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Abstract 

Background:  The last few decades have seen the approval of many new treatment options for Relapsing-Remitting 
Multiple Sclerosis (RRMS), as well as advances in diagnostic methodology and criteria. These developments have 
greatly improved the available treatment options for today’s Relapsing-Remitting Multiple Sclerosis patients. This 
increased availability of disease modifying treatments, however, has implications for clinical trial design in this thera-
peutic area. The availability of better diagnostics and more treatment options have not only contributed to progres-
sively decreasing relapse rates in clinical trial populations but have also resulted in the evolution of control arms, as 
it is often no longer sufficient to show improvement from placebo. As a result, not only have clinical trials become 
longer and more expensive but comparing the results to those of “historical” trials has also become more difficult.

Methods:  In order to aid design of clinical trials in RRMS, we have developed a simulator called MS TreatSim which 
can simulate the response of customizable, heterogeneous groups of patients to four common Relapsing-Remitting 
Multiple Sclerosis treatment options. MS TreatSim combines a mechanistic, agent-based model of the immune-based 
etiology of RRMS with a simulation framework for the generation and virtual trial simulation of populations of digital 
patients.

Results:  In this study, the product was first applied to generate diverse populations of digital patients. Then we 
applied it to reproduce a phase III trial of natalizumab as published 15 years ago as a use case. Within the limitations 
of synthetic data availability, the results showed the potential of applying MS TreatSim to recreate the relapse rates of 
this historical trial of natalizumab.

Conclusions:  MS TreatSim’s synergistic combination of a mechanistic model with a clinical trial simulation framework 
is a tool that may advance model-based clinical trial design.

Keywords:  Relapsing-Remitting Multiple Sclerosis, In silico trials, Digital patient, Computational modeling and 
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Background
In the past decade, the landscape of Relapsing-Remitting 
Multiple Sclerosis (RRMS) treatment has been trans-
formed. The number of approved disease modifying 
therapies (DMTs) for MS has increased quickly, with 
currently over 10 DMTs on the market [1, 2]. The wide 
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selection of first- and second-line therapies available for 
RRMS means there are multiple treatment options avail-
able for patients with both mild and moderate disease. 
Simultaneously, earlier and more sensitive diagnosis of 
RRMS has been facilitated by improvements in diagnos-
tic criteria and methodology [3].

These developments have led to increased options and 
a better outlook for patients. However, they have also 
complicated not only treatment planning for RRMS, but 
also designing and executing successful clinical trials for 
new DMTs [4]. Firstly, with so many efficacious treatment 
options available, new DMTs are less often tested against 
placebo, but rather need to show a benefit with respect to 
existing DMTs. Second, the availability of more sensitive 
diagnosis and more effective treatment have resulted in 
a change in the typical clinical trial population—current 
trial populations generally consist of patients with lower 
annual relapse rates and less advanced disease than pop-
ulations in historical trials [4].

These changes influence trial design in several differ-
ent ways. A milder disease with fewer relapses results in 
the necessity for longer, larger, and thus more expensive 
clinical trials. Additionally, determining the optimal trial 
design is complicated by the fact that extrapolating the 
effect of the existing medication currently used in control 
arms from “historical” patients’ populations to patients’ 
populations included in today’s trials can be a challenge.

To support clinical trial design optimization and there-
fore to increase drug development programs success 
chances we have developed MS TreatSim, a web-based 
product which leverages a mechanistic, agent-based 
model of the immune system and its dysregulation in 
RRMS [5, 6]. The product includes mechanisms of action 
(MoA) and quantitative effects for four commonly used 
RRMS treatments (IFNβ-1a, teriflunomide, natalizumab 
and ocrelizumab) at various doses and regimens. Here, 
we show that the simulator can be used to select hetero-
geneous patients’ populations with a tailored level of dis-
ease severity, allowing the user to switch between mild 
and moderate disease stages and to investigate the effects 
of existing drugs. Finally, in this use case, we illustrate 
how the simulator can be used to reproduce a historical 
trial by simulating and reproducing the relapse rates of 
the AFFIRM phase III trial on natalizumab [7].

