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Abstract 

Background: Censorship is the primary challenge in survival modeling, especially in human health studies. The 
classical methods have been limited by applications like Kaplan–Meier or restricted assumptions like the Cox regres-
sion model. On the other hand, Machine learning algorithms commonly rely on the high dimensionality of data and 
ignore the censorship attribute. In addition, these algorithms are more sophisticated to understand and utilize. We 
propose a novel approach based on the Bayesian network to address these issues.

Methods: We proposed a two-slice temporal Bayesian network model for the survival data, introducing the survival 
and censorship status in each observed time as the dynamic states. A score-based algorithm learned the structure of 
the directed acyclic graph. The likelihood approach conducted parameter learning. We conducted a simulation study 
to assess the performance of our model in comparison with the Kaplan–Meier and Cox proportional hazard regres-
sion. We defined various scenarios according to the sample size, censoring rate, and shapes of survival and censoring 
distributions across time. Finally, we fit the model on a real-world dataset that includes 760 post gastrectomy surgery 
due to gastric cancer. The validation of the model was explored using the hold-out technique based on the posterior 
classification error. Our survival model performance results were compared using the Kaplan–Meier and Cox propor-
tional hazard models.

Results: The simulation study shows the superiority of DBN in bias reduction for many scenarios compared with Cox 
regression and Kaplan–Meier, especially in the late survival times. In the real-world data, the structure of the dynamic 
Bayesian network model satisfied the finding from Kaplan–Meier and Cox regression classical approaches. The 
posterior classification error found from the validation technique did not exceed 0.04, representing that our network 
predicted the state variables with more than 96% accuracy.

Conclusions: Our proposed dynamic Bayesian network model could be used as a data mining technique in the con-
text of survival data analysis. The advantages of this approach are feature selection ability, straightforward interpreta-
tion, handling of high-dimensional data, and few assumptions.
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Background
Survival analysis is the formal name for an essential 
branch of statistics. It aims to study the time of the spe-
cific event and explore the particular circumstances 
or characteristics that influence it [1]. We know these 
techniques as reliability analysis in engineering and 
industries. The usual interest is the lifetime of devices, 
products, and machines in these contexts [2–4]. The 
intrinsic features of subjects in these domains enable the 
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investigators to control all the processes and fully observe 
the data [3, 5].

Further, when the subjects are humans, the survival 
models confront the crucial challenge of incomplete data 
and the high dimension of confounders more than the 
other context. The incomplete data known as censoring is 
expected because sample withdrawal or loss of follow-up 
exceeds the event time of the study period [6, 7]. Despite 
all efforts to evolve the survival models, some challenges 
in classical methods show the necessity of developing 
new approaches in practice [8–10].

The Kaplan–Meier method, also known as product-
limit, is one of the primary and still popular methods in 
analyzing survival data. This method estimated the sur-
vival probability function of data in a straightforward and 
easy-to-understand manner. In addition, the Kaplan–
Meier is a nonparametric approach, and a few assump-
tions are required to apply it to data [1, 11]. However, the 
simplicity of Kaplan–Meier restricts its applications. For 
instance, it cannot account for multiple factors or control 
for confounding factors. Therefore, in the case of fea-
ture selection and group comparisons, we need to apply 
additional analyses such as the low power log-rank test. 
In this procedure, insufficient sample size and increasing 
the number of features lead to inaccurate inferences [12]. 
Another alternative is regression approaches like the Cox 
proportional hazard model. Using these models is lim-
ited by restrictive assumptions like the proportionality 
of hazards, independence of censoring and survival dis-
tribution, and exponential relation between hazard and 
covariates [13].

On the other hand, developing the application of 
machine learning algorithms in recent decades has 
reformed many classical approaches to data analysis. 
The survival analysis is one of the domains that changed 
significantly [2, 9, 10]. In this manner, the applications 
of random forests [14, 15], Bayesian methods [5, 16, 
17], neural networks [18–21], support vector machines 
[22, 23], ensemble learning [24, 25], and active learning 
[26, 27] algorithms were introduced in survival analy-
sis. These changes enable us to resolve issues with a new 
practice even though the general idea is similar to classi-
cal approaches.

