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Abstract 

Background:  Renal cell carcinoma is characterized by a late recurrence that occurs 5 years after surgery; hence, 
continuous monitoring and follow-up is necessary. Prognosis of late recurrence of renal cell carcinoma can only be 
improved if it is detected early and treated appropriately. Therefore, tools for rapid and accurate renal cell carcinoma 
prediction are essential.

Methods:  This study aimed to develop a prediction model for late recurrence after surgery in patients with renal cell 
carcinoma that can be used as a clinical decision support system for the early detection of late recurrence. We used 
the KOrean Renal Cell Carcinoma database that contains large-scale cohort data of patients with renal cell carcinoma 
in Korea. From the collected data, we constructed a dataset of 2956 patients for the analysis. Late recurrence and non-
recurrence were classified by applying eight machine learning models, and model performance was evaluated using 
the area under the receiver operating characteristic curve.

Results:  Of the eight models, the AdaBoost model showed the highest performance. The developed algorithm 
showed a sensitivity of 0.673, specificity of 0.807, accuracy of 0.799, area under the receiver operating characteristic 
curve of 0.740, and F1-score of 0.609.

Conclusions:  To the best of our knowledge, we developed the first algorithm to predict the probability of a late 
recurrence 5 years after surgery. This algorithm may be used by clinicians to identify patients at high risk of late recur‑
rence that require long-term follow-up and to establish patient-specific treatment strategies.
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Background
Renal cell carcinoma (RCC) accounts for approximately 
90% of all renal malignancies; therefore, cancer of the 
kidney is commonly referred to as RCC. Kidney cancer 
is the ninth most common cancer in men, with an esti-
mated 431,288 new cases and 179,368 cancer deaths 

worldwide in 2020 [1]. According to the Korea National 
Cancer Center statistics in 2018, the incidence of kidney 
cancer steadily increased from 1999 to 2018 [2]. How-
ever, these statistics also show that the incidence of RCC 
is not high compared with other cancers, but the mortal-
ity rate of RCC increased by 3.92% per year between 1975 
and 2009 [3], and RCC is the second most lethal urologic 
malignancy [4].

Although other alternative treatments exist, sur-
gery is the gold standard treatment according to guide-
lines [5–7]. Though radical nephrectomy is the primary 
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treatment, recently, partial nephrectomy has been used 
to preserve kidney function [8]. However, despite these 
treatments, cancer recurs in 20–40% of patients [9–11]. 
Most cases of RCC recurrence occur within 5 years of 
surgery, while 10% of cases recur after 5 years [12–14]. 
Therefore, continuous follow-up after surgery is essential 
for RCC patients.

One of the biological characteristics of RCC is late 
recurrence, which occurs 5 years after surgery [12]. Stud-
ies have been conducted to identify various factors that 
can significantly influence late recurrence in RCC [15–
18]. However, these studies, which relied on traditional 
statistical methods such as logistic regression analysis 
and the Cox proportional-hazards model to identify risk 
factors, have not led the ability to accurately predict late 
recurrence of renal cell carcinoma.

Recently, with the development of computer technol-
ogy, studies that apply machine learning and deep learn-
ing methods to large-capacity data, including medical 
fields, are being actively conducted [19–23]. In the medi-
cal field, machine learning has shown excellent perfor-
mance when applied to cancer diagnosis [24–26]. If data 
are used by various machine learning techniques that 
combine and analyze the risk factors discovered in these 
studies, it is possible to predict late recurrence. In two 
previous studies, machine learning models for predict-
ing early recurrence of RCC, within 5 years, showed good 
predictive performance with the area under the receiver 
operating characteristic curve (AUROC) values of 0.836 
[27] and 0.840 [28], respectively. However, few studies 
have aimed to predict the late recurrence of RCC using 
machine learning techniques because the long-term fol-
low-up of patients is challenging, late recurrence rate is 
only approximately 10%, and collecting enough data for 
analysis requires a long time.

