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Abstract

Background: The key to modern drug discovery is to find, identify and prepare drug molecular targets. However,
due to the influence of throughput, precision and cost, traditional experimental methods are difficult to be widely
used to infer these potential Drug-Target Interactions (DTIs). Therefore, it is urgent to develop effective
computational methods to validate the interaction between drugs and target.

Methods: We developed a deep learning-based model for DTIs prediction. The proteins evolutionary features are
extracted via Position Specific Scoring Matrix (PSSM) and Legendre Moment (LM) and associated with drugs
molecular substructure fingerprints to form feature vectors of drug-target pairs. Then we utilized the Sparse
Principal Component Analysis (SPCA) to compress the features of drugs and proteins into a uniform vector space.
Lastly, the deep long short-term memory (DeepLSTM) was constructed for carrying out prediction.

Results: A significant improvement in DTIs prediction performance can be observed on experimental results, with
AUC of 0.9951, 0.9705, 0.9951, 0.9206, respectively, on four classes important drug-target datasets. Further
experiments preliminary proves that the proposed characterization scheme has great advantage on feature
expression and recognition. We also have shown that the proposed method can work well with small dataset.

Conclusion: The results demonstration that the proposed approach has a great advantage over state-of-the-art
drug-target predictor. To the best of our knowledge, this study first tests the potential of deep learning method
with memory and Turing completeness in DTIs prediction.
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Background
Drug targets are the foundation of drug research and de-
velopment, and over the past few centuries, people have
relied heavily on hundreds of drug targets currently
known to detect drugs [1]. Although the number of
known drugs interacting with target proteins continues
to increase, the number of approved drug targets is still
only a small fraction of the human proteome. The detec-
tion of interactions between drugs and targets is the first

step in the development of new drugs, and one of the
key factors for drug screening and drug directed synthe-
sis. Benefit from high-throughput experiments, more
and more understanding of the structural space of drug
compounds and the genomic space of target proteins
has been made. Unfortunately, due to the time-
consuming and laborious experimental process, our un-
derstanding of the relationship between the two spaces
is still rather limited [2, 3]. Thanks to the rapid increase
in publicly available biological and chemical data, re-
searchers can systematically learn and analyze heteroge-
neous new data through computational methods and
revisit drug-target interactions (DTIs). There are several

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: zhuhongyou@ms.xjb.ac.cn
†Yan-Bin Wang and Zhu-Hong You contributed equally to this work.
1Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of
Sciences, Urumqi 830011, China
Full list of author information is available at the end of the article

Wang et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 2):49
https://doi.org/10.1186/s12911-020-1052-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-1052-0&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zhuhongyou@ms.xjb.ac.cn


free databases that focus on relationships between drugs
and targets, such as the ChEMBL [4], DrugBank [5],
SuperTarget [6]. These database contents constitute the
gold standard datasets, which are essential for the devel-
opment of computational methods to predict DTIs.
At present, the computational method for DTIs pre-

diction can be classified into three categories: the ligand-
based approach, the docking approach and the feature
learning approach. Ligand-based methods are often used
to estimate potential targets of action by calculating the
chemical structural similarity of a given drug or com-
pound to active compounds of known targets. Keiser
et al. [3] proposed a method for inferring protein targets
based on the chemical similarity of their ligands. Yama-
nishi et al. [7–9] predict unknown drug-target interac-
tions by integrating the chemical structural similarity of
compounds and the amino acid sequence similarity of
proteins to a uniform space. Campillos et al. [6] predict
the potential target proteins through similarity of pheno-
typic side effects. This kind of ligand-based method is
simple and effective in the case of high chemical struc-
tural similarity, but it also limits the scope and accuracy
of its application to a great extent. The docking method
is to calculate the shape and electrical matching of drugs
and potential targets in three-dimensional structure,
thereby inferring possible targets of action of the drug.
Among them, the reverse docking method is the most
commonly used prediction method. This method ranks
drug targets by predicting the interaction mode and af-
finity between a given compound and a target, thereby
determining possible targets for the drug. Cheng et al.
[10] developed a structure-based maximum affinity
model. Li et al. [11] developed a web server called Tar-
FisDock that uses docking methods to identify drug tar-
gets. Such methods fully consider the three-dimensional
structural information of the target protein, but the mo-
lecular docking method itself still has some problems
that have not yet been effectively solved, such as protein
flexibility, the accuracy of scoring functions, and solvent
water molecules, which lead to reverse docking. The pre-
diction accuracy of the method is low. Another serious
problem with docking is that it cannot be applied to
proteins with unknown 3D structures. So far, proteins
with known 3D structure are still only a small part of all
proteins. This severely limits the promotion and
popularization of this method. A feature learning ap-
proach treats drug target relationships as a two-class
problem: interaction and non-interaction. Such methods
learn the potential patterns of known compound-target
pairs using machine learning algorithms, generate pre-
diction models by iterative optimization, and then infer
potential DTIs. Yu et al. [12] proposed a systematic ap-
proach based on chemical, genomic, and pharmaco-
logical information. Faulon et al. [13] predicted drug