As mentioned, incompletely observed data or cen-
sorship is the primary challenge in survival modeling, 
especially in health. Considerable studies that intro-
duced the application of machine learning algorithms in 
survival analysis did not engage the censorship because 
of the study subject’s type [5]. Some other studies relied 
on high sample size and ignored the censored obser-
vations or imputed them by modeling approaches [28, 
29]. Finally, a few studies directly address censorship 

using the methods like weighting the censored obser-
vation [30]. However, there is a gap between classical 
approaches and novel machine learning techniques 
that use intelligent algorithms to extract data patterns. 
The classic methods were developed to handle small to 
medium-dimension data and find a general overview. In 
contrast, the machine learning algorithm and data min-
ing techniques aim to handle high-dimensional data. 
These methods focus on the prediction with maximum 
accuracy.

This study proposes a novel Dynamic Bayesian Net-
work (DBN) model for data mining in the context of 
survival data analysis. The Bayesian Network (BN) has 
a series of powerful tools that could facilitate survival 
analysis. Actually, the BN combines probability theory 
and graphical models [31]. Consequently, it enabled us 
to capture the uncertainty of stochastic survival events 
and represent a graphical structure of probability dis-
tribution. In addition, our model uses the Kaplan–
Meier idea to consider the censoring phenomena and 
the various capability of BN models to add extra tools 
for more precise inferences simultaneously. The struc-
ture learning algorithm of the BN ables us to compare 
the groups and find the significant features. In addition, 
parameter learning algorithms lead to more precise 
inferences, estimations, and predictions. In this study, 
we present our DBN model for survival analysis, evalu-
ate its performance using a simulation study, and finally 
use a real-world data set to show the way analysis could 
be performed using that.

Methods
Product limit estimators
The primary objective of survival analysis is to explore 
the time until a particular event. Hence, we describe 
the stochastic behavior of an outcome variable in time 
type. We usually use survival, density, hazard, and the 
mean or median residual life functions in this regard. 
As these functions are attainable from each other, there 
is no priority except for better interpretability in choos-
ing one. The product limit estimators are the estimates 
of survival function, which is defined as the probability 
of an individual surviving after a given time point t:

T is a random variable that denotes when the event of 
interest occurs. Kaplan and Meier partitioned observed 
times into intervals according to unique event times 
and proposed the following estimator for all t values in 
the range of observed data when t1 represent the first 
event time [1]:

S(t) = P(T > t)
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where di and Yi represent the number of failures and at-
risk persons in each interval, respectively. Therefore, the 
product-limit estimator is a discrete approach that leads 
to a step function that only changes at event times. The 
Greenwood formula is the well-known approach to esti-
mating the variance of the estimators [1]:

Bayesian network
Every Bayesian Networks (BNs) correspond to a Directed 
Acyclic Graph (DAG) and a joint distribution, which 
are the graphical and probabilistic aspects of the model. 
DAG consists of nodes corresponding to random vari-
ables and edges that present conditional probabilities. 
According to the domain of the random variables, the 
BN could be discrete, Gaussian, or hybrid. Our BN in this 
study is a discrete one. Therefore, for a set of discrete ran-
dom variables X = (X1,X2, . . . ,XD) Taking their values 
in the discrete and finite D-dimensional domain. The BN 
is defined as pair M =

(

}, (P(Xd |PX (Xd)))1≤d≤D

)

 where 
} = (X , ε) is a DAG presentation of random variables X 
with edges set ε , PX (Xd) is the set of parents Xd in X , and 
(P(Xd |PX (Xd)))1≤d≤D is the conditional probability of 
node Xd given their parents in the set X.

