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Abstract 

Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in 
the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually chal‑
lenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state‑of‑the‑
art convolution neural networks pre‑trained on natural images. Yet, there are differences in characteristics between 
medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study 
is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D 
volumes of 18F‑FDG‑PET brain scans.

Results: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially 
when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better inter‑
pretations of predicted diagnosis.

Conclusions: TL can indeed lead to superior performance on binary classification in timely and data efficient man‑
ner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model 
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Background
Neurodegenerative disorders have a huge negative impact 
on the healthcare systems globally. Alzheimer’s Disease 
(AD) is highly prevalent in the elder population, is con-
sidered to be the most common disorder with approxi-
mately 60% of all dementia [1]. Dementia with Lewy 
bodies (DLB) is second most common neurodegenerative 
disorder, increasing prevalence estimates were reported 
with increasing age. DLB accounted for from 0.3 to 24.4% 
of all cases of dementia in the prevalence studies [2]. Mild 
cognitive impairment (MCI) is a transition stage between 
normal aging and dementia and 10-15% of patients diag-
nosed with MCI progress every year to dementia, most 
commonly AD [3].

Different neuroimaging techniques such as magnetic 
resonance imaging (MRI), positron emission tomography 
(PET) and single-photon emission computed tomogra-
phy (SPECT) are proficient to document the functional 
and anatomical abnormalities informative to diagnose 
the type of the neurodegeneration [4]. F-18 fluorodeoxy-
glucose positron emission tomography (18F-FDG-PET) 
scans which measures cerebral glucose metabolism, has 
been reported as an accurate biomarker for the discrimi-
nation of the above-mentioned neurodegenerative disor-
ders [5].

Different deep convolutional neural network (CNN) 
techniques have proven to be effective in supporting the 
diagnosis of most common types of dementia such as 
AD, MCI, and DLB using 18F-FDG-PET brain images. 
These techniques show ability to extract features and 
identify disease-related patterns in imaging input data 
without prior-knowledge about the pathophysiological 
mechanisms of the underlying diseases [6–9]. However, 
one of the main challenges with analyzing medical imag-
ing is that data is limited and expensive to collect. There-
fore, transfer learning (TL) becomes a key component of 
many successful models used for medical diagnosis [7, 
9]. The core of TL is to use the knowledge of pre-trained 
models on a source dataset, and fine-tune it for a target 
task on a different but related dataset [10, 11].

There are many CNNs well-trained on ImageNet with 
differing accuracy. These networks have been trained 
to recognize objects from a huge natural-image data-
set which consists of 14 million images of roughly 1,000 

different categories [12, 13]. The application of these 
pre-trained models to neuroimaging studies is an active 
research field for their expectations on improving classi-
fication performance. Specifically, TL models have shown 
to be timely efficient in classifying AD dementia patients 
and achieving a good performance [7, 14, 15]. 

Despite the popularity of TL models in medical imag-
ing, there has been little work studying its precise effects 
in the medical imaging settings. Particularly, medi-
cal tasks often have significantly fewer classes than the 
standard ImageNet classification. Additionally, TL 
models are pre-trained with 2D images and thus spa-
tial information is lost during the transformation of the 
3D medical images into the 2D space. Furthermore, the 
nature of features used as representation generated for 
3D neuroimaging volumes using pre-trained TL models 
need further investigation especially with the high reso-
lution non-RGB nature of input data and the low contrast 
between brain regions and background of scans after 
data normalization.

Given these open issues with lack of scientific studies 
highlighting the differences among adopting TL mod-
els and training specialized models for medical imaging, 
in this paper the aim is to compare the performance of 
deep and transfer learning applied to neuroimaging vol-
umes for classification purposes. The goal is to study the 
performance of these techniques with respect to multi-
ple aspects. The first dimension in our empirical analysis 
represents the type of classification task, such as binary 
classification when distinguishing AD from Cognitively 
Normal (CN) cases, 3-way classification by adding DLB 
cases, and finally 4-way classification by considering MCI 
cases. Additionally, we compare performance of these 
models in terms of training overhead, obtained accuracy, 
explainability, and sensitivity towards other similar types 
of dementia.

In this paper, we use InceptionV3 [16], VGG16 
[17], and ResNet50 [18] pre-trained TL models using 
ImageNet. Furthermore, we develop a 3D CNN that 
adopts VGG16 in its architecture, yet with less number 
of convolution blocks [19]. We analyze the classifica-
tion performance of TL models for detecting multiple 
Neurodegenerative disorders. Additionally, we discuss 
the challenges in developing a custom 3D model using 

performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple 
disorders. The results confirm the superiority of the custom 3D‑CNN in providing better explainable model compared 
to TL adopted ones.