In a previous study, data on patients with late recur-
rence was insufficient, and an algorithm to predict the 
probability of recurrence within 5 and 10 years was 
developed accordingly, although without distinguishing 
between early and late recurrence [27]. However, previ-
ous studies have demonstrated that the factors influenc-
ing early and late recurrence vary [12, 16]. Therefore, it is 
necessary to develop a model that is specifically designed 
for the accurate prediction of late recurrence. In addition, 
since late recurrence is very rare, it is difficult to track 
and collect case data within only a single institution.

In the present study, we developed an algorithm, using 
machine learning techniques to predict late recurrence 
after surgery using data of patients with RCC continu-
ously collected from multiple institutional hospitals.

To the best of our knowledge, this is the first study to 
develop a model that predicts only late RCC recurrence 
that occurs 5 years after surgery. The algorithm was 

intended to help select patients at high risk of late recur-
rence for continuous monitoring to enhance early detec-
tion and appropriate treatment.

Methods
Study population
The KOrean Renal Cell Carcinoma (KORCC) web-based 
database system was established to collect the data on 
basic demographic and clinicopathological characteris-
tics of patients with RCC in Korea [29]. Eight hospitals 
participating in the KORCC study group contributed 
to an established large cohort of patients with RCC by 
adding all consecutive patients from 1990 to date. This 
database construction project has been approved by 
the Seoul National University Bundang Hospital Eth-
ics Committee (IRB No.: B1202/145-102). We collected 
data regarding 9,598 patients with RCC and 205 variables 
from the KORCC database and performed data preproc-
essing according to our study protocol. Variables include 
demographic and clinicopathological characteristics. To 
protect patients’ personal information, resident registra-
tion numbers and hospital numbers have been excluded. 
Detailed variable types and distributions can be viewed 
through database construction studies [29]. This study 
protocol was approved by the Institutional Review 
Board (IRB) of the Catholic University of Korea (IRB No. 
KC20ZIDI0966). Informed consent was waived by the 
IRB of Catholic University of Korea since this study was 
retrospective and blinding of the personal information in 
the data was performed. The present study was designed 
and conducted in accordance with the relevant guide-
lines and regulations of the ethical principles for medi-
cal research involving human subjects, as stated by the 
World Medical Association Declaration of Helsinki.

Variable selection
The following two-step process was performed to select 
the variables affecting late recurrence among the 205 
variables. First, variables with a significant difference 
(P < 0.05) were selected between the non-recurrence 
and late recurrence groups using a t-test for continuous 
variables and a chi-squared test for categorical variables 
using statistical methods. In the first process, 18 variables 
were extracted as significant variables (see additional 
table in Additional File 1), and in the second process, 
seven clinically significant variables were selected based 
on the advice of urologists. The seven variables selected 
were tumor size, operation type, histologic type, opera-
tive methods, pathological tumor stage, pathological 
node stage, and lymphovascular invasion. A urologist 
with extensive experience in RCC surgery selected the 
final variable based on previous studies [15–18] and their 
clinical experience with following patients after surgery.
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Data screening
We included 9397 patients who underwent surgical 
treatment out of a total of 9598 patients with RCC to 
construct a dataset for the analysis. Among the 9397 
patients, 4240 patients with a follow-up period of fewer 
than 5 years, 1037 patients with early recurrence, and 
1164 patients with missing values were excluded. The 
2956 patients who remained consisted of 2767 patients 
without recurrence and 189 patients with late recurrence 
over a follow-up of more than 5 years.