The appealing feature of BN is to summarize the com-
plex joint probability distribution X in the following par-
simonious way using the conditional independence and 
Markov chain properties:

Dynamic Bayesian network
The classical BN is not adopted to address time-depend-
ent processes like survival analysis [32]. Therefore, 
Dynamic Bayesian Network (DBN) [33] was introduced 
to extend this process. In this context, time-depend-
ent random variables (X t)t≥1 =

(

X1,t , . . . ,XD,t

)

t≥1
 are 

defined where t is a discrete index time formally called 
slice. DBN uses Markov property which indicates the 
future of a stochastic process is independent of its past, 
given current status or several lags before it. The num-
ber of lags determines the order of the Markov process. 
This study only needs to use the Markov process of order 

(1)Ŝ(t) =







1 if t < t1
�

ti≤t

�

1− di
Yi

�

if t1 ≤ t

(2)V̂
[

Ŝ(t)
]

= Ŝ(t)2
∑

ti≤t

di

Yi(Yi − di)

(3)P(X1,X2, . . . ,XD) =
D
∏

d=1

P(Xd |PX (Xd))

1, which leads to a 2-slice Temporal Bayesian Network 
(2-TBN). In this regard, we assume Xt−1⊥Xt+1|Xt for 
all t ≥ 2 . A 2-TBN could be defined as a pair of 2 BNs 
(M1,M→) where M1 is the joint distribution of the ini-
tial process X1 =

(

X1,1, . . . ,XD,1

)

 and M→ represent the 
transition model. The joint probability distribution M1 
easily derived from BN approach in Eq. 3:

In the transition model, the joint distribution of X t 
only depends on random variables belonging to the set of 
parents X t at slice t − 1 in the form:

Hence the probability distribution of 2-TBN is calcu-
lated by the combination of Eqs. 4,5:

In order to consider the time stationary covariates 
Z =

(

Z1, . . . ,Zq

)

  in the model, we could extend the par-
ent sets in both initial processes M1 and transition model 
M→ . In this manner, the initial conditional probability 
could be presented as:

where the PX Xd,1  and PZ

(

Xd,1

)

 represent the sets 
of parents Xd,1 in X and Z, respectively. On the other 
hand, the modified transition probability distribution is 
reformed to:

Dynamic Bayesian network interpretation of product limit 
estimators
A DBN of type 2-TBN could efficiently conduct the 
calculation process of product-limit estimators. The 
product-limit approach considers the time as discrete 

(4)P(X1) =
D
∏

d=1

P
(

Xd,1|PX

(

Xd,1

))

(5)
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intervals between consecutive observed failure times and 
counts the individuals at risk and failures. Equivalently, 
we define discrete intervals of Kaplan–Meier as slices and 
two time-dependent binary status variables. The survival 
state variables Ni,t is equal to 1 if individual i survives at 
least to slice t and state variables Qi,t is equal to 1 if the 
individual i censored before or at slice t. Defining these 
variables enables us to form the DBN in Fig. 1 to analyze 
survival data. In addition, we can enter other fixed effect 
covariates in Z to the model and examine their impor-
tance by the structure learning algorithms.

The DBN estimators of survival probability at each time 
t according to Eq. 6 are equal to:

Moreover, the discrete covariates set PZ(Nt) were 
found by structure learning algorithms.

For simplicity, we consider there are no covariates in 
the model, so Eq. (7) could be modified by counter func-
tion N:

That is the same as product-limit estimators in Eq. (1). 
Therefore, we are able to use the Greenwood formula in 
Eq.  (2) to calculate the variance of survival estimations. 
In addition, the common bootstrapping approaches in 
the BN context, like likelihood weighting and logic sam-
pling, are the alternative approach in this way[34].