Keywords: Convolution Neural Networks, Transfer Learning, Brain Neurodegenerative Disorders, Medical Image 
Classification
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limited data, specifically choosing the CNN archi-
tecture and addressing overfitting that leads to poor 
model performance. Figure  1 highlights one of our 
main perspectives regarding the comparison between 
adopting TL models and training a custom 3D model 
from scratch. As shown, both TL models and custom 
models achieve almost similar performance in binary 
classification (AD versus CN), however, differences 
in performances appear when the objective changes 
to diagnose more disorders. The contributions of this 
study can be listed as the following: 

1 We evaluate the performance of TL models trained 
with natural images such as ImageNet, as well as cus-
tom models for diagnosis of brain disorders using 3D 
medical imaging data for different classification tasks.

2 We investigate whether using pre-trained TL models 
lead to different learned representations, by visual-
izing the generated feature representation by dif-
ferent models. More importantly, we analyze net-
work attention to demonstrate the significant areas 
of interest indicated by the adopted and developed 
models. Furthermore, we evaluate robustness and 
sensitivity of different models towards other similar 
dementia types.

The rest of the paper is organized as follows: in Sec-
tion Results we present obtained performance from TL 
and 3D custom model in different experiments, then 
we provide discussion and related work, lastly we con-
clude our paper. Section Methods presents the design 
of comparative analysis performed between the differ-
ent models.

Results
We start by discussing the dataset and the choice of 
hyperparameters for the developed 3D models. Then, 
the results of performance comparison among different 
models are presented. Lastly, we detail our experiments 
on network attention for explaining the decisions taken 
by different models.

All of the experiments were conducted using Ten-
sorflow and Keras libraries on a computer with Linux 
Ubuntu 18.09 operating system, that has one Nvidia 
Quadro GV100 GPU card with 32GB of memory and 36 
CPU core Xenon with 128 GB of memory.

Neuroimaging dataset
Our primary dataset was collected retrospectively 
from two different sources as detailed in Table  1. The 
anonymized scans from patients with probable DLB were 
collected from the European DLB (EDLB) Consortium [20] 
having the local institutional ethics committee approv-
als including the transfer of anonymized imaging brain 
18F-FDG-PET scans. Recruited patients were referred 
to and assessed at outpatient clinics including memory, 
movement disorders, geriatric medicine, psychiatric, and 
neurology clinics as previously described in [21]. The diag-
nosis of probable DLB was originally made according to 
diagnostic criteria for probable DLB as defined by [22].

The EDLB also provided some normal cases that we 
added to the CN cases. In total EDLB provided 201 
scans from 2005 to 2018. The rest of the images, i.e. 
556 scans, were collected from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) [23] across ADNI-1, 
ADNI-2, ADNI-3 and ADNI-GO (Grand Opportunities) 
studies from December 2005 to March 2020 [24]. We also 
used eight Frontotemporal lobar degeneration (FTLD) 
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Fig. 1 The average validation accuracy obtained for different 
classification tasks using transfer learning (TL) models and custom 
3D models. The error bars show minimum and maximum values 
obtained during training of different models. Detailed comparison 
can be found at Table  4

Table 1 The demographics of the used dataset collected from 
ADNI and EDLB sites, showing the average age in men and 
women per each clinical diagnosis (class), and percentage of 
samples used for training, validation and testing

Cases (%) Average age

Class Cases women Men Women

 Source: ADNI

AD 200 72 (36.0%) 76.7 ± 8.2 74.0 ± 7.8

MCI 200 76 (38.0%) 75.6 ± 7.5 73.2 ± 8.2

CN 156 62 (39.7%) 77.5 ± 5.4 78.3 ± 5

Source: EDLB

DLB  157  59 (37.5%)  73.3 ± 7.2 74.8 ± 6.4

CN  44  22 (50.0%) 70.1 ± 10.3  67.5 ± 9.2

 Total  757 291 (38.4%)  75.5 ± 7.6  74.4 ± 7.7



Page 4 of 15Soliman et al. BMC Medical Informatics and Decision Making  2023, 22(Suppl 6):318

18F-FDG-PET scans that were downloaded from the 
Frontotemporal Lobar Degeneration Neuroimaging Ini-
tiative (FTLDNI) database.

Table 1 summarises the demographics of the data col-
lected for this study from EDLB and ADNI. The dataset 
consisted of 757 cases including 200 AD (from ADNI), 
200 MCI (from ADNI), 157 DLB (from EDLB), and 200 
CN (156 cases from ADNI and 44 cases from EDLB). We 
split the data into two sets with 89% and 11% for train-
ing and testing using stratified random sampling to keep 
enough cases from all four disorders while considering 
the two sources (in specific CN which contains cases 
both from ADNI and EDLB).

Classification algorithms
We used InceptionV3, VGG16,and ResNet50 models to 
be evaluated as transfer learning approach which being 
trained with ImageNet. Furthermore, we trained a 3D 
VGG model from scratch using our 18F-FDG-PET scans. 
Table  2 lists the details of used models with respect to 
number of trainable parameters. In the following sub-
sections, we describe the different pipelines adopted for 

performing the classification tasks using TL and custom 
3D models.