Data splitting and SMOTE technique for imbalanced 
datasets
To train and evaluate the model, we split the data into 
two datasets: 70% for training and 30% for testing. In 
the training and test data, there were 140 (6.8%) and 49 
(5.5%) patients with late recurrence, respectively, which 
was very low compared with the number of patients with 
non-recurrence (Table  1). Data imbalance is one of the 
problems in medical data analysis, and it occurs because 
the proportion of patients with specific cancer or disease 
is relatively small compared with normal patients in data 
collected at hospitals. Oversampling [30], undersam-
pling [30], and synthetic minority oversampling tech-
nique (SMOTE) [31] are used as representative methods 
to resolve data imbalance. However, in oversampling, an 
overfitting problem occurs because of data duplication, 
and in undersampling, a large amount of information is 
lost [32]. SMOTE is also an oversampling method, but it 
solves imbalance by generating synthetic data rather than 
duplicating the data [31]. SMOTE has been previously 
applied to medical data with data imbalance problems 
[33, 34]. Given the data imbalance in the our study, we 
used the SMOTE technique to increase the late recur-
rence group to 50% of the training data, which resulted in 
a 1:1 ratio between the two groups (Table 1).

Model development and validation
We developed a model by applying eight representative 
machine learning techniques that showed excellent per-
formance in classification problems in our dataset. The 
machine learning techniques used were support vector 
machine (SVM) [35], logistic regression [36], k-nearest 

neighbor (KNN) [37], naïve Bayes (NB) [38], random 
forest [39], gradient boost [40], AdaBoost [41], and 
extreme gradient boosting (XGBoost) [42]. We used 
a grid search algorithm [43] to optimize the hyperpa-
rameters used in the machine learning models, and in 
this case, we searched for optimal hyperparameters 
through 3-fold cross-validation to avoid overfitting. We 
measured the performance of each machine learning 
model in the hyperparameter obtained through the grid 
search and cross-validation. For validation, we calcu-
lated five parameters as follows: sensitivity, specificity, 
accuracy, AUROC, F1-score, and confusion matrix. The 
calculation method was as follows:

and

where TP is the number of true late recurrences, TN 
is the number of true non-recurrences, FP is the num-
ber of false-positive late recurrences, and FN is the 
number of false non-recurrences.

For the final model, the model with the highest per-
formance was selected based on the AUROC. In addi-
tion, TP, NP, FP, and NP were confirmed from the 
results of applying the test data to the final selected 
model through the confusion matrix. The entire pro-
cess from variable selection to model development 
and validation is shown in Fig.  1. We used Python 
(version 3.7.6) for statistical analysis and algorithm 
development.

Sensitivity, Recall =
TP

TP+ FN
,

Precision =
TP

TP+ FP
,

Specificity =
TN

TN+ FP
,

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
,

F1 - score =
2× Precision× Recall

Precision+ Recall

Table 1  Distribution of datasets before and after SMOTE application

Training set (n = 2069) Test set (n = 887)

Late recurrence group Non-recurrence group Late recurrence group Non-recurrence group

Before 140 (6.8%) 1929 (93.2%) 49 (5.5%) 838 (94.5%)

After 1929 (50.0%) 1929 (50.0%) 49 (5.5%) 838 (94.5%)
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Results
Patient characteristics
Table  2 shows the characteristics of the late recurrence 
and non-recurrence groups. The seven selected vari-
ables showed significant differences between the two 
groups. Regarding the operation type, the rate of partial 
nephrectomy was 51.7% in the non-recurrence group, 
which was slightly higher than that of radical nephrec-
tomy (48.3%), but in the late recurrence group, the rate of 
radical nephrectomy was 82.0%, which was much higher 
than that of partial nephrectomy. Regarding the operative 
method, open and laparoscopic surgeries were similar 

at 44.1% and 38.0%, respectively, in the non-recurrence 
group, but in the late recurrence group, the rate of 
open surgery was notably high at 75.1%. The pathologi-
cal tumor stages of 1a and 1b accounted for 86.3% of the 
total in the non-recurrence group, but 53.4% in the late 
recurrence group, and the remaining 46.6% were distrib-
uted in stages 2–4. The distributions of the remaining 
variables are presented in Table 2.