(7)Ŝ(t) = P(N1 = 1|PZ(Nt))

T
∏

t=2

P(Nt = 1|Nt−1 = 1,Qt−1 = 0,PZ(Nt))

(8)

Ŝ(t) = P(N1 = 1)

T
∏

t=2

P(Nt = 1|Nt−1 = 1,Qt−1 = 0)

= N (Ni1 = 1)

N

T
∏

t=2

N (Nit = 1)

N
(

Ni,t−1 = 1,Qi,t−1 = 0
)

= Ŝ(1)

T
∏

t=2

[

1− dt

Yt

]

Simulation study
We conducted a simulation study to assess the perfor-
mance of our model in comparison with the Kaplan–
Meier and Cox proportional hazard regression. We 
defined various scenarios according to the sample size 
(N = 800, 5000, 10,000), censoring rate (R = 25%, 40%, 
60%), and shape parameters of survival ( αS ) and cen-
soring ( αC ) distributions. We considered five covari-
ates distributed as mutually independent binomial 
distributions with different probability parameters 
[Xi ∼ B(N ,Pi), i = 1, . . . , 5Pi = 0.1, 0.2, 0.5, 0.7, 0.9].

The survival and censoring times were generated using 
Weibull distributions. The scale parameter of survival 

time distribution was reparametrized according to the 

summation of the covariates 
[

θS =
5
∑

i=1

Xi

]

 . Using the 

numerical methods and assuming the fixed value for cen-
sorship, we found the scale parameter of censoring time 
distribution. We set the shape parameter of survival and 
censoring distributions as the values 0.5 (decreasing 
event/censor rate), 1 (constant event/censor rate), and 2 
(increasing event/censor rate). In this manner, we 
achieved nine different scenarios for the shape of sur-
vival/censoring times.

In brief, if the survival time S ≥ 0 follows the below 
Weibull distribution:

where scale parameter θS and shape parameter αS were 
defined before, the cumulative distribution function of S 
is:

As the Weibull is a continuous random distribution 
F(s;αS , θS) ∼ U(0, 1) . Therefore we generated N sam-
ples ui ∼ U(0, 1) for i = 1, . . . ,N  and then compute the 

si = θS
1
/αS
√
−ln(ui) . A similar approach was used to 

generate the censored times cis.
We fitted all three models to the simulated data and 

estimated survival probability at 20%, 50% (median), and 
80% percentiles of actual survival times. The bias and its 
Root Mean Squared Errors (RMSE) were calculated in 
1000 randomly generated samples in each scenario.

f (s;αS , θS) =
αS

θS

(

s

θS

)αS−1

exp

(

−
(

s

θS

)αS
)

F(s;αS , θS) = 1− exp

(

−
(

s

θS

)αS
)

Fig. 1 Prior and transition Bayesian networks correspond to the 
extended dynamic Bayesian network representation of the Kaplan–
Meier approach
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Real data analysis
We applied our proposed method to real-world survival 
data. The 760 patients diagnosed with gastric cancer at 
the Iran cancer Institute and who had undergone gas-
trectomy from 1995 to 2012 entered the study. This 
historical and artificial cohort of patients was followed 
until observing death events. The censorship was con-
sidered in case of loss to follow-up or being alive at 
the end of observation time. All the variables except 
follow-up duration were time stationery and were col-
lected at the surgery time.

We conducted the ordinary Kaplan–Meier survival 
analysis, DBN, and Cox proportional hazard (PH) 
model. The Cox PH model was added to compare our 
findings with a regression model that could handle 
the covariate effect in survival analysis. In addition, 
the censor probability plots were generated using the 
Kaplan–Meier approach. For this purpose, we defined 
censorship as the primary event and death as the alter-
native status.

Structure learning
We used Hill-Climbing (HC) and Tabu search, two of 
the most popular score-based learning algorithms, to 
find the structure of DAG [35]. The last event occurred 
15 years after surgery, and there was no event in year 13 
post-surgery. Therefore 14 eligible slices t correspond to 
the unique event year were defined in the DBN structure. 
The prior and transition networks in Fig. 1 related to Ni,t 
and Qi,t were considered as the white list, and the algo-
rithms learned the structure of stationary variables Z. 
The validation of structure learning was conducted by the 
ten repeated hold-out technique using ten subsamples in 
size 30% of the original data [36]. The posterior classifica-
tion error based on likelihood weighting was set as the 
loss function [37]. The validation process was repeated 
according to different score functions, including loga-
rithm of likelihood, AIC, BIC, BDE, BDS, and K 2 [38].