3D CNN model specification
VGG16 was designed for 2D images with small and fixed 
filters across all the convolution layers (i.e. filters of size 
3× 3 ). In order to add depth (i.e. 3D), one choice could 
be keeping a homogeneous filter of size 3× 3× 3 across 
all convolution layers. However, we wanted to investigate 
the performance using different depth values, e.g., hav-
ing a filter 3× 3× 6 . Also, as we are handling 3D data, 
we wanted to study the effect of treating each slice from 
the input 18F-FDG-PET scan separately in the first con-
volution layer. Therefore, we developed four models, each 
with a different structure in terms of kernel shape across 
the convolution layers. We performed the experiments 
with end-to-end training using mini-batches of size 6 
and Adadelta optimizer with 0.01 learning rate for 50 
epochs. Additionally, to prevent the model from overfit-
ting we used early stopping condition by monitoring the 
validation loss in order to end the model training when 
the model performance stops improving (i.e., less than 
0.0001 change in validation loss for 10 epochs).

We evaluated the different models through 10 rounds 
of K-Fold Cross Validation (KFCV) on the training set, 
also computed the 95% confidence intervals, the results 
are shown in Table 3. As results indicate, there is no huge 
difference among obtained accuracy using different ker-
nels. So, we choose to keep a homogeneous 3x3x3 filter 
as it achieves the highest training and validation accu-
racy for the different folds during the cross validation 
evaluation.

Table 2 Specification of used models in terms of number of 
trainable parameters, size of generated features and reported 
accuracy on ImageNet for TL models

Model Parameters Features Accuracy on 
ImageNet 
[25]

InceptionV3 23,851,784 2,048 94.49%

VGG16 138,357,544  512 91.9%

ResNet50 25,636,712 18 x 25 x 2048 92.9%

3D Model 62,997,012 1,024 ‑

Table 3 Performance of 3D model alternatives designed with different values for depth in convolution kernels. 

L(1) represents the first convolution layer, L(r) represents the remaining convolution layers, L(a) represents all of the convolution layers in the developed 3D model. The 
values show the obtained accuracy followed by 95% confidence interval, while T and V represent training and validation accuracy, respectively. Bold represents the 
best value achieved

L(1): Conv(3x3x1) followed by 
L(r):Conv(3x3x3)

L(a): Conv(3x3x3) L(1): Conv(3x3x1) followed by 
L(r): Conv(3x3x6)

L(a): Conv(3x3x6)

CV T acc. V acc. T acc. V acc. T acc. V acc. T acc. V acc.

2‑F 0.76 ±0.04 0.58±0.12 0.77 ±0.03 0.59 ±0.14 0.69 ±0.04 0.42 ±0.12 0.7 ±0.03 0.54 ±0.14

3‑F 0.83 ±0.04 0.7 ±0.02 0.83 ±0.05 0.71 ±0.03 0.73 ±0.02 0.68 ±0.02 0.73 ±0.02 0.66 ±0.02

4‑F 0.79 ±0.02 0.7 ±0.02 0.8 ±0.02 0.7 ±0.02 0.76 ±0.04 0.66 ±0.02 0.75 ±0.04 0.66 ±0.03

5‑F 0.8 ±0.04 0.71 ±0.02 0.82 ±0.03 0.72 ±0.02 0.78 ±0.04 0.7 ±0.02 0.75 ±0.03 0.68 ±0.02

6‑F 0.82 ±0.03 0.72 ±0.02 0.83 ±0.04 0.72 ±0.02 0.77 ±0.03 0.68 ±0.02 0.76 ±0.03 0.68 ±0.02

7‑F 0.81 ±0.03 0.72 ±0.02 0.87 ±0.03 0.72 ±0.02 0.77 ±0.04 0.7 ±0.02 0.77 ±0.03 0.69 ±0.02

8‑F 0.84 ±0.03 0.71 ±0.02 0.86 ±0.03 0.72 ±0.02 0.81 ±0.04 0.7 ±0.02 0.76 ±0.03 0.70 ±0.02

9‑F 0.86 ±0.03 0.72 ±0.02 0.87 ±0.03 0.72 ±0.02 0.82 ±0.04 0.69 ±0.02 0.82 ±0.04 0.71 ±0.02

10‑F 0.86 ±0.03 0.72 ±0.02 0.87 ±0.03 0.72 ±0.02 0.83 ±0.03 0.70 ±0.02 0.82 ±0.03 0.71 ±0.01
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Further optimizations
When training a large network, there is a point during 
training when the model will stop generalizing and start 
overfitting of the training data. Overfitting results in 
increasing the generalization error, making the model less 
useful at making predictions on new data. The challenge 
is to train the network long enough to make it capable of 
learning the mapping between inputs and outputs, but 
not so long to avoid overfitting training data. Particularly, 
the number of training epochs as a hyperparameter and 
train the model with an early stopping condition com-
bined with different learning rates and dropout rations. 
We performed two different experiments to show the 
effect of different learning strategies (i.e., fixed epoch 
training vs early stopping), learning rates (e.g., testing dif-
ferent values such as 0.1, 0.01, and 0.001), and dropout 
(e.g., with values of 0.2, 0.3, 0.4 and 0.5).