Methods
MS TreatSim (InSilicoTrials Technologies SpA, mstreat.
insiliconeuro.com) is a web-based product available on 
the cloud-based InSilicoTrials.com platform [8]. The plat-
form exploits Microsoft Azure infrastructure to allow 
large-scale simulations with real world computation 
times of minutes to hours [9]. MS TreatSim is available 
through a Software as a Service (SaaS) delivery model, 

with pay-per-use pricing (additional information on tool 
access can be found at https://​insil​icotr​ials.​com/​mstre​
atsim).

MS TreatSim creates groups of digital patients (DPs), 
to which customizable simulation workflows reflecting 
selected treatment plans are applied. MS TreatSim lev-
erages a mechanistic model of the immune system, the 
auto-immune response that characterizes RRMS, and 
four commonly prescribed treatment options.

The simulation framework and the mechanistic model 
underlying MS TreatSim
The model was built in the Universal Immune System 
Simulator (UISS) framework [10]. UISS incorporates a 
detailed model of the innate and adaptive immune sys-
tem, implemented using the agent-based modelling para-
digm. The framework has been employed to simulate and 
support a variety of pathogen responses, vaccine mecha-
nisms and immune disorders, including tuberculosis vac-
cination [11, 12], citrus-derived vaccine adjuvants [13], 
and COVID-19 infection and vaccination [14, 15], and 
has undergone various validation and verification proce-
dures [16]. The framework is flexible and multifunctional, 
allowing expansion of the basic immune functionality to 
specific disease pathology and treatment MoA [10].

In UISS, cells of the immune system are modelled as 
agents—entities that are followed in an individual way. 
Such an implementation allows a realistic representa-
tion of the complex interactions and stochasticity of the 
human immune system. The model incorporates the 
interactions and behaviors of the main lymphocytes of 
the immune system, including B cells, T helper cells, T 
regulatory cells, cytotoxic T cells, and natural killer cells. 
The flexible agent-based core is modelled on a spatial grid 
and combined with a binary string-based implementa-
tion of receptor ligand binding, hematopoiesis and thy-
mus selection, and cytokine signaling.

For application to RRMS, the model was extended 
with the basic components and tissues of multiple scle-
rosis [5]. Spatially, the RRMS model includes a white 
matter compartment, populated with oligodendro-
cytes. These oligodendrocytes may be attacked by the 
immune cells via the auto-immune response to the 
oligodendrocyte-associated self-antigen. In the simula-
tion, the recognition of such self-antigens is triggered 
by an event replicating an Epstein-Barr Virus infection 
[5, 17]. Reductions in oligodendrocyte numbers as a 
result of auto-immune events are interpreted as relapses. 
Immune heterogeneity and the main characteristics 
determining disease severity (e.g. age of onset, lesion 
load, oligoclonal band status) are incorporated via cali-
brated model settings and parameters, so that the final 
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model provides an individualized, tailored, simulation of 
RRMS. Further details are reported in [5, 11, 12, 14, 16, 
18].

Finally, treatment for RRMS is implemented by incor-
porating the mechanism of four commonly prescribed 
DMTs (IFN-β1a, teriflunomide, natalizumab or ocre-
lizumab) at the (sub-)cellular level. Natalizumab, for 
example, is implemented via its net effect on leukocyte 
migration in the white matter compartment [5]. Since 
treatments are incorporated via their mechanisms, the 
personalized effects of treatment simulated with the 
model are expressed not only in terms of high-level 
statistics like the relapse rate, but also on the underly-
ing immune dynamics. Additional model details can be 
found in [5].

MS TreatSim, combines the UISS-based model with 
a simulation framework for in silico trial simulation 
(Fig. 1). The simulation framework converts user inputs 
(top row Fig.  1) to in silico trial outputs (bottom row 
Fig.  1) through several steps. In MS TreatSim, each DP 
taking part in an in silico trial consists of a personalized 
model instance. To set up a trial, several user inputs are 

required: the characteristics defining the population of 
DPs, the inclusion and exclusion population selection 
criteria, the groups, group sizes and treatments to be 
simulated in the trial, and finally the trial’s timelines and 
additional interim clinical endpoints analyses during the 
trial.

The patients’ population base characteristics the user 
may define (Fig.  2) include lesion load (user may select 
high, low/medium, or 50% chance of high), oligoclonal 
band status (user may select present, not present, or 90% 
chance of presence) and age of onset (distributed over the 
categories of 18–29/30–39/40–49  years). These charac-
teristics have been mapped to model parameters through 
a calibration and validation process [5], and so can be 
used to set up individualized models. Further model set-
tings include immune system initialization parameters 
and disease duration. Patients’ inclusion/exclusion selec-
tion criteria, finally, mirror disease activity criteria that 
represent common selection criteria for RRMS clinical 
trials.

