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Abstract 

Background:  Extracting metastatic information from previous radiologic-text reports is important, however, labori‑
ous annotations have limited the usability of these texts. We developed a deep-learning model for extracting primary 
lung cancer sites and metastatic lymph nodes and distant metastasis information from PET-CT reports for determin‑
ing lung cancer stages.

Methods:  PET-CT reports, fully written in English, were acquired from two cohorts of patients with lung cancer 
who were diagnosed at a tertiary hospital between January 2004 and March 2020. One cohort of 20,466 PET-CT 
reports was used for training and the validation set, and the other cohort of 4190 PET-CT reports was used for an 
additional-test set. A pre-processing model (Lung Cancer Spell Checker) was applied to correct the typographical 
errors, and pseudo-labelling was used for training the model. The deep-learning model was constructed using the 
Convolutional-Recurrent Neural Network. The performance metrics for the prediction model were accuracy, precision, 
sensitivity, micro-AUROC, and AUPRC.

Results:  For the extraction of primary lung cancer location, the model showed a micro-AUROC of 0.913 and 0.946 in 
the validation set and the additional-test set, respectively. For metastatic lymph nodes, the model showed a sensitiv‑
ity of 0.827 and a specificity of 0.960. In predicting distant metastasis, the model showed a micro-AUROC of 0.944 and 
0.950 in the validation and the additional-test set, respectively.

Conclusion:  Our deep-learning method could be used for extracting lung cancer stage information from PET-CT 
reports and may facilitate lung cancer studies by alleviating laborious annotation by clinicians.
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Introduction
Medical big-data analysis could use deep learning to 
reveal novel associations between treatment and patient 
factors, and potential risk groups [1, 2]. However, most 
electronic health data are currently stored in unstruc-
tured language forms such as clinical reports and radio-
logic reports, which require manual review by clinicians 
or radiologists in order to be transformed into structured 
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datasets ready for analysis [1]. Therefore, automation of 
the review and annotation of unstructured health reports 
would be helpful. With the development and applica-
tion of the deep-learning method in text mining [2] and 
natural language processing [3], there have been sev-
eral attempts for the automatic classification of medical 
records such as the extraction of diagnoses from radio-
logic reports [4, 5], automatic coding of ICD-9 or 10 from 
medical chart [6–8], and extraction of tumour type, size, 
and location from colonoscopic reports [9]. In terms of 
positron emission tomography-computed tomography 
(PET-CT) reports, previous studies have sought to deter-
mine the presence of lymphoma involving bone [10] and 
the treatment response of lymphoma [11]. Despite some 
success from automatic extraction, clinical studies con-
tinue to rely on manual chart review as they require more 
specific information.

When conducting studies on lung cancer, clinicians 
mostly obtain information regarding the primary sites 
from chest CT reports [12], and information on cancer 
staging from PET-CT with 18F-fluorodeoxyglucose. [13] 
The extraction of distant metastases and the staging of 
the lung cancer itself are vital when choosing the appro-
priate oncological therapy and predicting patient progno-
sis. [14] Also, identifying metastatic sites such as the liver 
[13] or spine [15] provides valuable prognostic informa-
tion as well. Even though the amount of information on 
PET-CT is increasing due to its increasing usage, only 
a small proportion of such information could be auto-
matically extracted due to the unstructured nature of text 
data.

Auto-extraction from reports written by natural lan-
guage is essential. However, annotated datasets are 
needed in order to build an auto-extraction model. In 
contrast to classifying radiologic images, annotating 
all metastatic sites from text-based reports is a highly 
laborious process that may entail inaccurate annotation. 
Moreover, raw data of free-texted reports have many 
typographical errors and different writing styles across 
radiologists, which lowers the accuracy of deep-learning 
models.

In this study, we sought to overcome these barriers by 
developing a spelling correction tool for the lung cancer 
domain that served as a pre-processing tool for radiol-
ogy reports and implemented a semi-supervised learning 
method called pseudo-labelling during the training pro-
cess [16]. With this technique, we devised a deep-learn-
ing model for extracting the primary location of lung 
cancer sites and metastatic lymph nodes and distant met-
astatic sites from PET-CT reports consisting of unstruc-
tured natural language.