In the second experiment, we trained 3D-CNN model 
for 4-way classification tasks for 10 rounds of K-Fold 
Cross Validation (CV) on the training set. Also, we com-
puted the 95% confidence intervals. Figure  2 illustrates 
the obtained results, as shown training strategy with early 
stopping allows the model to avoid overfitting of training 
data and provide better generalization for validation data. 
We use value of 0.0001 as a minimum change in vali-
dation loss, and monitor the change for 10 epochs. On 
the other hand, without early stopping in which we run 
model training for 100 epochs, the gap between train-
ing and validation accuracy is huge. Thus, for the further 
experiments, we train our 3D custom model using the 
early stopping condition.

For the third experiment, we trained the model with 
early stopping training strategy with different values of 
learning rate (lr) and dropout rations as shown in Fig.  3. 
According to obtained results, we set lr to 0.01 and 

dropout to 0.5 as the highest validation accuracy was 
obtained using these values.

Performance evaluation on multi‑classification tasks
Most DL models applied in neurodegenerative diseases 
mainly focus on binary classification or classify mul-
tiple stages of AD from no dementia to moderate AD. 
However, the utility of such models is limited to the AD 
patient population solely, which makes them unable to 
discriminate non-AD patterns from AD, also it becomes 
hard to validate their robustness in the presence of non-
AD disorders. The proper diagnosis of dementia patients 
requires going beyond binary classification and at least 
recognizing the differences among Cognitively Normal 
(CN), MCI and other dementia types, especially the most 
common ones such as AD and DLB. Therefore, in the 
following experiment we evaluate the accuracy of used 
models using different classification tasks.

Fig. 2 Confidence Intervals (95% CI) for training and validation of the 3D model during KFCV with different stopping criteria. Early stopping 
condition helps to avoid overfitting training data

Fig. 3 Validation accuracy obtained using 3D custom model with 
different values of learning rate (lr) and dropout. According to 
obtained validation accuracy, there is no huge difference while 
changing lr and dropout
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In this experiment we evaluated the performance of dif-
ferent models for different classification tasks. We started 
with binary classification, where the objective is to rec-
ognize AD from CN cases. Then, for 3-way classification 
we added the DLB cases, and lastly 4-way classification 
is performed to distinguish among the four classes exist-
ing in our dataset. In order to perform this experiment, 
we randomly divided the training data into 80% used for 
training and 20% used for validation.

For 3D model, we trained our model from scratch using 
mini-batches of size 6 and Adadelta optimizer with 0.01 
learning rate for 50 epochs and Dropout layers with 0.5 
rate. Additionally, to prevent the model from overfitting 
we used early stopping condition as discussed in Experi-
ment 2.

For TL models, we trained a separate classifier for each 
classification task using the features of cases belonging 
to training set, then computed the validation accuracy 
with features representing validation set. We repeated 
this process for 10 rounds and obtained results are listed 
in Table 4. We reported the average time in seconds and 
we also report the standard deviation of the time taken 
to train classifier for these 10 training rounds. We report 
the average value for training and validation accuracy, 
also we computed 95% confidence intervals.

Additionally, we used normalized mutual information 
(NMI) index by comparing ground-truth labels with the 

predicted labels generated by different models. Basi-
cally, mutual information index is a non-negative quan-
tity and is upper bounded by the values of entropy of 
identified classes that can measure the information that 
predicted and ground-truth labels share. The highest 
value of NMI can be reached when the predicted labels 
are exactly the same as the data labels.

As shown in Table 4, TL models achieve good perfor-
mance for binary classification. ResNet50 has the high-
est validation accuracy. Also, 3D model performed very 
well, it is the second best in terms of validation accu-
racy. It is also worth noticing that fine-tuning ResNet50 
for our data took more time than training a special-
ized 3D model from scratch with a simpler network 
structure.

For classification tasks that consider multiple disor-
ders at the same time, our 3D model performs better 
than TL models, due to its ability to extract relevant 
features from input data that make separation bound-
ary among different classes more evident as explained 
in the results of the next experiment. This also can be 
shown with achieving highest validation accuracy for 
3-way and 4-way classification. Additionally, the val-
ues of NMI obtained by our model are the closest to 
the values computed using ground-truth labels with 
a prominent difference from values reached by TL 
models.

Table 4 Performance of different models (TL and 3D) across the multiple classification tasks (binary, 3‑way, 4‑way).