targets using the signature molecular descriptor. Even
though these methods have accelerated the discovery of
drug targets, there is still much room for improvement.
In this work, we proposed deep learning-based method

to identify unknown DTIs. The proposed method consists
of three steps: (i) Representation for drug-target pairs. The
drug molecules are encoded as fingerprint feature and the
protein sequences features are obtaining by using Legen-
dre Moments (LMs) on Position Specific Scoring Matrix
(PSSM) that contains evolutionary information about pro-
tein. (ii) Feature compression and fusion. The Sparse Prin-
cipal Component Analysis (SPCA) is used to decrease the
features dimension and information redundancy. (iii) Pre-
diction. The Deep Long Short-Term Memory
(DeepLSTM) model is adopted for executing prediction
tasks. The flow of our proposed model is represented in
Fig. 1. We implement the proposed method on four im-
portant DTIs datasets involving enzymes, ion channels,
GPCRs and nuclear receptors. The results are exposed to
give superior performance to the existing state-of-the-art
algorithms for DTI prediction.

Materials and methods
Data collection
We collected information about the interactions between
drug compounds and target proteins form KEGG [14],
DrugBank [5], and SuperTarget [6] databases [14, 15].
Table 1 summarizes the data set according to the number
of drug compounds, and target protein and interactions.
This set of known DTIs are considered to be the gold
standard for assessing the performance of the proposed
method. Target proteins are linked to drug molecules to
form a network of drug targets. To obtain positive datasets
from the network, all identified drug-target pairs in gold
standard dataset are considered as positive samples. The
negative sample correspond to the remaining drug-target
pairs in the network. Since the scale of the non-
interaction pairs is much larger than that of the inter-
action pairs, the constructed datasets are imbalanced. In
order to solve the bias caused by imbalanced data sets, we
randomly selected negative samples from the remaining
drug-target pairs in the network, until the number of
negative samples is the same as that of positive samples.

Characterization of drug molecules
The ability of substructure fingerprints in characterizing
drug molecules has been confirmed in some studies.
Through the comprehensive analysis of previous research
results, PubChem fingerprint was used to characterized
each drug molecules. In this work, drugs are encoded
Boolean substructure vector representing the presence or
absence of corresponding substructures in a molecule.
The PubChem database defines 881 chemical substruc-
tures in which each substructure is assigned to a particular
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location. Therefore, for a substructure appears in the drug
compound, the position corresponding to the substructure
in the fingerprint vector is set to 1, otherwise, and the cor-
responding position is set to 0. Hence, each drug was rep-
resented as an 881-dimensional vector [16].

Characterization of target proteins
Position specific scoring matrix
The position specific scoring matrix (PSSM) was firstly
introduced for finding distantly related proteins. In

recent years, PSSMs is widely used in proteomics and
genomics research, such as prediction of DNA or RNA
binding sites and membrane protein types. In this paper,
PSSM is used to encode proteins and obtain evolution-
ary information about amino acids. The PSSM of protein
A with N amino acids residue can be expressed as

APSSM ¼

A1→1 A1→2 … A1→ j … A1→20

A2→1 A2→2 … A2→ j … A2→20

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Ai→1 Ai→2 … Ai→ j … Ai→20

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
AN→1 AN→2 … AN→ j … AN→20

2
6666664

3
7777775

ð1Þ

where Ai→ j is a score that represents probability of i-
th residue being mutated to j-th native amino acid and
N is the length of amino acids residue of sequence A, 20
means the 20 native amino acid types. To get the PSSM

Fig. 1 Schematic diagram of drug targets predicted by the proposed method

Table 1 The selected drug-target interaction data sets from
KEGG, SuperTarget, and DrugBank databases

Dataset Interactions Targets Drugs

Enzyme 2926 664 445

Ion channel 1476 204 210

GPCR 635 95 223

Nuclear receptor 90 26 54
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for each protein sequence, the Position Specific Iterated
BLAST (PSI-BLAST) [17, 18] was utilized and the de-
fault parameters were choosing except for three itera-
tions [19, 20].