Methods
Clinical data
We collected the PET-CT reports of patients who were 
diagnosed with lung cancer between January 1st, 2007, 
and March 31st, 2020 at Asan Medical Center, a tertiary 
referral hospital in Seoul, South Korea (Cohort A). The 
records collected from patients with lung cancer were 
coded by the International Classification of Disease, 
10th revision. The PET-CT reports consisted of the fol-
lowing data: patient ID, exam code, exam date, clinical 
diagnosis, the reason for an imaging study, examination 
methods, description of image findings, and conclusion 
of image interpretation. The conclusion section of the 
report, written in English, would contain the locations 
of the primary cancer site, the metastatic lymph nodes, 
and other metastatic lesions. Additional file 1: Figure S1 
shows an example of the conclusion section of a PET-CT 
report from a patient with lung cancer that was used as 
the input data in this study. To evaluate the performance 
of the generated model in the additional-test set, we used 
PET-CT reports of patients from a different cohort at 
Asan Medical Center who were treated between January 
1st, 2004, and March 31st, 2020 (Cohort B). Although the 
additional-test set was not collected from different hospi-
tal records, we intended to show that our model can work 
on independent annotated datasets without any overlap 
in patients. The purpose of our model was to convert any 
lung cancer PET-CT reports into a structured form so 
that clinicians could access the metastasis-labelled radio-
logic reports.

Report annotation
To determine the metastatic stage of lung cancer accord-
ing to the TNM stage [17], we assessed the primary can-
cer location, nodal stage of lung cancer, and metastatic 
sites as the outcome categories. The location of lung 
cancer was labelled in the class of the lobe; however, if 
the primary site could not be determined by each lobe 
due to the huge size, the location was labelled as left or 
right. In the case of synchronous metastasis and ipsilat-
eral/contralateral metastasis, the annotator follows the 
initial opinion of radiologists who reported the PET-CT 
reports. Two clinicians independently annotated the pri-
mary cancer location and the metastatic lymph nodes 
and organs in 500 PET-CT reports and their consistency 
was calculated by Cohen’s kappa coefficient (Additional 
file  1: Table  S1). Another clinician independently anno-
tated the primary cancer location and metastatic organs 
in 4190 PET-CT reports that were used as the additional-
test set. The additional-test dataset was not used in the 
pseudo-labelling process nor in any pre-processing.
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Ethics approval
The ethics committee of Asan Medical Center approved 
this study, conducted following the declaration of Hel-
sinki. Also, the ethics committee of Asan Medical Center 
(approval number 2020–0212) waived the informed con-
sent due to the retrospective observational nature of the 
study. The clinical data extracted using the ABLE system 
at Asan Medical Center were indexed by de-identified 
encrypted patient ID numbers so that the individual 
patients could not be identified [18, 19].

Pre‑processing of typographical errors and keyword 
extraction
In order to train a deep-learning model that is robust 
against typographical errors, we developed a spelling 
correction tool trained on lung cancer-related journals 
(Additional file  1: Methods).  All the radiologic reports 
had been corrected using this spelling correction tool. As 
each sentence had an independent meaning in our PET-
CT reports, each radiologic report was split into a group 
of sentences (Additional file  1: Figure S1). Keywords 
were extracted from each sentence using Named Entity 

Recognition (NER) [20], which eliminates words that had 
less impact on extracting the metastatic information. 
(Additional file  1: Figure S2) Eventually, the whole pre-
processing stage provides a refined version of the input 
data that have been transformed into a set of sentences 
containing keywords; in turn, the pre-processed inputs 
are used to train the deep-learning models. The detailed 
methods for pre-processing were described in Additional 
file 1: Methods.

Structure of the model
Using the NER tags, we extracted keywords that might 
represent the primary sites from each PET-CT report. 
Each keyword consisted of 100-dimensional vectors. In 
this study, we implemented the Convolutional-Recurrent 
Neural Network [21] consisting of a single convolutional 
layer and two LSTM layers (Fig. 1). Convolutional opera-
tion and max-pooling extracts key features within the 
FastText embedding, while LSTM operation focuses on 
sequential information among the word sequence. This 
method could improve the representation of words that 
reflect their context as well as the semantics.