Acc stands for accuracy, SD indicated standard deviation, CI is used for confidence interval, and NMI represents Normalized Mutual Information index. Bold represents 
the best value achieved

Binary classification (AD vs CN)

Model Time (SD) Training acc. (± CI) Validation acc. (±CI) NMI

InceptionV3 2.6 (0.5) 100 76 ± 0.016 0.94

VGG16 20.7 (0.3) 90 ± 0.006 70 ± 0.044 0.94

ResNet50 635 (0.2) 100 89 ± 0.012 0.97
3D model 108 (0.4) 97 ± 0.012 86 ± 0.042 0.96

3‑Way classification (AD vs CN vs DLB)

Model Time (SD) Training acc. (± CI) Validation acc. (±CI) NMI

InceptionV3 28.2 (0.7) 99.8 ± 0.0006 78 ± 0.019 0.61

VGG16 2.5 (0.2) 89 ± 0.005 74 ± 0.025 0.6

ResNet50 877.3 (0.7) 100 83 ± 0.044 0.79

3D model 161 (0.3) 96 ± 0.01 87 ±0.01 0.9

4‑Way classification (AD vs CN vs DLB vs MCI)

Model Time (SD) Training acc. (±CI) Validation acc. (± CI) NMI

InceptionV3 3.6 (0.6) 97 ± 0.006 59 ± 0.01 0.57

VGG16 3.2 (0.1) 69 ± 0.006 54 ± 0.019 0.56

ResNet50 1193 (0.8) 100 66 ± 0.008 0.62

3D model 296 (0.5) 85 ± 0.026 73 ± 0.015 0.82
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Analysis of 4‑way classification
The difference in performance between specialized 3D 
model and TL models appears in classifying multiple 
brain disorders. Therefore, in this section we analyze fur-
ther the features and classification decisions obtained by 
different models when the objective is to perform 4-way 
classification.

Visualizing extracted feature
We used the unsupervised UMAP to visualize 1) the orig-
inal normalized data and 2) the extracted features by dif-
ferent models (before the classification layer) as shown in 
Fig.  4. The unsupervised UMAP is used to qualitatively 
evaluate the generated representation by each DL model, 
specifically, we run UMAP to generate 2D representation 
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Fig. 4 UMAP visualizations for the original data (top), after being passed through the pre‑trained models, InceptionV3 b, VGG16 c , and ResNet50 
d, finally with 3D custom model e. The UMAP embeddings were created using the unsupervised version of UMAP. All subplots maintain the same 
color scheme for the target classes, i.e., yellow, purple, blue, and green identify CN, AD, MCI, and DLB, respectively using the ground‑truth labels
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of extracted features without specifying any number of 
classes.

For TL models, some of DLB cases were separable in 
the representation space, however, rest of cases belong-
ing to CN, AD, and MCI are overlapping that makes it 
difficult to reach a decision boundary to separate them 
while training a classifier. On the other hand, features 
extracted by 3D model made DLB cases very well sepa-
rated and it is explaining the good performance of the 
model. The other interesting pattern in Fig.  4 (e) is the 
distribution of cases from CN to MCI and then to AD, 
which is as happening in reality: people with CN brains 
either will develop DLB or they will develop MCI and 
then AD (if they get dementia, of course).

Figure 5 shows receiver operating characteristic (ROC) 
curves obtained for test set from the different models. 
As shown, specialized 3D models achieves the highest 
macro-average with 92% AUC, followed by ResNet50 

with 86% AUC, then both InceptionV3 and VGG16 
have 85% AUC. It is also interesting to see that all mod-
els achieve comparable performance in identifying DLB 
cases in the test set. However, TL models have the lowest 
performance in identifying MCI cases.

Explainability of model classification
Occlusion experiment is used to visualize network 
towards a specific class. We applied occlusion experi-
ment for ResNet50, InceptionV3 and compare it with 
results obtained by occlusion on a trained 3D model as 
explained in Sect.  . The results show the cross entropy 
response of the network given such occluded data as a 
function of the position of the occlusion box. The experi-
ments were done for all four classes in the training data-
set, i.e. when calculating the maps for the DLB class, only 
DLB subjects were included. The assumption is that when 
ignoring a relevant region for the correct classification, 

Fig. 5 ROC‑Curves for 4‑way classification for specialized 3D and TL models. 3D model achieves the highest macro‑average AUC and performes the 
best for MCI cases compared to TL models. 3D model has the highest macro‑average AUC for all classes, and highest per class types except for DLB
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the cross entropy response will be high.The cross entropy 
maps are then projected using a mosaic of the slices 5 to 
54 (to create a 7× 7 grid) on the axial direction and over 
layered with the average brain. The occlusion heatmaps 
visualize metabolism patterns within each class, specifi-
cally we show the average cross entropy using all samples 
belonging to each class separately.

