 levels of WT had best perfor‑
mance, MSE = 0.0044. The average MSEs for sinusoidal waves, step, and spike functions were 0.0271, 0.0304, 0.0199 
respectively. For artificial baseline wanders with spikes or step functions, wavelet transforms in general had lower 
performance in removing the BW; however, WTs accurately located the temporal position of an impulse edge.

Conclusions:  We found wavelet transforms in general accurately removed various baseline wanders. Daubechies-3 
and Symlets-3 wavelets performed best. The study could facilitate future real-time processing of streaming ECG sig‑
nals for clinical decision support systems.
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Background
Artifacts are common in ECG recording and they may 
cause interpretation difficulty or inaccurate analysis, 
especially in real-time ECG data processing. Baseline 
Wander (BW) is one of severe artifacts that could cause 
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difficulty of diagnosis [1]. For example, BW might affect 
the accuracy of measuring the elevation or depression of 
ST-segment, which serves as a critical clinical feature to 
early detect patients’ diseases [2]. Thus, Baseline Wan-
der removal is one of imperative ECG preprocessing 
steps. There are many methods to remove BW, such as 
Band-pass filter [3], interpolation [4], etc. Among these 
methods, wavelet transform (WT) have the best result 
given its nature of addressing both temporal and fre-
quency changes of a signal [5]. Nevertheless, there is a 
lack of research that systematically evaluates ECG base-
line wander removal using different wavelet transforms. 
This study aimed to evaluate various wavelet transforms 
and identify best wavelet transforms for removing ECG 
baseline wander effect. The outcomes of this study could 
facilitate future real-time processing of streaming ECG 
signals.

Methods
This study was approved by the Institutional Review 
Board at the Children’s Hospital of Philadelphia. We first 
described our research dataset, artificial baseline wan-
ders, wavelet transform families, followed by evaluation 
approach. Figure  1 summarizes the information flow of 
this study.

Dataset
In this study, we used publicly available QT database in 
Physionet [6] that comprises a total of 105 patients and 
each patient had two ECG channels with 15-min excerpts 
of recordings. The sampling rate of ECG signal was 
250 Hz. We randomly extracted 14 s of ECG data from 
one of the two channels in each patient, which generated 
105 14-s excerpts of ECG data. When the QT database 
was initially created in the Physionet, all the ECG data 

Fig. 1  Information flow of the study with three stages. The first stage is signal processing, which formed semi-synthetic data by superimposing a 
normalized raw ECG signal with an artificial baseline wander (BW or trend). The second stage is wavelet transform (WT) and BW removal. The third 
stage is WT evaluation, which measured the mean square errors between the normalized raw ECG data and the de-trended semi-synthetic ECG 
signal
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in the database was manually selected to minimize the 
effects of significant baseline wander and other artifacts 
[7].

After randomly extracting a 14-s episode of ECG data, 
we further normalized the data based on Eq. 1; thus, all 
the ECG episodes were in the same range to avoid poten-
tial signal strength (amplitude) bias.

where xmax and xmin were the maximum and minimum 
values during the 14 s and t represented time.

Simulated (artificial) baseline wanders (trends)
To simulate baseline wanders, we created 10 sinusoi-
dal waves ranging from 0.05 Hz (20-s cycle) to 0.5 Hz 
(2-s cycle) and − 1 mV to 1 mV and we formed a synthetic 
ECG data by superimposing the artificial trend (with the 
same sampling rate 250 Hz in the raw ECG data) to an 
extracted ECG data from the QT database. In addition, 
we created two additional types of special trends, i.e. a 
step function and a spike function, to simulate real-world 
voltage spikes. We created a total of 12 trends (10 sinu-
soidal waves and 2 special trends). Equation 2 represents 
the semi-synthetic ECG data, y[t]:

where w[t] represents an artificial baseline wander (or 
trend).