Fig. 1  Structure of the model pre-processing and development for extracting information
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The classification of primary sites is a multi-class clas-
sification task, while lymph node staging is a multi-label 
classification task. The primary cancer sites are listed as 
the right upper lobe, right middle lobe, right lower lobe, 
left upper lobe and left lower lobe—a multi-class classifi-
cation. The lymph node stage is determined by the most 
distant metastatic lymph nodes from the primary cancer 
location (TNM staging). Therefore, the model should find 
all the metastatic lymph nodes, identify the anatomical 
site and determine whether it is ipsilateral or contralat-
eral with respect to the primary cancer site. In annotating 
these metastatic lymph nodes, there are some problems. 
First, too many labels should be annotated for one report, 
which could lead to the omission of some label annota-
tion by clinicians. The second is the long-tailed distribu-
tion of metastatic sites, such that only a small number 
of uncommon metastatic sites are extracted despite the 
laborious process of annotation. To overcome this hur-
dle, target sites for lymph nodes and metastatic organs 
were selected if their prevalence was higher than 3%. We 
also used a semi-supervised learning technique called 
pseudo-labelling, which first trains the model using the 
small number of labelled data and then assigns pseudo-
labels that shows the highest probability to the unlabelled 
data using that model. Although this method is a rela-
tively simple approach, it showed high performance com-
pared with other semi-supervised learning methods [16]. 
Using this approach, we assigned pseudo-labels to every 
unlabelled data; however, unlike in the original paper on 
pseudo-labelling [16], each pseudo-label was assigned 
considering the appearance of specific words, not based 
on probabilistic values. For instance, sentences in which 
‘hilar’ and ‘metastasis’ appear are most often related to 
metastasis in the hilar area, so its pseudo-label would 
be ‘metastatic hilar lymph nodes.’ As the label value was 
closely related to the extracted information, keywords 
within each sentence were used to return pseudo-labels 
for multi-label classification.

The nodal (N) staging classification model has 13 out-
puts corresponding to the number of categories belong-
ing to the N stage, and the metastatic sites (M) stage 
classification model has seven final nodes corresponding 
to each category. As lymph node staging is determined by 
the most distant lymph nodes, and by whether the lymph 
node is ipsilateral or contralateral to primary sites, fur-
ther processing was necessary in order to determine the 
location of the metastatic lymph nodes and the primary 
cancer site. Using the keywords that were used during 
the pseudo-labelling process, we checked the n-grams 
surrounding each keyword with the purpose of consider-
ing the closest positional word (ipsilateral or contralat-
eral). Next, we analysed the word segments containing 
the keywords as well as the location information, with the 

primary cancer site in order to determine the side of the 
lymph node. (Additional file  1: Figure S3) In nodal and 
distant metastasis staging, the extraction model uses all 
words, not just keywords, which would help the model 
learn other expressions that are not included in the 
keywords. Accordingly, we noticed that the model was 
appropriately trained as the sentences containing words 
such as ‘T4’ and ‘T5’—abbreviation of ‘4th and 5th tho-
racic vertebrae’—tend not to contain words related to the 
bone. Therefore, all words were used as input in our pro-
posed model.

Statistical analysis
The prevalence of the outcome was described in numbers 
and percentages. The inter-rater agreement was calcu-
lated by Cohen’s kappa coefficient and the overall accu-
racy of our proposed model with each pre-processing 
was described with the A/B test. The performance of our 
proposed model was evaluated with the following met-
rics: precision, sensitivity (recall), specificity, F1- score, 
area under the receiver operating curve (AUROC), and 
area under the precision-recall curve (AUPRC) with 
micro-average and macro-average for each outcome in 
the two validation sets. [22] For each outcome, we evalu-
ated the false-positive and false negative results accord-
ing to each label. Statistical analysis was performed by 
the statistics package in Python 3.7.4.

Results
A total of 20,466 PET-CT reports were collected in 
Cohort A, of which 19,466 inputs were used in our model 
for extracting keywords and pseudo-label training. After 
excluding 27 reports that had more than two primary 
locations of cancer, 473 reports annotated by clinicians 
were used as the validation set for evaluating the primary 
sites and lymph node and metastatic organs. For addi-
tional-test in Cohort B, 3362 PET-CT reports were used 
for validating the primary sites and metastatic organs 
after excluding 828 reports in which there were more 
than two primary lung cancers, or the primary cancer 
was not lung cancer (Table 1). The number of metastatic 
lymph nodes and organs had a prevalence ranging from 
0.1% (scalene lymph node) to 25% (bone).