The results are illustrated in Fig.   6. As shown, the 
highlighted regions in each disorder indicate which 
brain regions were of more attention from the models in 
their predictions. Looking at the results, it is clear that 
the models responded differently to the occluded areas. 
However, InceptionV3 pays a lot of attention to the back-
ground and it is difficult to define discriminative regions 

Fig. 6 Results of the occlusion experiments for adopted models. The results are projected by creating a mosaic of slices in the axial direction. The 
cross entropy maps have been over layered with the average brain
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that can be linked to each class. On the other hand, 
ResNet50 shows attention to regions belonging to brain 
area and these regions differ among classes, however the 
spatial structure to these regions is lost across the simi-
lar consecutive brain slices, e.g., regions highlighted for 
different classes from third till fourth row. The 3D spatial 
structure of brain is better maintained with the 3D model 
showing discriminative regions that are defined for each 
class type. Thus, we provide clinical explanations for 
highlighted regions with custom 3D model.

For the 3D model, AD (Fig.   6.a) the posterior cingu-
late cortex is the most discriminating region among oth-
ers, while in MCI (Fig.  6.b) pons thalamus and parietal 
(post-central gyrus/somatosensory cortex) are important 
in addition to the posterior cingulate cortex. Further-
more, the occipital, left striatum, right frontal cortex, and 
right parietal (post-central gyrus/somatosensory cortex) 
are the highlighted regions in CN (Fig. 6.c). And finally in 
DLB cases (Fig.  6.d) the posterior cingulate cortex is also 
taking an important role in differentiating DLB besides 
the occipital cortex.

The posterior cingulate cortex is important for all the 
given neurodegenerative disorders, i.e., AD, MCI, and 
DLB, and not in CN. 3D model shows the pattern in this 
brain region makes the most difference in a cognitively 
normal brain compared to dementia-involved ones. The 
other interesting pattern is depicted in MCI and CN 
maps and probably is the underlying reason for misdiag-
nosing MCI with CN. The parietal (post-central gyrus/
somatosensory cortex) is highlighted in both maps and 
generally both are sharing many common brain regions 
of interest.

Analysis of model robustness
Our objective of this experiment is to analyze the sen-
sitivity of models towards similar types of dementia to 
see how the models recognize these cases and create 
their equivalent representations. Though, the objective 
of trained models, as any supervised classification task, 
implies that the input space is projected into a finite set of 
defined categories (in this case AD, DLB, CN, and MCI). 
Yet, in this analysis, we investigate the generated repre-
sentation for FTLD cases and evaluate the labels assigned 
to them to see if they are grouped together or scattered 
across the representation space with labels belonging to 
multiple classes.

Table 5 lists the assigned labels for each one of FTLD 
cases using 3D and TL models. As shown, specialized 3D 
model and InceptionV3 assigned only two labels to these 
cases. For 3D model, half of the cases were recognized as 
AD, while the rest as CN. InceptionV3 recognized seven 

out of the eight cases as CN, and the last case was labeled 
as AD. VGG16 model distributes the FTLD cases among 
all of the different class types exist in the training data, 
showing only two as AD. ResNet50 predicted one case as 
MCI and another one as DLB, while the remaining cases 
got the AD label.

Figure  7 shows the UMAP visualization of the train-
ing data as well as FTLD cases. Interestingly, all models 
generate representations of FTLD cases in which they 
are close to each other and not scattered in the repre-
sentation space. Additionally, specialized 3D model and 
ResNet50 generate representation for FTLD cases that is 
close to the training data that could be expected as brain 
scans cases share many details in general. Classification 
outcome of InceptionV3 might seem to be most reason-
able as majority of cases receive the same label, 7 out of 
8 were recognized as CN cases. However, according to 
previous study that discuss the similarity between AD 
and FTLD [26], it should be excepted that more cases to 
be labeled as AD reflecting similar metabolism patterns 
linked to AD, learnt by the models when being exposed 
to training data, which is the case with 3D model that 
recognized 4 of the FTLD cases as AD and ResNet50 
which labeled 6 out of 8 cases as AD.

Discussion
Deep CNNs require large amount of data for training in 
order to achieve good classification performance. How-
ever, the medical images are hard to obtain, as the col-
lecting and labeling of medical data confronted with both 
data privacy concerns and the requirement for time-
consuming expert explanations. Clearly, there are signifi-
cantly more datasets of natural images. Thus, TL models 
have been fine-tuned and applied in medical domain for 
various classification tasks using their previous learning 
from ImageNet dataset.

Medical images typically represent much higher reso-
lution with non-RGB channels volumes. Additionally, 

Table 5 Predicted labels for FTLD cases using different models

ID 3D Model ResNet50 InceptionV3 VGG16

FTLD1 AD AD CN AD

FTLD2 AD AD AD CN

FTLD3 AD AD CN CN

FTLD4 CN AD CN CN

FTLD5 AD DLB CN MCI

FTLD6 CN AD CN DLB

FTLD7 CN MCI CN MCI

FTLD8 CN AD CN AD
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classification models for medical applications need to 
detect patterns that depend on small and local variations 
in the input data. Due to this huge diversity between 
natural and medical image modalities, it remains ques-
tionable how much ImageNet feature reuse is helpful for 
medical images? In this study we focus our analysis on 
neuroimaging, with detecting diagnosis of most common 
types of dementia (AD, MCI, and DLB) using 18F-FDG-
PET scans of the brain.