Wavelet transforms
Unlike Fourier transform in signal processing that rep-
resents a temporal signal solely in frequency domain, a 
wavelet transform (WT), represents a temporal signal 
in both time and frequency domains using finite sup-
port basis functions (e.g., wavelet) in different resolu-
tions (levels or frequency bands). We chose 5 commonly 
used wavelet transform families with a total of 14 wave-
lets: Daubechies (dbN, where N ∈{ 1,2,3,4}), Coiflets 
(coifN, where N ∈{ 1,2,3,4}), Symlets (symN, where N ∈ 
{3,4,6,10}), Fejer-Korovkin (fkN, where N = 4), and Meyer 
(dmey) [8]. The N in each wavelet family represents the 
number of vanishing moments [8]. For each WT, we per-
formed wavelet transform of an input (ECG) signal up to 
11 levels (the relationship between sampling frequency 
and wavelet transform is described in Additional file 1). 
A higher level in WT represents a lower frequency band, 
which shows a low-frequency component in a tempo-
ral signal, e.g., a low-frequency signal trend. When the 
wavelet transform coefficients are set to zero above a cer-
tain WT level, the underlying low-frequency trends are 
likely to be removed. For simplification, we refer wavelet 

(1)xN [t] =
x[t]− xmin

xmax − xmin
,

(2)y[t] = xN [t]+ w[t],

transform coefficients (for both scaling and wavelet func-
tions in a wavelet transform) as wavelet coefficients in the 
following sections. After that, an inverse wavelet trans-
form is applied to transform the processed signal back 
to the time domain. To avoid boundary effects, the first 
and last 2 s were removed in the processed ECG signal 
[9]. Equation 3 represents the de-trended ECG signal by 
applying a WT:

where x′[t] is the de-trended ECG signal, WT(.) and 
IWT(.) represents a wavelet transform and an inverse 
wavelet transform, respectively. The de-trended ECG sig-
nal was then normalized based on Eq. 1 to be consistent 
with the scale of original ECG signal.

Baseline wander (trend) removal evaluation
The evaluation metric in this study was the mean square 
error (MSE) that measures cumulated errors between the 
normalized original ECG data, xN[t], and the de-trended 
data, x′[t], to evaluate the performance of each wave-
let transform. The same process was done through each 
sample for each wavelet transform at specific frequency 
as shown in Eq. 4. We also reported the overall average 
MSE for each WT across all the simulated trends.

We conducted the experiment using the Matlab Maxi-
mal Overlap Discrete Wavelet Transform (MODWT) 
function on a laptop with i7-7500U CPU 2.7 GHz and 
8 GB RAM. Each experiment under a specific trend fre-
quency and wavelet type took around 1.17 s. We chose 
MODWT as it demonstrated to have several advantages 
over conventional DWT [10, 11].

Results
In this section, we showed the evaluation results of each 
wavelet transform in removing baseline wanders.

Sinusoidal waves
Figure 2.1 summarized WT performance across different 
wavelets and different levels of wavelet coefficients being 
set to zero (for trend removal). Both Daubechies-3 (db3) 
and Symlets-3 (sym3) had the minimum MSE (0.0044), a 
mean value across multiple (0.05 Hz–0.5 Hz) simulated 
trends and over 105 patients in QT database, with wave-
let coefficients to be preserved between levels 1 and 7 
and wavelet coefficients at the other levels (8–11) to be 
set to zero (filtered); such process was represented with 

(3)

x′[t] = IWT
(

WT
(

y[t]
)