Results
Simulation study
Table  1 represents the bias and related RMSE of esti-
mated survival probability by models in different sce-
narios. For instance, the first value of − 0.0033 (0.0046) 
is observed for bias (RMSE) for a sample size of 800 
and censorship of 25%. It shows that the Kaplan–Meier 
approach estimated the survival probability by 0.0033 
less than the actual value when the random samples 
come from the survival and censoring distributions with 
increasing rates over time. Cox and DBN estimations 
in this scenario are 0.004 and −  0.0008 differ from the 
actual probability, respectively. Therefore, the minimum 
absolute bias value is related to the DBN model.

The Cox regression model shows superiority according 
to the minimum bias for most scenarios in Table  1. On 
the other hand, the DBN estimates actual survival prob-
ability better than the Cox approach in 52% of simula-
tion scenarios which assumes an increasing censor rate 
across time. Increasing the censoring rate causes higher 
observed bias (RMSE) for all the models. The constant 
censor rate across time (alpha c = 1), which corresponds 
to non-informative censoring, shows lower levels of bias 
(RMSE) in all the scenarios.

Similar results for exploring median survival time are 
presented in Table 2. The number of scenarios in which 
the DBN is superior to other models due to bias (RMSE) 
reduction is relatively higher than in Table 1. In addition, 
Cox is not significantly better than DBN in all situations, 
and in many cases, its absolute bias is less than 0.001 of 
DBN.

The results of exploring the percentile of 80% of sur-
vival time in Table  3 reveal that the DBN model is 
superior in bias (RMSE) reduction in all the scenarios 
except one. When the data comes from survival distri-
bution with shape parameter 0.5 and the censoring rate 
increases across time (alpha c = 2), for the sample sizes 
of 5000 with 60% censoring, the bias (RMSE) of Cox 
regression is −  0.1373 (0.1345). DBN’s bias (RMSE) for 
this scenario is − 0.1375 (0.138). We should consider the 
increasing RMSE according to heavy censoring in this 
scenario. It causes more variation for Cox results, leading 
to the unstable mean of bias values.
Real data analysis
The baseline characteristics of patients by their status 
in the last observation are summarized in Table  4. The 
pathology exam for the 672 (88%) patients resulted in ade-
nocarcinoma; however, the prevalence did not differ signif-
icantly across groups. The total gastrectomy was the most 
prevalent procedure, with 403 (53%). However, the death 
event was distributed almost equally in all the surgery 
types (P-value = 0.3). As a predictable pattern, the metas-
tasis cases were less frequent in survivors (17% of them 
survived compared to 83% of death cases). In addition, the 
survivors were almost categorized into the lower Stages.

We used the Tabu search algorithm based on the BDE 
score function, considering the clinical justifications 
and validation results. The final DAG is presented in 
Fig. 2. For a better exploration, the survival and censor 
probability curves are depicted in Figs. 3 and 4. Accord-
ing to the DAG in Fig. 2, the baseline age is related to 
survival in the first- and second years post-operative. 
The corresponding Kaplan–Meier curve in Fig.  3 con-
firmed this finding, and the survival lines diverge in the 
initial years and continue to be parallel. On the other 
hand, there is an edge between metastatic status and 
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N4 in DAG. The survival lines in Fig.  3 for metastasis 
and non-metastasis cases started to get away from each 
other at this time point.

On the other hand, the directed edges from age to 
Q6 and Q7 in DAG correspond to flattening the cen-
sor probability after year 6 for more than 70 years old 
patients and a sharp decrease in censor probability less 
than 61 in year seven that leads to crossing another line 
(Fig. 4). The censor probability lines of adenocarcinoma 
and the other group separate from each other at years 
3 and 5 in Fig.  4. It is coordinated to edges from the 
pathology node to Q3 and Q5 . All the other edges from 
the covariates to Qt nodes in DAG correspond to a spe-
cific pattern in Fig. 4 and are justifiable.