Designing and training 3D model from scratch can 
be a challenging task, particularly with limited avail-
able data. Too simple models might not be able to learn 
enough representation of input data, leading to poor 
performance. On the other hand, training a very com-
plex network with limited data is hard which leads to 
overfitting. Having a network model with proper size 
and other effective methods preventing overfitting, such 
as proper dropout, learning rate, and early stopping, can 
get the best results. We have demonstrated with different 
experimentation the effect of these hyperparameters on 
training 3D model from scratch. Results show that small 
learning rate leads to a long training process that could 
get stuck. Furthermore, dropout regularization and early 

stopping conditions help our shallow 3D model, with 
only 4 convolutional layers, to avoid overfitting. From a 
computational-overhead point of view, feature extrac-
tion from TL models provides timely efficient solution 
for binary classification tasks. However, as we show fine-
tuning huge pre-trained model (i.e., ResNet50) on target 
medical data can require huge computational resources 
and take more time than training a smaller custom 3D 
model from scratch.

We have demonstrated with three state-of-the-art Ima-
geNet deep architectures and a well-trained 3D model 
that a customized 3D model can achieve comparable 
and even better performance for neuroimaging. In our 
study, we have successfully demonstrated the effective-
ness of the different models in distinguishing neurode-
generative brain disorders with binary, 3-way, and 4-way 
classification tasks. The results show that TL models 
obtain superior performance in differentiating AD from 
CN cases, however, performance decreases when add-
ing more disorders to the classification task. Particularly, 
performance of 3D custom model becomes better when 
predicting the diagnosis of two or more brain disorders. 
We have shown the improvements obtained by 3D model 
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Fig. 7 UMAP visualization showing training data and FTLD cases used as external test‑set generated by specialized 3D and TL models. In cases of 
3D model and ResNet50 the FTLD cases are identified with red circles as they have very close representation to the training data
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for 4-way classification over TL models using AUC, also 
by visualizing representation space of extracted features.

We have also provided further analysis that goes beyond 
classification accuracy and demonstrated with occlusion 
experiments the areas of interest indicated by 3D model, 
ResNet50, and InceptionV3. The results show that both 
3D model and ResNet50 provide heatmaps with specific 
regions identified per each class. However, TL models 
were not able to maintain the spatial information among 
brain regions across the consecutive slices. It is worth 
mentioning that our results are limited to adopting TL as 
feature extractors, as we froze the pre-trained weights for 
convolution layers of TL models and we only fine-tuned 
fully connected layers to have more specialized classifiers.

Related work
Pre-training has received much attention in medical 
image analysis. For example, Nobili et al. [15] introduced 
a study to compare performance of deep/TL models and 
support vector machine (SVM) model for the early diag-
nosis and prognosis of AD using MRI scans by designing 
different binary classification tasks. They trained a very 
simple 3D CNN model that has a single convolution layer 
followed by ReLU activation and max-pooling layer. For 
SVM model, they adopted a feature selection method 
to reduce the dimensionality of input. Using this sim-
ple structure of custom 3D CNN, the results show that 
ImageNet pre-trained models outperform SVM and 3D 
model trained from scratch. Similar results were achieved 
with a comparative study on a chest X-ray dataset to clas-
sify pneumonia [27].

Ding el al [7] used InceptionV3 model for predicting 
development of Alzheimer’s disease from 18F-FDG-PET 
scans. The algorithm achieved area under the ROC curve 
of 0.98. However, interpreting the model decisions using 
Saliency maps was not successful as the patterns pre-
sented were not specific enough to be mapped to human 
interpretable imaging biomarkers. The occlusion experi-
ment performed in this study showed the same issue with 
interpreting the decisions of InceptionV3 model.

Few studies shed the light on the limitations of TL in 
medical imaging. For example, Raghu et  al. [28] show 
that ImageNet pre-training does not improve medi-
cal image classification tasks by evaluating the perfor-
mance of ResNet50 and InceptionV3 models using Retina 
images for binary classification task and chest x-ray data-
set for diagnosing of five different pathologies. Their 
experiments suggest that the domain mismatch between 
natural and medical images inhibits transfer learning. 
The results show that TL models have minimal effect on 
performance of detecting Diabetic Retinopathy. Also, for 

chest x-ray dataset, TL models are worse for recogniz-
ing Atelectasis, Cardiomegaly, and Consolidation cases. 
These results are in line with the findings of our work.