Evaluation of primary cancer location classification
In primary site classification among the 473 reports, the 
overall precision and sensitivity were 0.795 and 0.774, 
respectively, and micro-AUROC and weighted-AUROC 
were 0.913 and 0.924, respectively. The precision/sen-
sitivity and AUROC and AUPRC per site are shown in 
Table  2 and Fig.  2. In the 3362 additional-test sets that 
had only one primary lung cancer, the overall precision 
and sensitivity were 0.831 and 0.850, respectively, and 
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Table 1  Prevalence of primary sites and metastatic lymph nodes and organs

Validation set (N = 473) Additional-test set (N = 3362)

Number Prevalence Number Prevalence

Primary lung lesion area

Left

 Left (huge) 6/473 0.0127 143/3362 0.0425

 Left lower lobe 84/473 0.1776 553/3362 0.1645

 Left upper lobe 126/473 0.2664 765/3362 0.2275

Right

 Right (huge) 8/473 0.0169 171/3362 0.0509

 Right lower lobe 90/473 0.1903 690/3362 0.2052

 Right middle lobe 27/473 0.0571 191/3362 0.0568

 Right upper lobe 132/473 0.2791 849/3362 0.2525

Lymph node

N1

 Hilar 142/473 0.3002

 Interlobar 123/473 0.2600

  (Peri) Bronchial 3/473 0.0063

 Lobar 6/473 0.0127

N2

 Upper paratracheal 32/473 0.0677

 Prevascular, retrotracheal 36/473 0.0761

 Lower paratracheal 77/473 0.1628

 Subaortic 10/473 0.0211

 Para-aortic 23/473 0.0486

 Subcarinal 65/473 0.1374

 Para-oesophageal 19/473 0.0402

N3

 Contralateral N1 43/473 0.0909

 Contralateral N2 87/473 0.1839

 Supraclavicular 99/473 0.2093

Metastasis

Intra-thoracic metastasis

 Malignant pleural effusion 36/473 0.0761 342/3362 0.1017

 Malignant pericardial effusion 6/473 0.0127 20/3362 0.0059

 Pleural nodule 55/473 0.1163 542/3362 0.1612

 Contralateral lung 61/473 0.1290 363/3362 0.1080

 Ipsilateral lung 65/473 0.1374 1/3362 0.0003

 Synchronous lung cancer 11/473 0.0233 13/3362 0.0039

 Lymphangitic meta 9/473 0.0190 46/3362 0.0137

Extra-thoracic metastasis

 Bone (including rib and sternum) 119/473 0.2516 697/3362 0.2073

 Extra-thoracic lymph node 82/473 0.1734 401/3362 0.1193

 Brain 14/473 0.0296 75/3362 0.0223

 Adrenal 22/473 0.0465 177/3362 0.0526

 Liver 42/473 0.0888 62/3362 0.0184

 Other 46/473 0.0973 143/3362 0.0425
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micro-AUROC and weighted-AUROC were 0.946 and 
0.965, respectively. Low performance was observed in 
the prediction of a huge-sized left or right lobe in which 
the lobar location could not be defined due to invading 
the boundary of the lobe. In the validation set, when the 
model target was only considered between the left and 
right lobe, which is important information for deciding 
ipsilateral lymph nodes, the precision and sensitivity for 
the left lobe were 0.894 and 0.898, respectively, while 
those for the right lobe were higher at 0.914 and 0.911, 
respectively. In the additional-test set, the precision and 
sensitivity were 0.967 and 0.949 for the left lobe, respec-
tively, and 0.962 and 0.975 for the right lobe, respectively.

Evaluation of node and distant metastasis
Using the validation data containing 473 radiology 
reports, we first evaluated the accuracy of our nodal and 
distant metastasis staging. As noted in the methods sec-
tion, we started this process by checking the location of 
lymph nodes and then considered whether the side was 
ipsilateral or contralateral to the primary site. In the first 

phase, the overall precision and sensitivity for metastatic 
lymph nodes were 0.766 and 0.827, respectively, and the 
performance metrics for each lymph node are described 
in Table  3. Except for contralateral N1 and N2, lymph 
nodes with higher incidence had higher precision and 
sensitivity than those with lower incidence.