To simulate the trial, the user-defined patients’ popu-
lation base characteristics are firstly translated into a 

Fig. 1  MS TreatSim workflow. In the first step, the user sets up the simulation by selecting population characteristics and inclusion/exclusion 
selection criteria (see also Fig. 2). Next, the user defines the trial groups and treatment strategies to be simulated and compared. Finally, the user 
defines the trial timelines including its duration and any additional intermediate analysis milestones of the trial. MS TreatSim’s simulation framework 
next generates DPs based on the defined population and includes them into the digital patient groups. Finally, each DP is simulated individually 
according to the group’s treatment of choice. The outputs generated by MS TreatSim are built on the individual simulations of each DP and are 
displayed in terms of clinical endpoints descriptive statistics, individual profiles, bubble and Kaplan–Meier plots
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simple uniformly distributed statistical model of base 
characteristics distributions. This statistical model is 
used to create heterogeneous individual models with the 
aid of random sampling. Next, the inclusion and exclu-
sion criteria are applied for DP inclusion. The included 
DPs are then randomised into the pre-defined groups 
and prepared for simulation. Finally, each DP is simu-
lated according to the protocol defined by the treatment 
options and timelines.

As a last step, the individual simulations in each group 
are analyzed and used to generate high-level statistics 
on clinical endpoints for the different patients’ groups. 
In addition, the underlying detailed and time continu-
ous DPs allow the user to zoom in to individual details or 
immune variables.

Application of MS TreatSim to create heterogeneous digital 
patients’ populations
To demonstrate how changing MS TreatSim selection 
criteria leads to digital patients’ populations that behave 
differently, we chose and set up two distinct popula-
tions (Populations 1 and 2). For the creation of Popula-
tion 1, we selected DPs with an age of disease onset in 
the categories 30–39 and 40–49  years and high lesion 
load, whereas Population 2 was generated with age of 
onset in the youngest category (18–29 years) and a low/
medium lesion load. All DPs in Populations 1 and 2 were 

simulated for 5  years, and only DPs that had developed 
relapses (and thus RRMS symptoms) in that period were 
selected. Finally, 200 DPs were included in Population 
1 (58% of simulations had at least 1 relapse), and 200 in 
Population 2 (59% of simulations had at least 1 relapse).

Historical trial for natalizumab
Results of the AFFIRM clinical trial for natalizumab 
[7] were first published 15  years ago. In this phase III 
trial, the treatment group consisted of 627 patients who 
received 300  mg of natalizumab every 4  weeks. The 
control group was a placebo group, consisting of 315 
patients. After 104 weeks of treatment, 67% of the treat-
ment group remained relapse free, compared to 41% 
of the control group. This was accompanied by a 68% 
reduction in annual relapse rate, an 83% reduction in T2 
weighted lesions determined by MRI, and a 92% reduc-
tion in gadolinium-enhanced lesions. Due to lack of raw 
trial data availability, the recreation focused on recreat-
ing the design and the global characteristics of the trial as 
published in [7].

Application of MS TreatSim to recreate a historical trial
As a case study to illustrate the application of the prod-
uct, the AFFIRM clinical trial for natalizumab was repro-
duced with MS TreatSim. Two groups of DPs that mirror 
the historical population were created with a treatment 

Fig. 2  Digital patients’ population set-up: first step in MS TreatSim workflow. The user selects the distributions of base characteristics in the 
population (high vs low/medium lesion load, oligoclonal bands presence, age of onset, and disease duration in the population). In the panel 
disease activity, the user selects the criteria by which the DPs will be included or excluded
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control ratio of 2:1, mirroring the AFFIRM trial [7]. The 
inclusion criteria and base characteristics of the in silico 
trial were chosen to reproduce the base characteristics in 
the AFFIRM trial [7]; the age of onset distribution was set 
to 49.4%: 36.2%: 14.4% (18–29, 30–39 and 40–49 years), 
lesion load was set to high and oligoclonal bands status 
to present for all DPs, simulation duration prior to the 
trial was set at 5 years, and DPs were only included if they 
had experienced at least one relapse in the year preceding 
inclusion, but not in the final month. The natalizumab 
group (n = 80) was treated in silico with 300 mg of natali-
zumab every 4  weeks for 104  weeks, while the control 
group (n = 40) remained treatment naïve.

