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Abstract 

Background The diagnosis of cardiac abnormalities based on heart sound signal is a research hotspot in recent 
years. The early diagnosis of cardiac abnormalities has a crucial significance for the treatment of heart diseases.

Methods For the sake of achieving more practical clinical applications of automatic recognition of cardiac abnormali-
ties, here we proposed a novel fuzzy matching feature extraction method. First of all, a group of Gaussian wavelets are 
selected and then optimized based on a template signal. Convolutional features of test signal and the template signal 
are then computed. Matching degree and matching energy features between template signal and test signal in time 
domain and frequency domain are then extracted. To test performance of proposed feature extraction method, 
machine learning algorithms such as K-nearest neighbor, support vector machine, random forest and multilayer 
perceptron with grid search parameter optimization are constructed to recognize heart disease using the extracted 
features based on phonocardiogram signals.

Results As a result, we found that the best classification accuracy of random forest reaches 96.5% under tenfold 
cross validation using the features extracted by the proposed method. Further, Mel-Frequency Cepstral Coefficients 
of phonocardiogram signals combing with features extracted by our algorithm are evaluated. Accuracy, sensitiv-
ity and specificity of integrated features reaches 99.0%, 99.4% and 99.7% respectively when using support vector 
machine, which achieves the best performance among all reported algorithms based on the same dataset. On several 
common features, we used independent sample t-tests. The results revealed that there are significant differences 
(p < 0.05) between 5 categories.

Conclusion It can be concluded that our proposed fuzzy matching feature extraction method is a practical approach 
to extract powerful and interpretable features from one-dimensional signals for heart sound diagnostics and other 
pattern recognition task.
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Background
The heart, as an exceedingly vital organ of humanity, 
pumps blood throughout our bodies with periodic systole 
and diastole, which is critical for the correct operation of 
physical functions. However, the frequency of cardiovas-
cular disease has been steadily increasing in recent years 
[1]. It has been estimated that aberrant cardiovascular 
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circumstances caused around 30% of the deaths of people 
with the disease worldwide [2, 3]. It has the potential to 
greatly increase the survival rate of heart disease patients 
by employing efficient and accurate diagnostic proce-
dures. Early effective therapies utilizing some realistic 
diagnostic tools can also improve practitioners’ abilities 
to prevent and heal cardiovascular disease [4]. The pho-
nocardiogram (PCG) signal contains a wealth of early 
pathological information about cardiac valves and has 
been shown to be useful in the early detection of possi-
ble heart illness [5–7]. The creation of cardiac sounds is 
closely linked to the opening and closing of the atrioven-
tricular, aortic, and pulmonary valves [8–12].

Traditional auscultations provide an assessment of 
cardiovascular problems based on the clinicians’ exper-
tise and knowledge [13]. However, this strategy is inef-
ficient and prone to error [14]. With the advancement 
of computer technology, machine learning techniques, 
computer-aided techniques for the diagnosis of cardio-
vascular and other disorders, like COVID-19, are becom-
ing increasingly frequent [15–19]. Deep learning is an 
important subfield of machine learning. The main advan-
tage is that it can automatically extract features from 
the original signal and discover potential connections 
between data and prediction value [17]. It has also dem-
onstrated good practicability and reliability in the field of 
speech recognition in recent years [20]. Simultaneously, 
a large range of deep learning models, including convo-
lutional neural network (CNN), deep neural network 
(DNN), and recursive neural network (RNN), have dem-
onstrated significant improvements in cardiovascular 
diseases diagnosis and recognition [16].

However, several drawbacks of deep learning are una-
voidable. The first is the difficulty with data collecting 
and annotation [21]. To develop deep learning models, 
deep learning methods require a large number of labelled 
samples as training data. Nonetheless, the enormous 
workload generated by a large number of high-accuracy 
data capture and high-precision annotation is frequently 
undesirable to doctors and patients [21, 22]. The second 
difficulty is deep learning technology’s reliance on strong 
processing capacity. The training time of the deep learn-
ing model increases dramatically as the amount of data 
increases. And when there is an inaccurate annotation in 
the annotation of data, it usually result in an extremely 
high error rate [22]. Furthermore, the poor interpretabil-
ity of deep learning constituted a significant barrier [22]. 
In contrast, feature engineering may be a good solution 
to the problems that deep learning algorithms confront.