In terms of distant metastasis, the overall preci-
sion and sensitivity of the model were 0.615 and 0.911 
in the validation set, respectively, and 0.578 and 0.928 
in the additional-test set, respectively. In terms of the 
AUROC of metastatic organ prediction, micro-AUROC 
and weighted-AUROC were 0.944 and 0.937 in the 
validation set, respectively, and 0.950 and 0.949 in the 
additional-test set, respectively (Fig.  3). For each meta-
static organ, the performance was the lowest in predict-
ing contralateral lung metastasis in the validation set 
(F1-score = 0.489) and liver metastasis in the additional-
test set (F1-score = 0.222), and the highest in predict-
ing bone metastasis in both datasets (F1-score = 0.900 
in the validation set and 0.847 in the additional-test set) 
(Table 2). Predicting extra-thoracic lymph nodes showed 

Table 2  Prediction accuracy for primary cancer location and metastatic sites

† Predicting cancer site between right or left that do not consider subdivision of the lung lobes. ‡LN: lymph nodes

Validation set Additional-test set

Frequency Precision Sensitivity F1-Score Frequency Precision Sensitivity F1-Score

Primary lung lesion

Left

 Left (huge) 6 0.2000 (1/5) 0.1667 (1/6) 0.1818 143 0.6786 (19/28) 0.1329 (19/143) 0.2222

 Left lower lobe 84 0.7143 (70/98) 0.8333 (70/84) 0.7692 553 0.7894 (521/660) 0.9421 (521/553) 0.8590

 Left upper lobe 126 0.8684 (99/114) 0.7857 (99/126) 0.8250 765 0.9598 (717/747) 0.9373 (717/765) 0.9484

 Any of left† 216 0.8940 (194/217) 0.8981 (194/216) 0.8961 1461 0.9666 (1387/1435) 0.9493 (1387/1461) 0.9579

Right

 Right (huge) 8 0.0000 (0/0) 0.0000 (0/8) 0.0000 171 0.0000 (0/0) 0.0000 (0/171) 0.0000

 Right lower lobe 90 0.8690 (73/84) 0.8111 (73/90) 0.8391 690 0.9361 (659/704) 0.9551 (659/690) 0.9455

 Right middle lobe 27 0.3898 (23/59) 0.8519 (23/27) 0.5349 191 0.4360 (177/406) 0.9267 (177/191) 0.5930

 Right upper lobe 132 0.8850 (100/113) 0.7576 (100/132) 0.8163 849 0.9376 (766/817) 0.9022 (766/849) 0.9196

 Any of right† 257 0.9141 (234/256) 0.9105 (234/257) 0.9123 1901 0.9616 (1853/1927) 0.9748 (1853/1901) 0.9681

Overall 473 0.7953 0.7738 0.7767 3362 0.8308 0.8504 0.8265

Metastatic organ

Intra-thoracic

 Malignant effusion 36 0.4096 (34/83) 0.9444 (34/36) 0.5714 342 0.57 (334/586) 0.9766 (334/342) 0.7198

 Pleural nodule 55 0.6296 (51/81) 0.9273 (51/55) 0.7500 542 0.7674 (508/662) 0.9373 (508/542) 0.8439

 Contralateral 
metastasis

61 0.3846 (40/104) 0.6557 (40/61) 0.4848 363 0.3441 (287/834) 0.7906 (287/363) 0.4795

Extra-thoracic

 Bone 119 0.8298 (117/141) 0.9832 (117/119) 0.9000 697 0.7462 (682/914) 0.9785 (682/697) 0.8467

 Extra-thoracic LN‡ 82 0.4530 (82/181) 1.0000 (82/82) 0.6236 401 0.3347 (399/1192) 0.995 (399/401) 0.5009

 Adrenal 22 0.4872 (19/39) 0.8636 (19/22) 0.6230 177 0.4958 (175/353) 0.9887 (175/177) 0.6604

 Liver 42 0.8810 (37/42) 0.8810 (37/42) 0.8810 62 0.2609 (12/46) 0.1935 (12/62) 0.2222

Overall 473 0.6150 0.9113 0.7202 3362 0.5782 0.9276 0.6963
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the lowest accuracy in the validation set (0.79) and the 
additional-test set (0.76) and predicting liver metastasis 
showed the highest accuracy in the validation set (0.97) 
and the additional-test set (0.97).