According to Table  5, the higher baseline age is the 
most critical factor for experiencing the death event 
early. The hazards for 61–70 and more than 70  years 
old patients are 1.77 (95% CI 1.40–2.24) and 3.99 (95% 
CI 3.09–5.14) times for those less than 61 years old. The 
edges from the age node to N1 and N2 in Fig.  2 assert 
that the effect of age is more notable in the initial times.

The stage and metastasis reflect two relatively same 
aspects of disease progression in surgery time. There-
fore, there is some degree of correlation between 
these variables. That is why the stage was no longer 
significant in the multivariable model when we added 
metastasis. The metastasis cases had a 3.89 (95% CI 
1.57–9.62) times higher hazard than the others. In 

Table 4 Descriptive statistics of patients by the last observation status

a Pearson’s Chi-squared test

Variable Overall, N = 760 Death, N = 573 Survivor, N = 187 P-valuea

n (%) n (%) n (%)

Pathology 0.053

 Adeno 672 (88) 514 (77) 158 (24)

 Other 88 (12) 59 (67) 29 (33)

Surgery 0.257

 Total gastrectomy 403 (53) 306 (76) 97 (24)

 Subtotal gastrectomy 194 (26) 142 (73) 52 (27)

 Distal gastrectomy 32 (4.2) 20 (63) 12 (38)

 Partial gastrectomy 59 (7.8) 46 (78) 13 (22)

 Proximal gastrectomy 72 (9.5) 59 (82) 13 (18)

Age < 0.001

 < 61 184 (24) 106 (58) 78 (42)

 61–70 363 (48) 266 (73) 97 (27)

 > 70 213 (28) 201 (94) 12 (6)

Sex 0.957

 Female 241 (32) 182 (75) 59 (25)

 Male 519 (68) 391 (75) 128 (25)

Smoking 0.759

 Non-smoker 523 (69) 396 (76) 127 (24)

 Smoker 237 (31) 177 (75) 60 (25)

Site 0.102

 Cardia 341 (45) 263 (77) 78 (23)

 Antrum 150 (20) 103 (69) 47 (31)

 Other 269 (35) 207 (77) 62 (23)

Metastasis < 0.001

 Non-Metastasis 321 (42) 208 (65) 113 (35)

 Metastasis 439 (58) 365 (83) 74 (17)

Stage < 0.001

 I 61 (8.0) 31 (51) 30 (49)

 II 265 (35) 182 (69) 83 (31)

 III 295 (39) 237 (80) 58 (20)

 IV 139 (18) 123 (89) 16 (12)
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Fig. 2 Representation of DAG corresponds to survival analysis of real-world data (survival of patients after gastrectomy) surgery

Fig. 3 Kaplan–Meier survival probability curves of patients according to their baseline characteristics and the results of the log-rank test to 
compare the curves
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contrast to the DBN, the Cox model does not ensure us 
about the relations between these variables. We present 
the conditional probability tables of the model covari-
ates in the Additional file 1 for more clarification.

As the results of model validation, the mean posterior 
classification errors and their standard deviation for the 
whole learned network and Nt , and Qt nodes are repre-
sented in the Additional file 1. The expected loss for all 
the scenarios did not exceed the acceptable value of 0.04, 
which means all the networks predicted the state vari-
ables with more than 96% accuracy.

Discussion
We extended the classical idea of the Kaplan–Meier 
estimator and used the BN facilities to make a novel 
model for analyzing the survival data. The Bayesian 
network tools enable us to explore the different aspects 
of data in a previously impossible way. For instance, 
nonparametric survival methods like Kaplan–Meier 
were not adjusted to take covariates into account. On 
the other hand, the regression approaches only focus on 
the outcome variable and ignore the relations between 
covariates. The majority of the survival models were 
developed according to strict assumptions. In most 
applied cases, checking these assumptions is ignored or 
even hard to satisfy. Our model addressed the issues of 

the previous approaches and required the least possible 
assumptions.