Feature engineering has long been an important 
strategy to using PCG to diagnose cardiac abnormali-
ties. Weize Xu et  al. produced a pediatric congenital 

heart sound database with 941 PCG signals for heart 
disorders. The researchers then devised a segment-
based heart sound segmentation technique to mitigate 
the effects of local-nose. To classify data from 84 fea-
tures, Random Forest and Adaboost classifiers were 
used. Their findings suggest that the best accuracy is 
95.3% [13]. Mehmet Ali Kobat et al. used a new stable 
feature generation method to automatically diagnose 
cardiac valve problems. They extracted the 64 most 
discriminative features from neighbor-hood compo-
nent analysis. KNN and SVM were introduced in the 
final classification, with 99.5 percent and 98.3 percent 
accuracy, respectively [23]. Pengpai Li et  al. created 
a multi-modal feature based on PCG and ECG sig-
nals to diagnose cardiovascular diseases (CVDs). They 
used SVM as the classifier, and the AUC value of their 
model’s highest performance is 0.936 [24]. Miguel et al. 
developed a method for separating PCG signals into 
silences and basic heart sounds. The segments were 
then joined with a simple genetic technique called dif-
ferential evolution, and the results indicate a mean F1 
score of 98.5% and 93.6% [25].

We concluded from researches described above that 
using heart sounds to identify cardiac disease is a hot 
topic in current research. However, several research 
employed complicated segmentation methods to sepa-
rate the raw signals before classifying them using typi-
cal feature extraction strategies and machine learning 
classifiers. Despite the fact that they may obtain good 
diagnostic outcomes in their respective tasks, the com-
plexity of segmentation algorithms and the inexplicabil-
ity of deep learning have hampered their future clinical 
development. To solve this issue, we offer a unique 
feature extraction approach that does not need heart 
sound data segmentation. Furthermore, interpretable 
characteristics are employed to accurately and consist-
ently diagnose cardiac disease.

In a previous study, we presented a discrete convo-
lution wavelet transform (DCWT) for tracking acci-
dent signals in battery electric vehicles [26]. This paper 
proposes a fuzzy matching feature extraction method 
(FMFE) to extract matching features from heart sound 
signals by re-designing that algorithm. The follow-
ing contents are divided into 4 sections: methodol-
ogy, results, discussion, and conclusion. We provided 
the principles of the proposed method as well as the 
details of the experiment in the methodology section. 
The accuracy of the proposed approach and evaluation 
parameters were provided as results. In the discussion 
section, we also provided reasons for discussing the 
results. Finally, at the end of this work, conclusions are 
formed.
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Methodology
In our method, we first build a wavelet group that reflects 
the major correlation energy of a template signal. The 
fuzzy features of the target signals are then obtained by 
convolving them with an optimum collection of wavelets. 
Finally, fuzzy features are used to compute matching fea-
tures between the template signal and the target signal. 
This work extracted self-matching features in the time 
domain, self-matching features in the frequency domain, 
and mutual matching features in the frequency domain.

The dataset we used in this study is from reference 
[8], which include five categories of PCG: normal heart 
sound (NHS), mitral stenosis (MS), aortic regurgitation 
(AR), mitral regurgitation (MR) and mitral valve prolapse 
(MVP). Typical representative of each category is shown 
in Fig.  1. They were gathered from a variety of sources, 
including books (Auscultation skills CD, Heart sound 
made easy) and websites (48 different websites provided 
the data including Washington, Texas, 3  M, and Michi-
gan and so on). After excluding files with excessive noise, 
heart sound was sampled at 8000 Hz frequency rate and 
converted to mono channel, 3 period heart sound signal, 
data sampling, conversion, and editing were completed. 
The duration of each sample lasts 2 to 3  s containing 3 
cardiac circles. Finally, there are 1000 samples in total, 
and each category holds 200 samples respectively. There 

are several benefits to using this dataset. The first com-
prises a large enough amount of data (1000 samples) and 
200 samples for each analogy. Second, because it satisfies 
the sample balance property, it will not lead the algorithm 
to form preferences when the machine learning model is 
trained. Third, each item of data is labeled clearly. Fourth, 
this dataset has been used in several researches with pos-
itive experimental outcomes.