Legendre moments
The invariant moments are a global statistical feature
and has excellent characteristics in size invariance, rota-
tion invariance and displacement invariance which avail
to the extraction of stability features. Legendre moments
(LMs), as a fast moment invariant feature extraction
technology, show good performance in the application
of many pattern recognition, viz., graphic analysis, target
recognition, image processing, classification and predic-
tion. Here, we use Legendre moment to further refine
the evolutionary information contained in PSSM and
generate feature vector. LMs are continuous orthogonal
moments, which can be used to represent objects with
minimal information redundancy [21, 22]. The LMs with
order (a, b) are defined as

Lab ¼ 2aþ 1ð Þ 2bþ 1ð Þ
4

XC
i¼1

XV
j¼1

hab x; yð ÞI xi; yið Þ ð2Þ

where I(x, y) is a set of discrete points (xi, yi), xi, yi ∈ [−1,
+1]. In this work, I(x, y) denotes PSSM, C is the number
of rows of a PSSM, V means the sum of each column of
a PSSM [23, 24]. The

hab x; yð Þ ¼
Z xiþΔx

2

xi−Δx
2

Z yiþΔy
2

yi−
Δy
2

Ra xð Þ Rb yð Þdxdy ð3Þ

where

Ra xð Þ ¼ 1
2aa!

da

dxa
x2−1
� �a

¼ 1
2a

Xa=2½ �

k¼0

−1k
p
k

� � 2 p−kð Þ
p

� �
xp−2k ð4Þ

The integral terms in (3) are commonly estimated by
zeroth-order approximation, that is, the values of Legen-
dre polynomials are always to be constant over the inter-
vals [xi− Δx

2 ; xi þ Δx
2 ] and [yi−

Δx
2 ; yi þ Δx

2 ]. Hence, the set
of approximated LMs is defined as:

L‘ab ¼ 2aþ 1ð Þ 2bþ 1ð Þ
KL

XK
i¼1

XL
j¼1

Ra xið Þ Rb yið Þg xi; yið Þ

ð5Þ

As a result, using LMs on PSSM of protein sequence,
we have obtained 961 features from each protein se-
quence by setting a, b = 30.

Feature compression and fusion
We got an 1842-dimensional drug target feature vector
from each drug target pair by combining drug substruc-
ture fingerprint features (881-D) with protein LMs fea-
tures (961-D). To economize calculating time of
classifier, reduce memory consumption and remove
noisy features from the original feature space, the sparse
principal component analysis (SPCA) is used to integrate
both features of drugs and target proteins into an or-
ganic whole, reduce the feature dimension and redun-
dant information. Classical principal component analysis
(PCA) has an obviously drawback, that is, each PC is a
linear combination of all variables and the loadings are
typically nonzero. Thus, when dealing with a combin-
ation of two different types of features, such as the drug
and protein features produced herein, often results in
unpredictable results. SPCA is an improved PCA the
using lasso (elastic net) to produce principal components
with sparse loadings, which overcome above problem.
Finally, we gain 400-dimensional refined feature vector
as the input of classifier.

Constructing DeepLSTM model
LSTM is a special recurrent neural network (RNN)
architecture, providing more excellent performance than
the traditional RNNs [25]. In this section, we explore the
application of LSTM architecture in predicting drug-
target.
One of the major differences with standard RNNs net-

work is the LSTM architecture use memory blocks to re-
place the summation units. Memory blocks, as shown in
Fig. 2, contain self-connection memory cells for storing
the temporal state, and gates (special multiplicative
units), input gate, output gate and forget gate, for con-
trolling the information flow. To better understand the
work of the gate unit, memory cells are not shown in
the Fig. 2. These gates enable the LSTM to store and ac-
cess over lengthy periods of time, thereby reducing the
impact of vanishing gradient problems on the prediction
model. The input activation flow that enters the memory
unit is controlled by the input gate [26, 27]. The output
flow of cell activation flows to other parts of the net-
work, which is dominated by the output gate. Through
the self-recursive connection of the unit, the forgetting
gate is added to the cell as input, so that the LSTM net-
work can process the continuous input stream. In
addition, the LSTM cell can include peephole connec-
tions, that allow gates to be modulated according to the
state values in the internal memory [28].
We constructed DeepLSTM by stacking multiple

LSTM layers [29, 30]. Compared with simple three-tier
architecture, deep architecture can better use the param-
eters through the distribution of multiple layers in space.
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Deep results in inputs going through more non-linear
operations per time step.