Censorship which leads to incomplete observations, is 
an intrinsic property of survival data. Methods developed 
in this domain tried to manage this issue and incorpo-
rate the information of the censored observation as much 
as possible. Many researchers in the setting of machine 
learning ignore the censor observation and change the 
problem to explore the continuous-time outcome vari-
able [5, 17, 28, 29]. In contrast, we consider a state for 
censorship that enables the model to examine how covar-
iates affect this state. This property significantly increases 
the prediction power of the model. In real-world appli-
cations, administrators of data registries could manage 
situations to avoid preventable censorship.

The graphical aspect and conditional probability distri-
butions of BN reflect much information in the simplest 
form. In comparison, other survival base algorithms in 
machine learning, like neural networks [18–21], support 
vector machines [22, 23], and ensemble models [24, 25], 
are as much sophisticated in outlining the patterns of 
data. On the other hand, alternative classical approaches 
like the Cox PH, frailty concept, and the other parametric 
regression models [1] involves the users in the intricate 
interpretations of their effect sizes.

Fig. 4 The censorship probability curve of patients according to their baseline characteristics and the results of the log-rank test to compare the 
curves
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The DAG of the BN model is the only mechanism 
for demonstrating the intra-relationship of covariates 
which is not available in the alternative approaches. For 
instance, interventions could be designed basis on the 
roots of the network or the parents of unchangeable 
nodes. In addition, this model feedback the correlation 
between variables, as we have seen in our example. The 
causal inference is one of the extensions of BNs, which 
we do not explore here [39]. Finally, the DBN forced the 
covariates to be discretized.

Using the semiparametric and parametric survival 
models should be cautionary. The Cox model’s propor-
tional hazard assumption violation leads to incorrect 
inferences or underestimating the hazard ratio [13, 40]. 
On the other hand, the parametric approach relies on the 
outcome distribution. These models assume a parametric 
distribution for the survival time, which is hard to satisfy, 
significantly when we have heavily censored data [41]. 
Finally, even the nonparametric approaches assume non-
informative censorship [42]. Our BN has two primary 
assumptions. At first, the variables follow the Markov 
property, and then conditional multinomial or condi-
tional binomial distribution is appropriate for discrete 

nodes. Both of these assumptions are logical in practice 
[43].

We conducted a wide range of scenarios in the simu-
lation study. The DBN was superior to Kaplan–Meier in 
bias (RMSE) reduction in almost all of them. In addition, 
our results showed the comparability of Cox regression 
and DBN in this context. Our model was significantly 
superior to the Cox regression when the interest was 
exploring late survival times.

The Kaplan Meier biases were negative in all the sce-
narios. Hence, this method always estimates the survival 
probability as less than the actual value. Other simulation 
studies explain this issue [44, 45], and several suggest cor-
rection approaches. Stute and Wang proposed a Jackknife 
method to reduce the Kaplan Meier bias [46]. In another 
attempt, Jiang used the geometric mean of survival and 
censoring curves for bias correction [47].

In most scenarios that explore the lowest percentile 
with the lower sensor rate, the bias of Cox regression was 
estimated to be positive. In addition, the Cox biases were 
positive in the decreasing event rate and increasing cen-
sor rate for all the scenarios. Langner et al. showed that 
the maximum likelihood estimations of Cox are biased. 