Procedures of FMFE are shown in Fig.  2. We got the 
template PCG signal from training PCG set and test sig-
nal from test PCG set. Then, a group of Gaussian wavelets 
were optimized from originally selected wavelets based 
on the template signal. Subsequently, template signal and 
test signal were convolved with these optimized wavelets, 
and fuzzy convolved features of template PCG signal and 
test PCG signal can be computed. Finally, based on these 
convolved features, fuzzy matching degree and fuzzy 
matching energy are obtained by matching computation.

Acquisition of template feature
First of all, we need to clarify the following mathematic 
definition. For ease of more details in the proposed 
method and the ways of expression, the following for-
mula representations will be used.

Given x1 to xn are a set of vectors, so:

Fig. 1 The PCG signals of five different cardiac diseases. a–e are the PCG of NHS, AR, MR, MS and MVP respectively. Each PCG signal contains 3 
complete cardiac circles and sustain 2–3 s
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Given x is a vector, then:

As for ⊙ , given x and y are two vectors, then:

Given X and Y  are two matrixes, then:

Given X is a matrix, a is a scalar, then:

(1)(x1;x2; . . . ;xn) =

x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
...

xn1 xn2 . . . xnn

(2)(x1, x2, . . . , xn) =









x11 x21 . . . xn1
x12 x22 . . . xn2
...

...
...

x1n x2n . . . xnn









(3)�x�2 = x21 + x22 + · · · + x2n

(4)Sqrt(x) = (
√
x1,

√
x2, . . . ,

√
xn)

(5)x ⊙ y = (x1 · y1, x2 · y2, . . . , xn · yn)

(6)X ⊙ Y =









x11 · y11 x12 · y12 . . . x1n · y1n
x21 · y21 x22 · y22 . . . x2n · y2n

...
...

...
xn1 · yn1 xn2 · yn2 . . . xnn · ynn









FFT (x) represents the Fast Fourier transform for vector x.
As mentioned above, we used FMFE in 3 dimensions, 

which are self-matching in time domain, self-matching 
in frequency domain and mutual matching in frequency 
domain respectively. Thus, 3 matching templates are 
needed. In the time domain self-matching, the source 
of template is come from the PCG signal itself. Because 
the complete PCG signal are composed of 3 cycles in 
our dataset. In the dimension of self-matching in time 
domain, the template signal (m) is simply calculated by 
averaging all 3 cycles (h1, h2, h3) of one signal:

In the dimension of self-matching in frequency domain 
and mutual matching in frequency domain, the template 
signal (m) is calculated by averaging Fast Fourier Trans-
form (FFT) of all 3 cycles (h1, h2, h3) of one signal:

What is worth to be mentioned is that in mutual match-
ing in frequency domain, h1, h2, h3 are the 3 parts of one 
specific normal PCG (the shortest PCG in normal PCG 
dataset). In conclusion, all sample signals used the same 
template signal in mutual matching, but every sample signal 
has its own template signal in self-matching. After we have 
the template signal, we need to obtain the template features. 
W is an initial filter, it is a matrix constructed by N wave-
lets, which is described as (w1;w2; . . . ;wN ) . In this study, 
Gaussian wavelets were used. They are Gaussian 1th-8th 
high-derivative filters wavelets, N wavelets in total, and the 
length of each wavelet is L. N, and L are hyperparameters in 
FMFE. Then, the template features can be obtained by con-
volving the template signal with the initial filter matrix (X is 
the template feature matrix, ⊗ is convolution operation):

Acquisition of correlation energy feature Xm and Xs
However, not all the template features are usually needed 
to be considered. Because the same type of heart sound 
signals (for example, the same type of heart sound signals 
in normal people or the same type of heart sound signals 

(7)X ⊙ a =









ax11 ax12 · · · ax1n
ax21 ax22 · · · ax2n
...

... · · ·
...

axn1 axn2 · · · axnn









(8)m =
h1 + h2 + h3

3

(9)m =

∥

∥FFT (h1)
∥

∥+

∥

∥FFT (h2)
∥

∥+

∥

∥FFT (h3)
∥

∥

3

(10)
X = m⊗W =(m⊗ w1;m⊗ w2; . . . ;m⊗ wN )

Fig. 2 Flow chart of feature extraction in this study. Template PCG 
signal can be obtained from training PCG set. Then, Template PCG 
signal were utilized to optimize a group of initial Gaussian wavelets, 
and fuzzy convolved features of template PCG signal and test PCG 
signal can be computed. Further, we can have fuzzy matching degree 
and energy features
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in people with certain heart disease) come from different 
samples of individuals, and its features are not completely 
consistent. To reduce overfitting, an idea of fuzzy matching 
is proposed here. We consider that the same type of heart 
sound signal has the highest correlation energy. Therefore, 
a matching filter matrix based on the maximum correlation 
energy was constructed to extract the correlation energy 
features of the signals. We use a mask U to optimize initial 
filter W:

The β1,β2, . . .βO are the eigenvectors corresponding to 
the top O eigenvalues of XXT. Then, W

′
 can be optimized. 