Prevent over fitting
Neural networks often optimized with a large number of
parameters. However, there may be overfitting problems
in such networks. Dropout is used for solving this prob-
lem by randomly removing units from the neural net-
work and their connections in the train of training. The
meaning of “dropout” is to extract a “sparse” network
from the original network, the sparse network is com-
posed of all the surviving units, as shown in Fig. 3. In
this paper, we follow the previous study to set the drop-
out rate to 0.5. We have 35 hidden layer units, which
may generate 235 different subnets during training. In
the testing phase, an “mean network” strategy is
adopted, which contains all of the original network con-
nection, but their efferent weights are halved in order to
make up for the fact that twice as many of them are ac-
tive [31, 32].

Experiment settings
Evaluation indicators
In this paper, we evaluate the performance of our pre-
dictor by calculating accuracy (ACC), true positive rate
(TPR), specificity (SPC), positive predictive value (PPV),

and Matthews’s correlation coefficient (MCC). The ACC
is used to reveal the overall level of prediction. The TPR
exposes the proportion of positives samples that have
been correctly predicted in the test results. The SPC ex-
poses the proportion of negatives samples that have been
correctly predicted in the test results. The PPV is used
to reveal the proportion of the true positive samples in
the samples that were predicted to be positive. The
MCC is a general measure of predictive performance for
two classification problems. These performance indica-
tors are defined as follow:

ACC ¼ TN þ TP
TN þ FN þ TP þ FP

ð6Þ

TPR ¼ TP
FN þ TP

ð7Þ

SPC ¼ TN
TN þ FP

ð8Þ

PPV ¼ TP
TP þ FP

ð9Þ

MCC ¼ TP � TNð Þ þ FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TN þ FNð Þ � TP þ FNð Þ � TN þ FPð Þp

ð10Þ
Here, FN, FP, TN, TP represents the number of false

negative, false positive, true negative and true positive,
respectively, and the area under the Receiver Operating
Characteristic curve (AUC) is calculated used for meas-
uring the quality of prediction [33–35].

Model training
For four datasets, we divided each dataset into: the train-
ing set; the verification set; the test set. Test sets account
for one tenth of the total, the training set account for
eight tenths of the remaining data, the rest are used as
validation sets. We use the training set to fit a
DeepLSTM prediction model, use the validation set to
optimize the DeepLSTM neural network weight, use the

Fig. 2 Memory block of LSTM networks

Fig. 3 Dropout Neural Net Model. Left: A standard full connection network; Right: A thinned network generated by utilizing dropout in Left
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test set to verify the model performance. Another benefit
of using validation set is to prevent overfitting by early
stopping: terminate model training when errors on the
validation dataset no longer decrease and have an in-
creasing trend. This trick avoids the overfitting and re-
duces the training cost of the model.
We use hyperbolic tangent activation for the cell input

units and cell output units, and logistic sigmoid for the
input, output and forget gate units. The input to the
LSTMs and RNNs is 40-dimensional features. The out-
put layer is a fully connected network and uses softmax
function to produce probability results. In order to find
the best network structure, we test the performance of
DeepLSTM models with different number of layers and
units on the validation data. The number of hidden
layers that were trialed from 1 to 6. With respect to the
number of units, these were trialed from 20 to 200 with
stride s = 4. Finally, the DeepLSTM model with 4 hidden
layers and 36 units was determined. The weights of the
DeepLSTM were initialized using random numbers with
0 mean and standard deviation 0.1. We trained model
with mean squared error and Nadam optimizer, using
dynamic learning rate with initial value of 0.002, decay
of 0.004 and momentum of 0.5. The time step was set to
1 and batch size was 64. Training was stopped after a
maximum of 500 iterations or early stopping if there was
no new best error on the validation data.