Statistical analysis
Statistical analysis of the digital patients from Popula-
tions 1 and 2 was performed in R. Tests were performed 
to determine whether the immune variables were from 
the same distribution using the two sample Kolmogorov–
Smirnov test [19] and to compare the distributions medi-
ans using a two-sided Wilcoxon Rank Sum test [20]. The 
95% confidence intervals for the Kaplan–Meier estima-
tors were calculated by means of Greenwood’s formula 
[21], and plotted with the aid of the lifelines [22] pack-
age in python. In the in silico trial, all trial durations were 
assumed to be maximal and patients were not censored.

Results
In this section, the results obtained for the two applica-
tions described above—the generation of heterogeneous 
digital patients’ populations, and the recreation of the 
main characteristics of a historical trial, will be presented 
and discussed.

Application of MS TreatSim to create heterogeneous digital 
patients’ populations
To test how heterogeneous populations generated by MS 
TreatSim can be, two distinct populations—Populations 
1 (older age of onset categories, high lesion load) and 2 
(youngest age of onset category, low/medium lesion load) 
were generated. Each population consisted of 200 DPs. In 
Fig.  3, the resulting relapse rates (Fig.  3A) and immune 
system dynamics (Fig.  3B–D) including the statistical 
results are displayed.

The results show a clear shift in relapse rates and sta-
tistically significant differences (p < 0.001) in distribu-
tions and medians for the immune variables as a result 
of the different base characteristics—mirroring two dis-
tinct subpopulations of RRMS patients with differences 
in (mean) disease activity. Moreover, the results also 
clearly show that the model allows for a large patient’s 
heterogeneity.

Application of MS TreatSim to recreate a historical trial
As a test case for the recreation of a historical trial, the 
AFFIRM clinical trial for natalizumab was recreated 
[7]. In the phase III trial AFFIRM, the dose was 300 mg 
administered every 4  weeks. The trial was simulated by 
means of the built-in MoA for natalizumab, based on 
reduction in leukocyte migration (see Methods), and 
results are shown in Fig. 4A. 80 DPs were simulated for 
the treatment group and 40 DPs for the control group. In 
the historical trial [7], the effect of treatment on relapse 
rate was large. After two years, 67% of patients remained 
relapse free in the treatment group, versus only 41% in 
the placebo group. The improvement was even more pro-
nounced in the emergence of new or enlarging lesions; 
there was an 83% reduction in the occurrence of new 
or enlarging hyperintense (determined by T2-weighted 
magnetic resonance imaging) lesions, and a 92% reduc-
tion in lesions determined by gadolinium-enhanced mag-
netic resonance imaging.

In the in silico trial, at 104  weeks the percentage of 
relapse free subjects was larger than 90% in the natali-
zumab group, whereas for DPs in the control group this 
percentage dropped to 40%. These results show that 
the simulated relapse rates successfully replicated the 
observed relapse rates in the control group since the 
value of 41% observed in the historical trial is well con-
tained within the estimated 95% confidence intervals of 
the simulated relapse rates. The simulated natalizumab 
treatment effect, on the other hand, resulted in over 90% 
relapse free patients at 104  weeks trial overestimating 
the 67% relapse free observed in the historical trial and 
appearing more in line with the T2 weighted and gado-
linium-enhanced lesions reductions data observed in that 
trial. Finally, the effect of treatment on cytokine and leu-
kocyte levels was quantified. The natalizumab treatment 
can be seen to affect cytokine levels (Fig. 4C), while the 
overall T and B cell numbers (Fig. 4B) and antibody con-
centrations (Fig. 4D) are similar between treatment and 
control groups.

Discussion
Advances in the diagnosis and available disease modify-
ing therapies for RRMS have improved patient care and 
expanded treatment options for RRMS patients. How-
ever, increasing treatments options also complicates 
treatment planning and drug development. Simula-
tion models can be valuable tools to support clinicians 
and researchers, by giving insight into the relationships 
between (sub)population, immune dynamics, and treat-
ment effects. This study has shown that MS TreatSim 
can be used to create heterogeneous populations of DPs 
with variable immune system responses and can mirror 
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qualitatively response to treatment in a RRMS popula-
tion in a use case of a historical natalizumab trial.