They can be described as follows:

where w′

1
;w′

2
; . . . ;w′

O represent the optimized O filters 
(Because we only selected O eigenvectors to optimize 
the filter, the number of optimized filters becomes one of 
the hyperparameters O of the proposed method). Corre-
spondingly, the fuzzy feature of template signal (Xm) and 
of target signal (Xs) can be obtained as follows:

Acquisition of matching degree feature
Here we design a convolution to continuously compute 
matching degree between the template signal and tar-
get signal. To avoid the endpoint effect from convolu-
tion, the endpoints of xmi and xsi were removed and then 
renamed as x′mi and x′

si respectively. Equations  (15) and 
16 described how we obtained the matching degree d. 
x
′
si−norm is the norm of x′

si in our convolutional computing, 
which is described in Eq. (17). Vector a in Eq. (17) are com-
posed of the only element 1, which has the same size with 
x
′
mi . x

′
mi−norm is the norm of template signal x′

mi , which is 
expressed in Eq. (18).

(11)U = (β1,β2, . . . ,βO)

(12)W
′
= UTW = (w

′

1;w
′

2; . . . ;w
′

O)

(13)

Xm = m⊗W
′

= (m⊗ w
′

1; m⊗ w
′

2; . . . ;m⊗ w
′

O)

= (xm1; xm2; . . . ; xmO)

(14)
X s = s ⊗W

′

= (s ⊗ w
′

1; s ⊗ w
′

2; . . . ; s ⊗ w
′

O)

= (xs1; xs2; . . . ; xsO)

(15)yi =
x
′
si ⊗

←−
x
′
mi

x
′
si−norm ⊙ x

′
mi−norm

, (i = 1, 2, . . . ,O)

(16)d = y1 ⊙ y2, . . . ,⊙yo

(17)x′si−norm = Sqrt((x′si ⊙ x′si)⊗ a)

Acquisition of other matching features
We use max matching degree as one extracted feature in 
this study, we record the maximum value of matching 
degree d vector, which is recorded as mmd . And record 
the point where the maximum value corresponds as the 
index of mmd. Based on index of the mmd , corresponding 
energy features in X s can be easily found by taking the val-
ues according to the index position of mmd. These values 
are referred as es1, es2, . . . , esO in a vector ME:

Each optimized wavelet gives a correlation energy value, 
so there are totally O energy features in one cardiac cycle.

Because a template signal represents information of one 
cycle of each PCG signal, all 3 cycles of PCG in our study 
should have 3-folds of matching features. For each cycle, 
matching degree features and matching energy features 
are extracted according to the method above. This means 
that in one dimension of matching computation, each heart 
sound signal extracted 3× (O+ 1) matching features. 
In the time domain, the self-matching degree features 
(TD.S.MD) and self-matching energy features (TD.S.ME) 
of one complete PCG signal can be expressed as follows:

The extraction method of self-matching degree features 
and self-matching energy features in frequency domain 
is similar to the method above. The difference is that the 
heart sound signals in time domain of one heart beat cycle 
are transformed to the frequency domain using Fast Fou-
rier Transform (FFT) and the template signal can be given 
in Eq. (9). Using the same method, we can have the follow-
ing feature expression:

FD.S.MD is frequency domain self-matching degree 
feature of one complete heart sound signal, and 

(18)x
′
mi−norm=

∥

∥

∥
x
′
mi

∥

∥

∥

2

(19)ME = (es1, es2, . . . , esO)

(20)TD.S.MD = (mmdTD.S1 , mmdTD.S2 , mmdTD.S3 )

(21)TD.S.ME = (METD.S
1 , METD.S

2 , METD.S
3 )

(22)FD.S.MD = (mmdFD.S1 , mmdFD.S2 , mmdFD.S3 )

(23)
FD.M.MD = (mmdFD.M1 , mmdFD.M2 , mmdFD.M3 )

(24)FD.S.ME = (MEFD.S
1 , MEFD.S

2 , MEFD.S
3 )

(25)FD.M.ME = (MEFD.M
1 , MEFD.M

2 , MEFD.M
3 )
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FD.S.ME is frequency domain self-matching energy 
features. FD.M.MD and FD.M.ME are mutual match-
ing degree features and mutual matching energy features 
respectively.