Hyperparameter optimization
We performed hyperparameter optimization for 
each machine learning model and used a grid search 

Fig. 1  Overall process of development of the late recurrence prediction model



Page 5 of 10Kim et al. BMC Medical Informatics and Decision Making          (2022) 22:241 	

algorithm and cross-validation. The optimal parameter 
combinations were determined by exploring various 
hyperparameters, and the selected hyperparameters 
for each machine learning model are listed in Table 3. 
We first split the train dataset into three parts. Next, 
because hyperparameters found in unsplit datasets can 
cause overfitting problems, we compared the perfor-
mance of the hyperparameters in Table 3 through grid 
search

Model performance in predicting late recurrence of RCC​
Performance was measured in parameters optimized 
for each machine learning model, and the results of 
the comparisons of sensitivity, specificity, accuracy, 
and AUROC are shown in Table  4. The model with 
the highest performance based on AUROC was Ada-
Boost. AdaBoost showed a predictive performance of 
0.673 sensitivity, 0.807 specificity, 0.799 accuracy, 0.74 
AUROC, and 0.609 F1-score.

Table 2  Baseline characteristics of the patients with RCC​

HALS hand-assisted laparoscopic surgery

Variable Late recurrence 
group (189 
Patients)

Non-recurrence 
group (2767 
Patients)

P-value

Operation type  < 0.001

 Radical nephrec‑
tomy

155 (82.0%) 1336 (48.3%)

 Partial nephrec‑
tomy

34 (18.0%) 1431 (51.7%)

Operative method  < 0.001

 Laparoscopic 29 (15.3%) 1051 (38.0%)

 HALS 6 (3.2%) 78 (2.8%)

 Open 142 (75.1%) 1221 (44.1%)

 Robotic 12 (6.3%) 417 (15.1%)

Pathological tumor 
stage

 < 0.001

 1a 52 (27.5%) 1811 (65.4%)

 1b 49 (25.9%) 579 (20.9%)

 2a 38 (20.1%) 131 (4.7%)

 2b 7 (3.7%) 48 (1.7%)

 3a 34 (18.0%) 167 (6.0%)

 3b 7 (3.7%) 20 (0.7%)

 3c 0 (0.0%) 2 (0.1%)

 4 2 (1.1%) 9 (0.3%)

Pathological node 
stage

0.005

 Nx 67 (35.4%) 1585 (57.3%)

 N0 115 (60.8%) 1169 (42.2%)

 N1 7 (3.7%) 13 (0.5%)

Histologic type 0.002

 Clear cell 172 (91.0%) 2345 (84.7%)

 Papillary 5 (2.6%) 41 (1.5%)

 Chromophobe 4 (2.1%) 222 (8.0%)

 Collecting duct 0 (0.0%) 3 (0.1%)

 Etc 8 (4.2%) 156 (5.6%)

Lymphovascular 
invasion

 < 0.001

 No 172 (91.0%) 2701 (97.6%)

 Yes 17 (9.0%) 66 (2.4%)

 Tumor size (mm) 68.2±68.9 38.8±27.6  < 0.001

Table 3  Hyperparameter optimization using the grid search 
algorithm

Penalty: Specify the norm used in the penalization (L1 = L1 regularization, 
L2 = L2 regularization); C, inverse of regularization strength; n-neighbors, 
number of neighbors; alpha, additive smoothing parameter (0 for no 
smoothing); n_estimators, number of trees; max_depth, maximum depth of the 
tree

SVM support vector machine, KNN k-nearest neighbour, XGBoost extreme 
gradient boosting

*Parameter finally selected through parameter optimization

Algorithms Hyperparameters

Kernel SVM kernel: (linear, rbf*)
C: (0.01, 0.1, 1*)
gamma: (0.01, 0.05, 0.1, 0.5*, 5, 10)

Logistic regression Penalty: (L1, L2*)
C: (0.001, 0.01, 0.1, 1, 10*, 100)

KNN n-neighbors: (2,4*,6,8,10)

Naïve Bayes alpha: (0, 0.1, 1*, 5, 10, 20, 30)