, wavelet coefficients

at certain levels = 0),

(4)MSE =

M
∑

t=1

(

xN [t]− x′[t]
)2

M
,
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Fig. 2  1. Sinusoidal Waves Mean Square Error across 14 wavelets: (1) wavelet type:“db”:Daubechies, “coif”:Coiflets, “sym”:Symlets, “fk4”:Fejer-Korovkin, 
“dmey”:Meyer (2) the result is the average of all trend sinusoidal frequencies (0.05–0.5 Hz). 2. Step Function Mean Square Error across 14 wavelets: 
(1) wavelet type:“db”:Daubechies, “coif”:Coiflets, “sym”:Symlets, “fk4”:Fejer-Korovkin, “dmey”:Meyer. 3. Spike Function Mean Square Error across 14 
wavelets: (1) wavelet type:“db”:Daubechies, “coif”:Coiflets, “sym”:Symlets, “fk4”:Fejer-Korovkin, “dmey”:Meyer
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lv1–7 (Fig. 2). Figure 3 shows heatmaps across different 
wavelets and wavelet levels to be preserved and filtered. 
As shown in Fig. 3d, best outcomes across all the wave-
lets occurred at levels 1–7 with preserved wavelet coef-
ficients and all the other coefficients at levels 8–11 were 
filtered (setting to 0).

Figure  4 shows the de-trending experiments using 
sym3 wavelet based on different trends. The sym3 with 
wavelet coefficients at levels 1–7 were preserved and the 
coefficients at levels 8–11 were set to zero. Figure  4.1 
shows the process of forming semi-synthetic ECG data, 
Fig. 4.1(b), and removing the artificial trend using sym3 
wavelet. The artificial trend had a frequency of 0.3 Hz 
(or 3.3-s cycle). The sym3 wavelet transform accurately 
removed the simulated baseline wander, Fig.  4.1(c), and 
the extracted trend was shown in Fig. 4.1(d).

Spike and step functions
Figure  2.2 and 2.3 summarize WT performance across 
different wavelets and different levels of wavelet coeffi-
cients being set to zero (for trend removal). In the step 
function experiment, Meyer wavelet had the minimum 
MSE (0.0274), a mean value over 105 patients in QT data-
base, with wavelet coefficients to be preserved between 
levels 1 and 7 and set to zero (filtered) between levels 8 
and 11. In the spike function experiment, Meyer wavelet 
had the minimum MSE (0.0044) with wavelet coefficients 
to be preserved between levels 3 and 9 and set to zero for 
levels 1–2 and 10–11.

Figure 4.2 to 4.4 show injected artificial trends using a 
step function and a spike (impulse) function. The injected 
step-function shown in Fig.  4.2(b) was removed by the 
WT except during the time between 7 and 8 s. However, 
the injected spike function in Fig. 4.3(b) was not removed 
perfectly by the wavelet transform. Figure  4.3(d) shows 
the location of the impulse edge by preserving wavelet 
level 1 coefficients and setting all the other coefficients to 
be zero in the other levels. Figure 4.4(b) was not removed 
by the wavelet transform.

Discussion
In this study, we systematically compared 14 wavelets 
across 10 sinusoidal baseline wanders and two special 
trends (a step function and a spike function). Most wave-
lets performed well when wavelet coefficients were pre-
served at levels 1 to 7 while the rest of the coefficients 
at levels 8 to 11 were removed (set to 0). Among the 14 
wavelets, Daubechies-3 and Symlet-3 wavelet had the 
best performance; their performance might be attributed 
by the similarity between their wavelet bases (Daube-
chies-3 and Symlet-3) and ECG signal [12]. Thus, the two 
wavelets could potentially better preserve the original 
ECG signal during signal decomposition. Figure A1 in 
Additional file 1 shows the wavelet functions for Daube-
chies-3 and Symlet-3.