First, we illustrated how heterogeneous, differently 
behaving populations of RRMS patients can be cre-
ated by setting up different populations with the aid of 
the integrated base characteristics. The results showed 
that choosing a different subpopulation in MS TreatSim 
indeed resulted in the corresponding shift of the mean 
disease activity. In addition, they also clearly showed that 
the heterogeneity of the population—which is a hallmark 
of the true RRMS population [23]—is mirrored in the in 
silico population. For example, the range of the number 
of relapses an individual experienced over 5 years spans 
from 1 to 9 relapses. Although the relationship between 
base characteristics such as age and MS progression is 

complex, the use of age and lesion activity leads to a real-
istic effect on relapse activity.

Secondly, we used such populations as a starting point to 
recreate in silico the setup of the AFFIRM trial for natali-
zumab. We performed this simulation with a modest sam-
ple size, which is adequate in this case as the treatment 
effect is large and so the results are robust. In the control 
group, the percentage of relapse free subjects in the in silico 
trial reproduced the percentage of relapse-free subjects in 
the AFFIRM trial well. In the simulated treatment group, 
the treatment effect was clearly visible, although the per-
centage of relapse free subjects was higher in the simulation 
than in the trial. For a correct interpretation of these results, 
several characteristics of the study and of the treatment of 
RRMS must be considered. While the percentage of relapse 

*

*

A B

DC

*

Fig. 3  Distribution of disease and immune system characteristics for Populations 1 and 2. Each population consists of 200 DPs. A Histogram 
showing the total number of relapses over 5 years, divided between 1 or 2 relapses, or three or more. B Mean total B cells over 5 years. Distributions 
and medians of the mean B cell number were both found to be significantly different between Populations 1 and 2 (p < 0.001). C Mean total CD4+ 
T cells over 5 years. Distributions and medians of the mean CD4 + T cells were both found to be significantly different between Populations 1 and 
2 (p < 0.001). D Mean IFN-γ over 5 years. Distributions and medians of the mean IFN-γ concentration were both found to be significantly different 
between Populations 1 and 2 (p < 0.001). * = distributions and medians difference, p < 0.001
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free subjects generally is used as a good high-level meas-
ure of disease activity in a group, a comprehensive evalu-
ation of the effect of treatment on inflammatory outcomes 
includes also measures like the reduction in the annualized 
relapse rate  (ARR), and the MRI-determined lesion load. 
These measures were all improved to a greater extent than 
the percentage of relapse free subjects in the AFFIRM trial. 
Therefore, if the in silico natalizumab treatment effect is 

also compared with the improvement seen in lesion load 
reduction, which is a good metric for disease activity, and 
also closely relates to the simulated relapse rate, one can 
conclude that the model adequately predicts the clinical 
improvement observed in natalizumab treated patients 
(Fig.  3A). Additionally, in real-world studies that were 
performed after market authorization of natalizumab, the 
reduction in ARR was larger than in the AFFIRM trial [23, 

A B

DC

Fig. 4  In silico trial of natalizumab. A Kaplan–Meier plot shows simulated patients’ survival to first relapse including 95% confidence intervals for 
the natalizumab and placebo treatment groups. Note that the duration mirrors AFFIRM maximal time span of 116 weeks, whereas most analyses 
were performed at 104 weeks. B Individual leukocyte concentrations. Means (over length of trial, per DP) of the total number of B cells versus total 
number of CD4 T cells. C Individual cytokine concentrations. Means (over length of trial, per DP) of the IL-2 molecules present in the DP versus 
TGF-β. D Individual antibody concentrations. Means (over length of trial, per DP) of the IgA, IgG and IgM molecules. Blue = natalizumab group; 
Orange = control (treatment naive) group. In B–D, all points are scaled by the individual’s relapse activity, so that a larger dot indicates a DP with 
more cumulative loss of oligodendrocyte and thus a higher relapse rate
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24]. The AFFIRM trial found the relapse rate to be reduced 
by 68% after 1  year, whereas the 22 observational studies 
analyzed in [23] found ARR to decrease by 73–94% under 
natalizumab treatment, and the 10  year real world study 
reported in [24] found the ARR to be reduced by 92.5% 
across the population. An explanation for this may lie in the 
observation by real-world studies that disease history may 
affect the patient’s potential to respond to natalizumab—
for example, patients with a more complex treatment his-
tory and a higher baseline Expanded Disability Status Scale 
(EDSS) are less likely to see a positive effect from natali-
zumab treatment [24]. Since, in this use case, the disease 
and treatment history of the patients in the AFFIRM study 
were described in a generic manner, patients with complex 
disease histories may be underrepresented, and this factor 
may also play a role in the overestimation of the percentage 
of relapse free subjects in the treatment group.