Classifiers
4 classifiers are used to evaluate obtained features in 
this study. Support vector machine (SVM) is a kind of 
generalized linear classifier. The decision boundary of 
SVM is the maximum margin hyperplane for learn-
ing samples. It utilizes hinge loss function to calculate 
empirical risk and adds regularization term to the solu-
tion system to optimize structural risk [27]. K-nearest 
neighbor (KNN) classification algorithm is one of the 
simplest methods in machine learning. The K near-
est neighbors refers K nearest samples, which means 
that each category can be represented by its closest k 
neighbor’s category [28]. Random forest is a classifier 
in machine learning that contains multiple decision 
trees, which normally has well performance in machine 
learning task [29]. Multilayer Perceptron (MLP) is a 
classifier that follows the principle of human nervous 
system to learning and prediction. It uses the weight to 
store data, and uses the algorithm to adjust the weight 
and reduce the deviation in the training process [30]. 
Parameters of each classifier were optimized using grid 
search and the best ones are given in the Additional 
file1.

Evaluation
In this paper, we used macro-recall (macro-R), macro-
precision (macro-P) and accuracy to evaluate the per-
formance of the method we proposed. Macro-R and 
macro-P are the assessment parameters often used in 
multi-classification. They are the average of the recall 
rate(R) and precision(P) obtained from each confu-
sion matrix in our tenfold cross validation. These 
indicators are computed according to the following 
equation:

(26)Recall =
TP

TP + FN

(27)P =
TP

TP + FP

(28)Sensitivity=
TP

TP + FN

(29)Specificity =
TN

FP + TN

In equations above, TP, FP, FN and TN indicate true 
positive, false positive, false negative, true negative in 
confusion matrix respectively.

Results
This paper proposed a unique FMFE approach for 
extracting matching features from heart sound signals. 
Various parameters can be selected (grid search) (N, 
L, O). The dimensions of signals after FMFE had been 
considerably decreased when compared to the original 
dimension of the heart sound signal (more than 16,000 
dimensions of overall features).

Figure 3 shows the TD.S.MD feature results of a normal 
heart sound. Figure 3a gives one cardiac circle of a normal 
PCG signal in time domain from the data set. S1(the first 
audible part of heart sound signal) and S2 (the second audi-
ble part of heart sound signal) were marked clearly in this 
figure. Figure 3b shows the template PCG signal computed 
according to formula 1. Figure 3c illustrates the results of 
matching degree between the template signal and the origi-
nal signal. As we can see in this figure, the max matching 
degree can be obtained at the very beginning of the match-
ing, which means target signal matched tightly with tem-
plate signal at the very beginning of the matching. When 
the template signal moves about 250 points, the matching 
degree dropped to near 0, which means two signals are 
no longer matched. When template signal moves to S2 of 
example signal, redundant matching degrees come out. The 
reason for the redundancy matching degree is that S1 of the 
template signal matched S2 of the example signal. As we 
can see, S1 of template signal and S2 of original signal have 
a certain similarity, so the second matching degree peak 
was obtained (Also called minor matching degree).

Figure 4 illustrates the results of frequency domain self-
matching degree (FD.S.MD). Figure 4a shows distribution of 
one cardiac cycle of an PCG signal after FFT process. Fig-
ure 4b shows the template signal computed based on Eq. (9). 
Figure 4c give the result of matching degree between these 
two signals. Similar to the result in time domain, the maxi-
mum matching degree is also obtained at the starting posi-
tion followed by minor matching degrees. The reason can 
be explained similarly. Because one PCG signal has 3 cycles 
and every cycle should match with the template, thus curves 
of 3 matching degree are presented in Fig. 4c.