Random forest n_estimators: (10, 50, 100, 150, 200*)
max_depth: (4, 8, 12, 16*,20)

Gradient boost n_estimators: (10, 100, 200, 500*,1000)
learning_rate: (0.05*, 0.01, 0.005, 0.001)
max_depth: (1,3*, 6, 9, 12)

AdaBoost n_estimators: (10, 100, 200, 500*, 1000)
learning_rate: (0.05*, 0.01, 0.005, 0.001)

XGBoost n_estimators: (10, 100, 200, 500, 1000*)
learning_rate: (0.05*, 0.01, 0.005, 0.001)
max_depth: (1*, 3, 6, 9, 12)

Table 4  Performance of the machine learning algorithms

Model Sensitivity Specificity Accuracy AUROC F1-score

Kernel SVM 0.551 0.852 0.835 0.702 0.579

Logistic 
regression

0.653 0.802 0.793 0.727 0.599

KNN 0.408 0.881 0.855 0.644 0.587

Naïve Bayes 0.612 0.805 0.795 0.709 0.566

Random 
forest

0.490 0.834 0.815 0.662 0.566

Gradient 
boost

0.531 0.868 0.849 0.699 0.576

AdaBoost 0.673 0.807 0.799 0.740 0.609

XGBoost 0.633 0.807 0.797 0.720 0.587
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The ROC curve for each model is shown in Fig. 2; Ada-
Boost has the highest AUROC (0.74). Next, performance 
was compared through the confusion matrix of Ada-
Boost, which had the highest performance, and logistic 

regression, which had the second-highest performance, 
as shown in Fig. 3. For FN, AdaBoost had 16, which was 1 
less than for logistic regression (17), and for FP, AdaBoost 
had 162, which was 4 less than for logistic regression 

Fig. 2  Receiver operating characteristic curve of machine learning models for predicting late recurrence after surgery

Fig. 3  Confusion matrix of the top two performing models: a AdaBoost; b Logistic regression
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(166). In addition, when comparing the F1-score, which is 
the performance seen together with AUROC when data 
imbalance exists, the logistic regression model shows 
0.599 performance, while Adaboost shows a higher 0.609 
performance.

Thus, AdaBoost showed the highest performance in 
classification accuracy compared with the other models, 
and we finally developed an algorithm using AdaBoost. 
In order to use the Adaboost model developed by us, the 
user first inputs patient data (e.g., operation type, opera-
tive method, pathological tumor stage, pathological node 
stage, histologic type, lymphovascular invasion, tumor 
size). In the final selected hyperparameters (n_estimator 
= 500, learning_rate = 0.05, max_depth = 3), the Ada-
boost model returns a predicted value for the patient 
information input.

Discussion
In the current study, the data of 2956 patients with RCC 
collected from eight tertiary hospitals in Korea were ana-
lyzed. We successfully developed an algorithm to predict 
the likelihood of late recurrence in patients with RCC 
after surgery using seven clinicopathological factors. 
Of the eight machine learning models used, AdaBoost 
showed the best performance. Despite the powerful 
predictive ability of machine learning, the biggest draw-
back is that it is difficult for humans to interpret the 

final classification process through a complex structure 
[44]. However, tree-based models such as AdaBoost can 
measure feature importance using the Gini index [45] as 
it has the advantage of clarifying which variables have 
a high influence on prediction. The AdaBoost variable 
importance analysis showed that tumor size was the most 
important variable followed by surgery type, histologic 
type, operation type, pathological tumor stage, patho-
logical node stage, and lymphovascular invasion, in that 
order (Fig. 4).