Table 5 The results of the univariable and multivariable Cox PH model

a Pearson’s Chi-squared test

Characteristic (Reference) Univariable Multivariable

HRa 95%  CIa P-value HRa 95%  CIa P-value

Pathology (Other)

 Adeno 1.37 1.04, 1.79 0.023 1.33 1.00, 1.78 0.048
Surgery (Total gastrectomy)

 Subtotal gastrectomy 0.96 0.79, 1.17 0.683 1.01 0.81, 1.25 0.941

 Distal gastrectomy 0.67 0.42, 1.05 0.080 1.07 0.65, 1.75 0.799

 Partial gastrectomy 0.95 0.70, 1.30 0.758 1.02 0.74, 1.41 0.911

 Proximal gastrectomy 1.04 0.78, 1.37 0.808 0.86 0.64, 1.15 0.302

Age (< 61)

 61–70 1.74 1.38, 2.19 < 0.001 1.77 1.40, 2.24 < 0.001
 > 70 3.73 2.91, 4.77 < 0.001 3.99 3.09, 5.14 < 0.001

Sex (Female)

 Male 1.07 0.90, 1.28 0.438 1.04 0.86, 1.27 0.680

Smoking (Non-smoker)

 Smoker 1.00 0.84, 1.19 0.975 0.95 0.78, 1.15 0.595

Site (Other)

 Antrum 0.86 0.68, 1.09 0.179 0.81 0.64, 1.04 0.102

 Cardia 1.13 0.94, 1.36 0.207 1.17 0.96, 1.43 0.128

Metastasis (Non-Metastasis)

 Metastasis 1.52 1.28, 1.81 < 0.001 3.89 1.57, 9.62 0.003
Stage (I)

 II 1.96 1.33, 2.87 < 0.001 1.95 1.29, 2.94 0.002
 III 2.38 1.63, 3.46 < 0.001 0.54 0.20, 1.45 0.219

 IV 3.00 2.01, 4.46 < 0.001 0.85 0.31, 2.32 0.755
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They conducted a simulation study and concluded that 
there is a direct relationship between higher levels of 
event risk and seeing positive bias [48]. In concordance 
with their findings, we find that everywhere we expected 
to see the event, more than censoring the biases tend to 
the positive values.

The relation of covariates in our model is reasonably 
justifiable in the clinical aspect. Gender is the most known 
indicator of smoking across the population. According to 
the national representative survey, the age-standardized 
prevalence of current tobacco smoking among Iranian 
adults was 24.4% (95% CI 23.6–25.1) in males and 3.8% 
(95% CI 3.5–4.1) in females [49]. Therefore, it seems evi-
dent that the sex node is the parent of smoking.

We used the 7th version of the TNM Classification 
of Malignant Tumors (TNM) staging system for gastric 
cancer. The M parameter in TNM, representing distance 
metastases, is a critical prognostic for survival probabil-
ity [50]. On the other hand, some studies described that 
the 7th TNM did not appropriately classify the biologi-
cal behavior of cancer and the prognosis of patients [51]. 
In this manner, the 8th edition of the TNM staging with 
reforms to show relevant differences in stage III disease 
survival rates was released [52]. These arguments support 
our finding that TNM and stage nodes are affected by 
metastasis but are not the parents of any survival mecha-
nism nodes.

Several studies on the Iranian population confirmed 
that a higher baseline age increases the hazard of death 
events in gastric patients who have undergone surgery. 
Interestingly, these studies did not mention a significant 
difference between males and females [53, 54].

Conclusion
Our proposed DBN could be used as a data mining tech-
nique in the context of survival data analysis. The feature 
selection ability of this model is comparable with the Cox 
PH model in both statistical and clinical aspects. In contrast 
to the Kaplan–Meier, our model can handle high-dimen-
sional data and does not require the restrictive assumptions 
of regression approaches. The available machine learning 
algorithms are relatively sophisticated and rarely consider 
the censorship property of survival data. Whereas BN is a 
straightforward method, the DBN incorporates the infor-
mation of censoring observations in inferences.

In this study, we introduced the simplest DBN model for 
survival analysis and compared its performance to the most 
used methods in the clinical field. This model could be 
adjusted for a specific situation like competing risk, time-
variant covariates, and high dimensional data. In this man-
ner, more specific simulation studies would be required.
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