Results and discussion
Statistics of the prediction performance for the proposed
models are given in Table 2. Focus on enzymes data sets,
our predictor has given satisfying result of 92.92% accur-
acy, along with of 99.31% sensitivity, of 86.57% specificity,
of 88.04% precision, of 86.75% MCC and AUC of 0.9951.
The same good results also appear on other three data sets
by using our method. The results achieved of our method
on ion channels dataset is 91.97% accuracy, along with
93.23% sensitivity, of 90.87% specificity, of 89.95% preci-
sion, of 85.19% MCC and AUC of 0.9705. The results
achieved of our method on GPCRs dataset is 91.80% ac-
curacy, along with 83.71% sensitivity, of 100% specificity,
of 100% precision, of 84.44% MCC and AUC of 0.9511.
The results achieved of our method on nuclear receptors
dataset is 91.11% accuracy, along with 95.24% sensitivity,
of 87.50% specificity, of 86.96% precision, of 83.76% MCC
and AUC of 0.9206. There is particularly noteworthy is

our method achieved over 90% accuracy on nuclear recep-
tors datasets with only 180 sample. This clearly shows that
our method can provide excellent performance in the case
of very small training samples. This is a huge advantage
that will be clearly distinguished from other methods. The
extraordinary performance comes mainly from the follow-
ing three points: 1) our feature representation method can
effectively extract the discriminative features from drug
molecular and target protein sequence; 2) SPCA enjoys
advantages in several aspects, including computational ef-
ficiency, high explained variance and an ability in identify-
ing important variables, which compresses two different
feature vectors into a unified feature space and extracts
heterogeneous features; 2) The hierarchical structure en-
ables the neural network to convert the input data into
new feature space which is more conducive to complete
classification tasks.

Comparison with others classifier model
To exhibit the advantage of DeepLSTM, computations
were performed on enzymes, ion channels, GPCRs and
nuclear receptors datasets by using other two prominent
classifiers (Multi-layer Perceptron and Support Vector
Machines). For fairness, except for the different classi-
fiers, the other settings are completely consistent. We
build multi-layer perceptron (MLP) networks, in which
the number of hidden layers and neurons is the same as
the DeepLSTM network. The Support Vector Machine
(SVM) was available by using LIBSVM tool [36]. The pa-
rameters are optimized by grid search technology. The
results of 5-fold cross-validation achieved by SVM can
be found in Tables S1, S2, S3 and S4 of the Supplemen-
tary Material. The cross validation average results on
four datasets are presented in the Table 3.
From the results summarized in Table 2, The

DeepLSTM achieves overall the best prediction results.
The accuracies achieved by the DeepLSTM are 92.92%
in enzymes data set, 91.97% in ion channels data set,
91.80% in GPCRs data set, 91.1% in nuclear receptors
data set. and clearly outperform MLP (99.01, 87.58,
87.20, 88.89%, respectively) and SVM (89.88, 89.36,
85.43, 85.00%, respectively). The AUC obtained by the
DeepLSTM net are 0.9951 in enzymes data set, 0.9705 in
ion channels data set, 0.9951 in GPCRs data set, 0.9206
in nuclear receptors data set. However, the MLP net re-
spectively achieve the average AUC of 0.9967, 0.9972,

Table 2 Prediction performance for the four datasets in term of ACC, TPR, SPC, PPV, precision, MCC, and AUC

Model Data Sets ACC (%) TPR (%) SPC(%) PPV (%) MCC (%) AUC

DeepLSTM enzymes 92.92 99.31 86.57 88.04 86.75 0.9951

ion chan. 91.97 93.23 90.87 89.95 85.19 0.9705

GPCRs 91.80 83.71 100 100 84.44 0.9951

nucl. rec. 91.11 95.24 87.50 86.96 83.76 0.9206
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0.9853 and 0.8421 in four datasets. The SVM respect-
ively achieve the average AUC of 0.9686, 0.9613, 0.9230
and 0.9910 in four datasets. There are five main reasons
for the proposed method to produce better results. The
first one is that the hierarchical structure of the deep
neural network is convert the input data to more com-
plexity space, which is more conducive to complete clas-
sification tasks. The second one is that the design of our
DeepLSTM not only avoid overfitting effectively, but
also makes it possible to train a large number of differ-
ent neural networks in a short period of time, which
makes the network produce better performance. The
third one is that the memory units of LSTM can retain
more knowledge, which helps to make more accurate
decisions at the prediction stage. The fourth is that the
LSTM solves the gradient vanishing problem in the
Back-Propagation (BP) algorithm, which is helpful to get
better prediction model than MLP. The fifth is the use
of the validation set helps to train more flexible models.