Discussion
In this study, we developed a deep-learning model using 
the pseudo-label technique for extracting the primary 
site of lung cancer and metastatic lymph nodes and 
organs. Our deep-learning model had micro-AUROC 
values of 0.946 and 0.950 for predicting the primary can-
cer locations and metastatic organs in the additional-test 
set, and a sensitivity of 0.827 and a specificity of 0.960 for 

metastatic lymph nodes in the validation set. Although 
there are some concerns of low accuracy for predicting 
the primary cancer sites of huge left and huge right lobes, 
the model prediction for classifying between left and 
right lobes showed a modest degree of accuracy (96.4%). 
This technique could be used when searching for patients 
with unique metastatic status within the huge data ware-
house at the hospital. To our knowledge, our research is 
the first to focus on extracting multiple information from 
radiology reports by implementing a semi-supervised 
learning method and we believe that this end-to-end 
framework could be further applied to other domains as 
well.

Fig. 2  AUROC and AUPRC curves for the prediction of primary sites in the validation set and the additional-test set. The AUROC and AUPRC curves 
on the validation set and the additional-test set are shown. The AUROC values for primary cancer sites were 0.913 and 0.946 in the validation 
set and the additional-test set, respectively. The micro-AUPRC values for primary cancer sites were 0.819 and 0.902 in the validation set and the 
additional-test set, respectively. F1: line of F1-score with some value (0.2 to 0.8)
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By utilising large patient datasets stored in electronic 
health records, various retrospective study designs can 
be conducted, although most of the semantic variables 
are identified as natural language and thus require labo-
rious annotation. For example, in lung cancer, identify-
ing metastatic status acquired by manual chart review 
is crucial in order to estimate the prognosis and severity 
of the disease. With the development and application of 
deep learning in the medical field, an increasing number 
of studies are being published on extracting informa-
tion using the natural language processing technique. 
Although most of the predictions are focused on iden-
tifying the presence of a specific disease in radiologic 
reports. [23] Moreover, various types of data classes need 
to be extracted from radiology reports, which contain an 
abundance of medical information on the disease status. 
However, to our knowledge, there is a scarce amount of 
studies that investigated multiple labels required for lung 
cancer staging. In this study, we showed that our deep-
learning model can extract multiple information from a 
radiology report for staging lung cancer, which may lead 
to the facilitation of studies requiring information on the 
lung cancer stage.

In this context, our model achieved a modest overall 
performance in the prediction of metastasis, although 
there were several instances of poor performance. In 
annotating primary lung lesions, any huge lesions could 
not be denoted as lobal locations, but rather had to be 
written as ‘left stump’ or ‘left central.’ This type of vari-
ation in written style makes pseudo-labelling a difficult 
task, which leads to the low accuracy for predicting huge 

left and right sites. However, considering that lung can-
cer staging only uses the information on whether the lobe 
is left or right, the overall accuracy would be preserved 
when predicting left or right in thoracic cages. In terms 
of distant metastasis prediction, our model had a modest 
predictive performance of around AUROC 0.95 in each 
label except for liver metastasis. When we reviewed the 
mispredictions of liver metastasis, the incidence of liver 
metastasis was smaller than that in the training set and 
had a different writing style. This kind of result can occur 
especially when only a small subset of data has positive 
labels in the training set and another validation set has a 
different writing style with a small subset of positive data. 
However, most of the other labels have similar writing 
styles or a modest number of positive data, thus leading 
to a modest performance in both data sets. With respect 
to lymph node metastasis, more positive labels in the 
training set led to the higher performance of prediction 
in our model. When predicting contralateral N1 and N2, 
the performance of the model was lower than other labels 
(F1-score of around 0.5). When reviewing the mispredic-
tions, we noticed some tendencies of probable metasta-
sis in ipsilateral N1 and N2 nodes, which could have led 
to the low performance of the model in predicting con-
tralateral N1 and N2. Thus, identifying each metastasis 
information can be achieved by our model, although our 
model’s TNM staging could be less accurate when the N3 
node is positive. Further study is therefore necessary to 
improve performance.