The spike-function trend was not removed successfully 
based on our approach. Since a spike function represents 
a high frequency signal, the result was expected as our 
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Fig. 3  Heatmap of MSEs across different wavelets and frequencies. a all the WTs with wavelet coefficients set to zero for levels 9–11 and wavelet 
coefficients at levels 1 to 8 were preserved (lv1–8); b all the WTs with wavelet coefficients set to zero for levels 1 and 9–11 and wavelet coefficients 
at levels 2 to 8 were preserved (lv2–8); c all the WTs with wavelet coefficients set to zero for levels 1–2 and 9–11 and wavelet coefficients at levels 
3 to 8 were preserved (lv3–8); d all the WTs with wavelet coefficients set to zero for levels 8–11 and wavelet coefficients at levels 1 to 7 were 
preserved (lv1–7); e all the WTs with wavelet coefficients set to zero for levels 10–11 and wavelet coefficients at levels 1 to 9 were preserved (lv1–9)
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Fig. 4  De-trending experiments on one QT database patient (No.sel15814) using sym3 wavelet based on different trends. (1) a trend with a 
sinusoidal wave at 0.3 Hz added to a normalized raw ECG data (only wavelet coefficients at levels 1–7 were preserved), (a) the normalized raw ECG 
signal, (b) semi-synthetic ECG signal formed by superimposing the normalized raw ECG signal and a simulated trend, (c) the normalized processed 
semi-synthetic data with removed trend after applying a WT, (d) the extracted trend from (b); the MSE between (a) and (c) was 0.0018 (2) a trend 
with a step function added to a normalized raw ECG data (only wavelet coefficients at levels 1–7 were preserved), (a) to (d) following the same 
process in (1), (e) the reconstructed signal by preserving wavelet coefficients only at level 1 and removing others at other levels; MSE between 
(a) and (c) was 0.0337 (3) a trend with a spike added to a normalized raw ECG data (only wavelet coefficients at levels 3–7 were preserved), (a) 
to (e) following the same process in (2); MSE between (a) and (c) is 0.0009, (4) a trend with a spike added to a normalized raw ECG data (only 
wavelet coefficients at levels 1–7 were preserved), (a) the normalized raw ECG signal, (b) semi-synthetic ECG signal formed by superimposing the 
normalized row ECG signal and a simulated trend, (c) the non-normalized processed semi-synthetic data with removed trend after applying a WT, 
(d) normalized processed semi-synthetic data with removed trend after applying a WT
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Fig. 4  continued
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design in this study was to remove low-frequency base-
line wanders not the one with a high frequency. How-
ever, the high-frequency spike was identified at the time 
domain by preserving only level 1 wavelet coefficients; 
an additional removal process could be implemented 
to remove the spike when the timestamp of the spike is 
identified by the wavelet transform. In addition, a small 
MSE (0.0009) was observed, which was attributed by only 
one sample (spike) point that was not removed among 
the input ECG signal. In Fig.  2.3, MSE in different WT 
at level 1 to x preserved, where x ∈{7,8,9}, were unex-
pectedly large. The reason could be showed in Fig.  4.4. 
Figure  4.4(b) (semi-synthetic signal) is hardly removed. 
Since the maximum value of the sample happens to be 
at the spike point, the normalization step on Fig.  4.4(c) 
compresses the shape of processed ECG signal. Thus, the 
MSE is high.

The step-function trend was removed in general but the 
sudden baseline increase point (within 0.5 s) was not well 
removed (similar to the spike-trend effect) by the wave-
lets. Given such short time-period (less than 0.5 s) with-
out completely trend removal, we expected the impact to 
clinical application would be minimal.

We plan to further compare the two best wavelet trans-
forms (Daubechies-3 and Symlet-3) with other band-pass 
filters and apply the two wavelets to real-time streaming 
ECG processing. We expect more accurate ECG analysis 
such as ST wave deviation can be achieved after applying 
this wavelet transform-based de-trending process.

Limitations
In this study, we used simple sinusoidal waves to simulate 
baseline wanders. In the real world, the baseline wanders 
could be more complicated. Further research using com-
plicated trends or real-world data are expected.

Conclusions
We found wavelet transforms in general accurately 
removed various baseline wanders. Daubechies-3 and 
Symlets-3 wavelets performed best. The study could 
facilitate future real-time processing of streaming ECG 
signals for clinical decision support systems.
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