Compare with state-of-the-art approaches
In this section, we compared the AUC of our proposed
method with that of some state-of-the-art methods in-
cluding DBSI [10], KBMF2K [37], and NetCBP [38], and
the model proposed by Yamanishi et al [7–9] and Wang
et al [39]. for the four classes of target-proteins. The re-
sults of several methods on four data sets are listed in
the Table 4. As it can be observed in Table 4, the AUC
of the proposed method is clearly superior in compari-
son with the AUC of other several methods for the four
datasets. The AUC value obtained by our method is 16%
higher than those the average in several other methods
on enzymes dataset. Focus on nuclear receptors dataset,
the value obtained by our method is 10% higher than
those the highest in several other methods, 21% than
those the minimum in several other methods. The obvi-
ously higher AUC indicates that our scheme obviously

outperforms the other compared methods. The results
of comparison with other methods also confirm this fact
that our method can improve the performance for
drug–target interaction prediction. In fact, from the re-
sults shown in Table 2, we can see that the other two
models (MLP-based and SVM-based) still have higher
AUC values than several existing techniques. This shows
that our feature extraction strategy can capture the
interaction information between drug targets very effi-
ciently and improve the performance of the predictor in
predicting the interaction of drug-targets.

Conclusion
In this paper, we have developed a deep learning-based
method to infer potential DTIs using compounds and pro-
teins sequence. To evaluate the ability of our method, we
compared it with several state-of-the-art approaches. The
experimental results proved that this approach is signifi-
cantly better than others in terms of performance. Com-
paring with other classifiers, we have provided initial
evidence that DeepLSTM outperforms traditional ma-
chine learning system on the DTIs task. For the
characterization and quantitative method of drug-target

Table 3 Comparison with three classifier on four datasets in term of ACC, TPR, SPC, PPV, precision, MCC, and AUC

Datasets Model ACC (%) TPR (%) SPC (%) PPV (%) MCC (%) AUC

enzymes MLP 90.01 100 80.06 83.31 81.67 0.9967

SVM 89.88 92.31 87.53 88.12 81.77 0.9686

DeepLSTM 92.92 99.31 86.57 88.04 86.75 0.9951

ion channels MLP 87.58 100 75.22 80.07 77.61 0.9972

SVM 89.36 85.95 92.74 92.23 80.93 0.9613

DeepLSTM 91.97 93.23 90.87 89.95 85.19 0.9705

GPCRs MLP 87.20 76.70 97.77 97.19 77.20 0.9853

SVM 85.43 86.28 84.60 84.81 74.99 0.9230

DeepLSTM 91.80 83.71 100 100 84.44 0.9951

nucl. rec MLP 88.89 88.24 89.47 88.24 80.19 0.8421

SVM 85.00 68.90 100 100 72.43 0.9910

DeepLSTM 91.11 95.24 87.50 86.96 83.76 0.9206

Table 4 The comparison of the proposed model with seven
existing approaches (DBSI, KBMF2K, and NetCBP, and the model
proposed by Yamanishi et al and Wang et al.) in terms of the
AUC

Datasets Enzymes Ion channels GPCRs nucl. rec

DBSI 0.8075 0.8029 0.8022 0.7578

NetCBP 0.8251 0.8034 0.8235 0.8394

KBMF2K 0.832 0.799 0.857 0.824

Yamanishi et al. 0.904 0.851 0.899 0.843

0.892 0.812 0.827 0.835

Wang et al. 0.886 0.893 0.873 0.824

Our method 0.9951 0.9705 0.9951 0.9206
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pairs, an interesting scheme was proposed by using SPCA
to fuse PubChem fingerprint and protein evolutionary fea-
tures obtained by the combination of PSSM and LM.
Promising results were observed when the
characterization method cooperates with three different
classifiers, respectively. These results indicate that the pro-
posed scheme has great advantage on feature expression
and recognition. We have shown that the proposed
method can work well with small dataset, which is distin-
guish from the predecessor’s methods and goes in its own
special way. We also found that prediction quality con-
tinues to improve with increasing dataset size. This under-
scores the value of this model to train and apply very large
datasets, and suggests that further performance gains may
be had by increasing the data size. On the whole, the the-
oretical analysis and experimental results give strong the-
oretical and empirical evidences for the efficacy of using
the proposed method to predict DTIs.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12911-020-1052-0.
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