There were two major hurdles during the model imple-
mentation. First, even though the quality of data accounts 

Table 3  Accuracy for prediction of metastatic lymph nodes in the validation set

Lymph node Frequency Precision Sensitivity Specificity F1-score

N1

Hilar 141 0.8141 (127/156) 0.9007 (127/141) 0.9127 (303/332) 0.8552

Interlobar 121 0.7740 (113/146) 0.9339 (113/121) 0.9062 (319/352) 0.8464

Lobar 6 0.4286 (6/14) 1.0000 (6/6) 0.9829 (459/467) 0.6000

N2

Upper paratracheal 32 0.8696 (20/23) 0.6250 (20/32) 0.9932 (438/441) 0.7273

Prevascular, retrotracheal 35 0.9259 (25/27) 0.7143 (25/35) 0.9954 (436/438) 0.8065

Lower paratracheal 77 0.8533 (64/75) 0.8312 (64/77) 0.9722 (385/396) 0.8421

Subaortic 10 0.6000 (9/15) 0.9000 (9/10) 0.9870 (457/463) 0.7200

Para-aortic 23 0.6000 (21/35) 0.9130 (21/23) 0.9689 (436/450) 0.7241

Subcarinal 65 0.8000 (60/75) 0.9231 (60/65) 0.9632 (393/408) 0.8571

Para-oesophageal 19 0.7083 (17/24) 0.8947 (17/19) 0.9846 (447/454) 0.7907

N3

Contralateral N1 61 0.5357 (45/84) 0.7377 (45/61) 0.9053 (373/412) 0.6207

Contralateral N2 109 0.7647 (52/68) 0.4771 (52/109) 0.9560 (348/364) 0.5876

Supraclavicular 99 0.9307 (94/101) 0.9495 (94/99) 0.981 (367/374) 0.9400

Overall 0.7663 0.8265 0.9603 0.7862
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for a considerable part in machine learning research, the 
quantity and the quality were not sufficient. The number 
of labelled data was limited, and some of the clinician-
annotated data had errors such as the omission of posi-
tive labels. Annotation consistency was high in some 
variables, but not in liver metastasis or contralateral N1 
(Additional file 1: Table S1). Second, as the writing style 
differs among medical experts, regularising and revising 
each data was a time- and labour-intensive process. How-
ever, pseudo-labelling enables the model to learn various 
writing styles by considering the underlying character-
istics within the feature space of the labelled annotated 
data, which eventually leads to a good performance in 

most of the labels. As aforementioned, unlike the origi-
nal pseudo-labelling that used probability for each label, 
our pseudo-labelling focused on keywords that have a 
great impact on determining the labels. We believe that 
it could be an answer to the lack of labelled data within 
medical fields.

This study has some limitations. First, as the datasets 
were collected from a single tertiary hospital, our model 
had not been evaluated by other hospitals’ reports which 
might have different writing styles by various radiologists. 
However, our methods are not based on the previously 
labelled dataset, but on a pseudo-label of the labelling 
style. If this method is used for another dataset in future 

Fig. 3  AUROC and AUPRC curves for predicting metastatic organs in the validation set and the additional-test set. The AUROC and AUPRC curves 
on the validation set and the additional-test set are shown. The AUROC values for predicting metastatic organs were 0.944 and 0.950 in the 
validation set and the additional-test set, respectively. The AUPRC values for metastatic organs were 0.687 and 0.640 in the validation set and the 
additional-test set, respectively. F1: line of F1-score with some value (0.2 to 0.8)
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work, the model could be evaluated whether this method 
could be generalised. Second, the model does not extract 
all metastatic sites or specific sites of metastasis. As the 
distribution of metastatic sites is skewed, rare or specific 
sites cannot make clusters that are sufficiently large for 
model training. To overcome this issue, the model can 
adjust the cut-off value for rare outcomes to reduce the 
number of false-positive results that lead to the overesti-
mation of the tumour burden or tumour stages. With this 
method, the model can stably estimate the tumour bur-
den with PET-CT label data.

Third, as the tumour stage such as size and invasion 
of the nearby structures, was not described in the radio-
logic reports, the T stage could not be determined by our 
model. This will need to be validated in chest CT reports, 
which will have more detailed information.

Conclusion
We developed a deep-learning model that might be use-
ful to extract information on primary sites and metastatic 
lymph nodes and distant organs from PET-CT radiology 
reports. Our method could be used for predicting the 
stage and tumour burden of lung cancer and may thus 
facilitate studies using electronic health record datasets 
by alleviating laborious annotations by clinicians.
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