(30)macro - R =
1

n

n
∑

i=1

Ri

(31)macro - P =
1

n

n
∑

i=1

Pi
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Fig. 3 Matching results of TD.S.MD by FMFE. a is the example signal of one cardiac circle from NHS in time domain. b is the corresponding template 
signal and c is matching degree results obtained between original NHS signal (a) and the template signal (b). The maximum matching degree value 
can be obviously obtained at the initial position of matching process. As the template moves alongside matching direction, the matching degree 
gradually changes. However, the maximum value is still at the beginning matching position. Some minor degrees occurred due to the matching 
of S2 of original signal and S1 of template signal

Fig. 4 Matching results of FD.S.MD using FMFE. a is the modulus of PCG signals of one cardiac cycle in time domain after Fast Fourier Transform, 
b is the template signal in frequency domain and c is the matching degree results between a and b. The maximum FD.S.MD value can be easily 
obtained at the starting position of matching process. Some minor degrees appeared due to the matching of minor distributions of original signal 
and main distributions of template signal
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Figure  5 presents the results of FD.M.MD. There are 
some differences between self-matching and mutual 
matching in frequency domain. Figure 5a shows an exam-
ple of abnormal PCG signal in the frequency domain. Fig-
ure 5b provides the template signal in frequency domain. 
It can be clearly found that main frequency components 
(main distributions) of these two signals are different. 
The max matching degree can no longer be obtained at 
the start position. Actually, it can be discovered at around 
35 matching points. Similar to self-matching in frequency 
domain, 3 matching degree curves are also presented in 
Fig. 5c.

As we have described above, 4 classifiers are used 
to recognize 5 categories of samples based on features 
extracted using our proposed method. Classification 
results are shown in Table 1. Hyper-parameters of FMFE 
models are shown in Table 2. The best accuracy of 96.5% 
of independent FMFE features can be obtained by using 
random forest classifier.

Discussion
We obtained the matching features by a matching opera-
tion between the template signal and the original signal. 
In the matching degree results described in Fig. 3c, at the 
beginning, the matching degree achieved the maximum 
value, and then gradually decreased to 0 in the fluctua-
tion. The main reason is that the template signal of the 
normal PCG has no much difference (difference between 

their S1 is relatively small). So, the maximum matching 
degree can be gained at the very beginning of the match-
ing. As the template signal moves along the matching 
direction, the S1 of the template signal and the S1 of the 
original signal gradually begin to stagger, so the matching 
degree will decrease rapidly during this process. When 

Fig. 5 Matching results of FD.M.MD using FMFE. a is the modulus of heart sound of one cardiac cycle after FFT, b is the matching model signal 
in frequency domain and c shows the matching degree results

Table 1 Classification results using different classifier

Features Classifier Macro-P (%) Macro-R (%) Accuracy (%)

SVM 95.1 95.7 94.9

FMFE KNN 90.3 90.5 90.0

Random forest 96.7 97.0 96.5

MLP 93.3 93.7 93.1

Table 2 Hyper-parameters for each type of features

Method The type of features N L O

TD.S.MD 8 6 3

TD.S.ME 8 6 3

FMFE FD.S.MD 8 2 3

FD.S.ME 8 2 3

FD.M.MD 8 2 3

FD.M.ME 8 2 3
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S1 of the template signal meets S2 of the original signal, 
due to the difference between the two and then minor 
matching degree are generated.

Similarly, the same principle in FD.S.MD of the match-
ing degree distribution as shown in Fig. 4c. What’s worth 
to be mentioned here is that the interval between the 
maximum matching degree and the minor matching 
degree is not normally fixed. In Fig.  3c, the difference 
between the maximum matching degree and the minor 
matching degree is about 2000 points, but in Fig. 4c, the 
interval is only less than 100 points. Their previous dis-
tance is determined by the interval between the main 
distribution and the minor distribution in the original 
signal. Similar interpretations can be drawn for the char-
acteristics of matching degree features in Fig. 5.

In this study, for this PCG dataset, FMFE showed the 
best results compared with other feature extraction 
methods. The method combined with the macro-pre-
cision, macro-recall and accuracy of the Random For-
est classifier model reached 96.7% and 97.0% and 96.5% 
respectively. The recognition sensitivity and specificity 
reached 97.0% and 99.1% respectively. In 2018, Yaseen 
et al. [8] used the DWT algorithm to extract the features 
from the database used in this study, and their method 
combined the SVM model reaches an accuracy of 92.3%. 
The performance of the algorithm proposed in this study 
has surpassed DWT used by [8], showing great potential. 
In 2019, Ali Mohammad et al. [31] established a recogni-
tion model based on the same PCG database using PCA 
and random forest algorithms. Their accuracy reaches 
94.8% which is also lower than the results of our study.