In patients with localized RCC, tumor size was shown 
to be significantly associated with survival and recur-
rence, with local recurrence-free survival significantly 
decreasing with each 1-cm increase in tumor size [46]. 
Our data showed that the average tumor size was signifi-
cantly different between the late recurrence (68.2 mm) 
and non-recurrence (38.8 mm) groups. In the late recur-
rence group, the rates of radical nephrectomy and open 
surgery were 82% and 75.1%, respectively. However, in 
the non-recurrence group, similar rates were shown by 
radical nephrectomy, partial nephrectomy and by open 
and laparoscopic surgeries. In previous studies, patients 
with clear cell RCC had significantly poorer 5-year recur-
rence-free survival than patients with papillary RCC and 
chromophobe RCC (78% vs. 86% vs. 91%, P =  0.001) 
[47]. In our data, the clear cell ratio was 91.0% in the 
late recurrence group and 84.7% in the non-recurrence 

Fig. 4  Importance of each variable in the AdaBoost model
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group, with a greater proportion in the late recurrence 
group. Pathologic tumor stage [12, 15, 18], pathologic 
node stage [17], and lymphovascular invasion [15], which 
had relatively low variable importance, have also been 
proven to be significant variables for late recurrence in 
various studies.

In previous studies, 10 variables (sex, age, body mass 
index, smoking status, pathological tumor stage, his-
tologic type, necrosis, lymphovascular invasion, cap-
sular invasion, and Fuhrman nuclear grade) were 
significant predictors of early recurrence [27]. However, 
seven variables (sex, age, body mass index, smoking, 
capsular invasion, Fuhrman nuclear grade, and necrosis) 
were non-significant (P > 0.05) in late recurrence predic-
tion. Moreover, in our results, four variables (operation 
type, operative method, pathological node stage, and 
tumor size) were found to be significant variables for 
classifying both non-recurrence and late recurrence.

The 10-year recurrence prediction algorithm developed 
in the previous study included patients who recurred 
within 5 years [27]. In contrast, our study included only 
patients with RCC that recurred >5 years after surgery. 
Therefore it is difficult to directly compare the perfor-
mance our new algorithms with those previously devel-
oped. Hence, a limitation of the study is that performance 
and time complex comparisons with related studies could 
not be carried out.

Although studies have been conducted to explore fac-
tors influencing late recurrence using statistical meth-
ods, our study is the first to develop a model that directly 
predicts late recurrence of RCC using machine learning. 
The reason for the scarcity of studies is that late recur-
rence occurs in only about 10% of cases, and after 5 years, 
necessitating a very long follow-up period; thus, it is diffi-
cult to collect sufficient data for machine learning analy-
sis. In general, variable selection is applied after dataset 
splitting. However, in small datasets like ours, we found 
that significant variable selection varied depending on 
how the dataset was split. Considering this bias, we first 
selected variables using all data and then split the dataset. 
The KORCC group has continuously collected data from 
hospitals with the largest number of patients with RCC 
in Korea, and we were able to develop a predictive model 
using the collected data.

Since our data were collected from eight Korean hos-
pitals, we present the results that reflect both internal 
and external verification. However, there is a limita-
tion as we were unable to conduct additional external 
verification through the hospitals of other countries; 
our model was developed to suit the characteristics of 
patients with RCC in Korea. Therefore, performance 
cannot be guaranteed when applied to patients in other 

countries. Our model showed an AUROC of 0.74. An 
AUROC of 0.7 to 0.8 is indicative of an acceptable 
model, and if it exceeds 0.8, the model is considered 
excellent [48]. Machine learning shows better perfor-
mance when provided with a large amount of data. In 
future studies, we aim to develop an excellent model 
with an AUROC ≥ 0.8 when more late recurrence 
patient data are available in the KORCC database.

Conclusions
We successfully developed an algorithm to predict 
late recurrence using the AdaBoost model, a machine-
learning technique. The developed predictive model 
calculates the risk of late recurrence for each patient 
based on the collected data. This algorithm should 
help clinicians select patients who need a long-term 
follow-up of ≥ 5 years after surgery and to design treat-
ment plans accordingly. In the future, it is necessary to 
improve and stabilize the model performance through 
additional external validation studies using larger 
samples.
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