Another constraint in this study might well be attrib-
uted to the type of data, i.e., descriptive and synthetic data 
instead of raw data, that was available for the recreation 
of the historical trial and that therefore limited a detailed 
analysis of the simulated and historical trial results. If, on 
one hand, lack of such analysis limits the extent of cor-
roboration of our conclusions, on the other hand, the 
presented results simultaneously demonstrate the broad 
utility of MS TreatSim. Using only high-level data, a com-
pletely independent reproduction of the test trial could 
be created, and meaningful and useful results could be 
generated. Although the results presented here do not 
represent a complete and systematic statistical evaluation 
of MS TreatSim’s performance against the available liter-
ature—for example, only one of the four included treat-
ment options has been simulated—the test case clearly 
demonstrates the potential utility of MS TreatSim at the 
clinical trial level. Future work will aim to further develop 
MS TreatSim and its underlying model and integrate 
and refine included treatment strategies to improve the 
precision of the individualized predictions, and to more 
comprehensively compare model performance against 
historical clinical trials and available real world data.

MS TreatSim leverages a detailed, (sub-)cellular mech-
anistic model of RRMS for a population-level applica-
tion. A number of alternative modelling approaches 
simulating the population level disease activity and 
progression in RRMS have been suggested in recent 
years [25–31] reflecting the high level of interest in 
model-based decision and design support. Many of 
these modelling approaches are based on statistical or 
artificial intelligence methodology, and thus necessar-
ily are fully data-driven, and focus on clinical mark-
ers of RRMS. The agent-based approach of the model 
underlying MS TreatSim is qualitatively different and 

complementary—instead of focusing on prognosis of dis-
ease progression (expressed as EDSS) or disease activity 
(expressed as e.g., ARR) based on data alone, the mecha-
nistic model builds on knowledge of the immune system, 
knowledge of the disease and specifics of the MoA of the 
treatments, in addition to data. In doing so, it provides 
an opportunity to investigate not only effects on clini-
cal outcomes, but simultaneously details the underlying 
immune dynamics. In MS TreatSim the treatment effect 
can be examined at every level, from high level outcomes 
to individual responses, to the most detailed immune 
dynamics.

MS TreatSim has been developed and validated [5] in 
collaboration with neurologists specialized in RRMS, 
and currently finds numerous applications within the 
pharmaceutical clinical development of new therapeu-
tics targeting RRMS. These applications consist of sup-
porting clinical trial design processes including definition 
of group sizes, timelines, and patients’ subpopulations. 
Additionally, MS TreatSim is used to predict real-world 
setting relapse rates and create synthetic arms, it provides 
support for clinical decision making, and it aids design of 
novel treatment strategies. Finally, the intrinsic flexibil-
ity of MS TreatSim also offers opportunities for expan-
sion of the simulation workflow and/or underlying model 
towards a wider array of applications. For example, the 
simulations can be expanded to investigate combination 
therapy, to incorporate additional mechanisms for new 
and existing drugs, and to map personal or clinical char-
acteristics even more closely to model parameters.

Conclusion
This study has shown that MS TreatSim can be used to cre-
ate heterogeneous populations of DPs that have large vari-
ations in immune system responses and thus can display 
different responses to treatment, mirroring the variability 
of the real-world population of RRMS patients. The test 
case of recreating an historical trial of natalizumab gen-
erated a treated population that displayed a clear relapse 
rate reduction with respect to placebo, as observed in the 
clinical trial. Even though the wide range of responses 
observed in the literature to natalizumab and other treat-
ment options and their relationship to disease history and 
historical context will require further exploration in the 
future, the current case study already illustrates how the 
mechanistic model and the simulation framework syner-
gistically combined in MS TreatSim can be used to inform 
clinical trial design. Moreover, MS TreatSim can be envis-
aged also as a valid support in assisting the neurologist in 
the choice of the best treatment regimen accordingly to 
the patient immunological and disease progression profile.
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