Wei Zeng et al. used the Teager–Kaiser energy operator 
(TKEO) and rational dilation wavelet transform (RDWT) 
methods to extract the instantaneous energy features of 
PCG signals. The average accuracy on five classifications 
could reaches 98.1%. However, the large amount of com-
putation is also its inevitable disadvantage [32]. Hamza 
Cherif et  al. confirmed the important role of discrete 
wavelets (DWT) in analysis of PCG signal [33]. All those 
researches have indicated that the importance of wave-
lets in the analysis of PCG. Oher research based on fuzzy 
features can also have reliable and effective applications, 
indicating fuzzy features also hold powerful potential in 
prediction tasks [34]. Therefore, to a certain extent, it 
shows the rationality of using Gaussian wavelet to extract 
fuzzy features in our proposed FMFE method. The study 
by Vibha Aggarwal et al. on the performance of DCT and 
DWT to PCG analysis also supports our views [35].

In fact, the FMFE only utilizes the time and frequency 
domain pattern matching information of the PCG signal, 
which can improve the feature engineering quality of the 
signal by integrating with other features. Here, we con-
sider fusing Mel Frequency Cepstral Coefficients (MFCC) 

into our extracted matching features and examine its 
effect. MFCC simulates the human auditory system [36] 
with Mel filters that are sparse at high frequencies and 
dense at low frequencies. MFCCs are cepstral parameters 
extracted from the Mel-scale frequency domain. The Mel 
scale is nonlinear and its relationship with frequency can 
be approximated by the following formula [36]:

After Mel filtering, the heart sound signal (mainly in 
low frequency) is well preserved, and finally restored to 
the time domain through DCT, which can be regarded 
as discrete signal envelope. The MFCC feature describes 
the slow changing process of the signal [36]. The model 
based on the fusion features of FMFE and MFCC greatly 
improves the recognition effect. As shown in Table  3, 
the macro-precision, macro-recall and accuracy of SVM 
model for recognizing five types of PCG signals based 
on the fusion features have all achieved or over 99.0%. 
Yaseen et al. [8] indicated that when MFCC is used inde-
pendently, the accuracy on SVM and KNN are 91.6% and 
80.2% respectively. However, features combined with 
MFCC by using SVM can reaches an accuracy of 97.9%. 
Alqudah et  al.utilized PCA for extracting features and 
random forest for classification to achieve an accuracy of 
94.8%. Their highest accuracy of 98.2% occurred by using 
Deep WaveNet with sensitivity of 97.0% and specificity 
of 92.5%. Tariq used CNN to reach an accuracy of 98.7% 
with a sensitivity of 98.7% and specificity of 99.6% [37]. 
In this research, the best accuracy of 99.0% of fuzzy fea-
tures can be obtained by using SVM classifier. This result 
has exceeded the results of other algorithms based on the 
same dataset (such as DWT + MFCC, deep wave net and 
CNN), and achieves the best performance in diagnosing 
cardiac diseases, as shown in Table 4.

Figure  6a shows that the best classification confusion 
matrix of independent FMFE from random forest. Only 
1 misclassification in NHS type can be obviously found 
among 200 test times. And there are 10 misdiagnoses in 
MR type, which is the highest of 5 types. However, the 

(25)Mel(f ) = 2585× log(1+
f

700
)

Table 3 Classification results using fusion features by different 
classifiers

Feature Classifier Macro-P 
(%)

Macro-R 
(%)

Accuracy (%)

SVM 99.1 99.4 99.0

FMFE + MFCCs KNN 98.5 98.5 98.4

Random 
forest

98.3 98.5 98.2

MLP 97.1 97.0 96.9
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right classification number of all five types is over 190 
showing well performance. Figure 6b shows that the best 
classification confusion matrix of FMFE plus MFCC from 
SVM. All the NHS samples are classified into right type. 
And other classification results are also better than inde-
pendent FMFE (Fig. 7).

In terms of the features itself we extracted by our 
method, the results of independent sample t-test 
showed that most of the extracted features usually had 
significant differences (p < 0.05). Take the statistical 
analysis results of the 2 features shown in Fig. 8 as an 
example. The significant difference between features 

is significant, and the significant difference p value 
between many categories is less than 0.001. The main 
reason is that different pathological features often have 
many unpredictable conditions. The stability of abnor-
mal heart sound signal is poor, so the data will fluctu-
ate greatly when matching and extracting features. On 
the contrary, the normal signal is often stable, so its 
fluctuation is relatively small. The significant difference 
between these features proves that there is good sepa-
rability between different classes based on these fea-
tures. At the same time, we use the extracted features 
to have binary classification among 5 categories. As 

Table 4 Comparison with related works in 5 years using the same heart sound dataset

–Denotes that there is no feature extraction method was used

References Feature extraction Classifier Accuracy (%) Sensitivity (%) Specificity (%)

[8] DWT + MFCCs SVM 97.9 98.2 99.4

[8] DWT SVM 92.3 92.3 98.4

[8] MFCCs SVM 91.6 87.3 96.6

[5] – Deep wavenet 98.2 97.0 92.5

[31] PCA Random forest 94.8 94.7 98.7

[31] PCA KNN 91.6 91.5 97.9

[37] – CNN 98.7 98.7 99.6

This study FMFE SVM 94.9 95.7 98.8

FMFE KNN 90.0 90.5 97.5

FMFE Random forest 96.5 97.0 99.1

FMFE MLP 93.1 93.7 98.3

FMFE + MFCCs SVM 99.0 99.4 99.7

FMFE + MFCCs KNN 98.4 98.5 99.6

FMFE + MFCCs Random forest 98.2 98.5 99.6

FMFE + MFCCs MLP 96.9 97.0 99.2

Fig. 6 Best classifications confusion matrix of independent FMFE and FMFE plus MFCC. a illustrates that the best classification confusion matrix 
of independent FMFE from random forest. There is only 1 misclassification in NHS type in 200 test times. b shows that the best classification 
confusion matrix of FMFE plus MFCC from SVM. All the NHS samples are classified into right type. And other classification results hold a better 
performance than independent FMFE. a and b presented excellent results of this method
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shown by the ROC in Fig.  7, the classifiers all achieve 
excellent results (all AUC greater than 0.97). The same 
is true for the joint features of FMFE plus MFCC fea-
tures. Therefore, the features extracted by our proposed 
FMFE method based on the heart sound signal are 
effective and reliable.

In general, we developed a one-dimension signal fea-
ture extraction algorithm based on fuzzy matching, and 
successfully improved the accuracy of abnormal cardiac 
diagnosis to a new level by integrating other features. 
It should be pointed out that different hyper parame-
ter settings will lead to a different performance of the 
method. The improvement of parameter optimization 
efficiency is the future research direction we need to 
focus on.

Conclusion
In this paper, a fuzzy matching feature extraction 
method for PCG signals is proposed. By combining 
with simple classifiers, features extracted by our pro-
posed method show a potential performance in recog-
nizing 5 categories of PCG signals. When integrated 
with MFCC features, the proposed feature extrac-
tion method obtained the best performance among 
all reported results based on the same dataset using 
feature engineering. With excellent interpretability 
and performance, our method may be promising in 
diagnosing cardiac diseases using machine learning 
techniques based on simple one-dimensional medical 
signals.

Fig. 7 Binary classification receiver operating characteristic curve (ROC) of FMFE and FMFE plus MFCC. The solid line represents the binary ROC 
of the independent FMFE features, and the dashed line represents the binary ROC of the FMFE plus MFCC features. All the AUC value surpassed 0.97 
showing advanced separability of the proposed features
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PCG  Phonocardiogram
CNN  Convolutional neural network
DNN  Deep neural network
RNN  Recursive neural network
KNN  K-nearest neighbor
SVM  Support vector machine
MLP  Multilayer perceptron
CVDs  Cardiovascular diseases
ECG  Electrocardiography
AUC   Area under curve
DCWT   Discrete convolution wavelet transform
FMFE  Fuzzy matching feature extraction
DCT  Discrete cosine transform
NHS  Normal heart sound
AR  Aortic regurgitation
MS  Mitral stenosis
MR  Mitral regurgitation
MVP  Mitral valve prolapse
FFT  Fast Fourier transform
TP  True positive
FP  False positive
FN  False negative
TN  True negative
TD.S.MD  Time domain self-matching degree
TD.S.ME  Time domain self-matching energy
FD.S.MD  Frequency domain self-matching degree
FD.S.ME  Frequency domain self-matching energy
FD.M.MD  Frequency domain mutual-matching degree
FD.M.ME  Frequency domain mutual-matching energy
ROC  Receiver operating characteristic curve
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