Compared to these previous works, our work takes 
a step forward and studies the effectiveness of adopt-
ing TL for different classification tasks. Furthermore, we 
investigated the generated representation of TL mod-
els and compared it with the ones obtained from a cus-
tom 3D model. Additionally, we showed using occlusion 
experiment that the decisions of TL models might not be 
informative nor related to medical data properties (i.e., 
the case with InceptionV3).

Conclusions
To understand the benefits and limits of TL and training 
specialized models for diagnosis of different brain disor-
ders, we not only look at standard performance metrics, 
but also include analysis of key properties particularly 
important to training and fine-tuning models, extracted 
features representing medical data, and network atten-
tions. The design of TL models is likely to be suboptimal 
for the classification of neurodegenerative diseases. Spe-
cifically, we found that supervised TL can indeed lead to 
superior performance on diagnosis of AD versus CN in 
timely and data efficient manner, yet for detecting more 
than a single disorder, TL models do not significantly help 
performance. Furthermore, custom 3D trained models 
perform comparably to TL models for binary classifica-
tion, and interestingly perform better for diagnosis of 
multiple disorders. Additionally, the results confirm the 
superiority of the custom 3D-CNN in providing better 
explainable model compared to TL adopted ones.

Methods
Data preprocessing
The 18F-FDG-PET scans were spatially normalized to 
match the International Consortium of Brain Mapping 
(ICBM space template for European brains) template 
[29]. Subsequently, the probability maps of grey matter, 
white matter, cerebrospinal fluid, bone and soft tissue/ air 
were extracted. The skull stripping was done by retain-
ing the voxels with high probability of being grey mat-
ter, white matter or cerebrospinal fluid while discarding 
those likely being bone and soft tissue/air. The normal-
ized and skull stripped scans were then visually inspected 
to assess their normalization quality and ensure that the 
spatial normalization converged to an acceptable solu-
tion. Both the spatial normalization and skull stripping 
processes were done using Matlab R2016a and SPM12. 
All the brains positioned approximately in the center of 
the volume.
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After the spatial normalization step for the input scans, 
the first 10 slices as well as the last 9 slices of each scan 
were excluded as they contain very small objects. Thus, 
we have the input data as a 3D volume of 95× 79× 60 
for each case from 757 cases in the dataset. Since scans 
are from various sites, it is required to perform inten-
sity normalization in order to bring voxel intensities to 
a common scale across the whole dataset. Therefore, we 
adopted a feature-wise standardization technique pro-
vided by Keras library.

The main idea is to treat each 18F-FDG-PET scan sepa-
rately, then normalize the voxel values using mean and 
standard deviation. Particularly, we treated each scan as a 
sequence of 2D images along the axial plane. We applied 
feature-wise normalization such that each 3D voxel was 
normalized by subtracting feature-specific mean then 
dividing by the feature-specific standard deviation per 
each scan. We performed further scaling to have all 
intensities values in the range of [0,1]. To transform the 
input format from 3D to 2D for TL models, we organ-
ized the 60 slices of each normalized scan into a 2D grid 
resulting in having 2D image with 570× 790 pixels for 
each 18F-FDG-PET scan as shown in Fig.  8. Lastly, input 
of TL models should have three channels representing 
RGB color of input images. Our data is considered as gray 
scale, so we replicate the values across the RGB channels.

Comparative analysis
We briefly describe the experiments developed for this 
study and illustrate the objectives of each experiment. As 

shown in Fig.  9, the first set of experiments is dedicated 
to the process of building the CNN from scratch, specifi-
cally choosing the hyperparameters to reach an efficient 3D 
model. Three different experiments were designed to deter-
mine kernel depth to be used for the 3D convolution filters, 
also we tested different learning strategies with and without 
early stopping conditions to avoid overfitting. Lastly, com-
pared different values for learning rate and dropout.

Additionally, we designed the fourth experiment to 
compare efficiency of 3D and TL models in discriminat-
ing different neurodegenerative disorders with multiple 
classification tasks. We evaluate the models by perform-
ing binary, 3-way, and 4-way classification. Furthermore, 
our fifth experiment provides detailed comparison of per-
forming 4-way classification. Besides evaluating accuracy 
of different models, we investigate the learned representa-
tions by visualizing the generated feature representation 
extracted by different models using a dimensionality reduc-
tion technique. We used Uniform Manifold Approximation 
and Projection (UMAP) to produce 2D features of gener-
ated representations of input data using adopted models. 
We chose UMAP as it preserves the global data structure as 
well as the relative closeness of data points [30].

During the experiments 1 to 4, we adopted 80% and 
20% strategy to split data into training and validation 
datasets. Regarding experiment 5, as we want to report 
accuracy using AUC under ROC curves, we needed to use 
the holdout testing dataset for this purpose, thus we split 
the data into 90% to be used for training and validation 
and the remaining 10% is used as an independent testset.
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Fig. 8 Processing 18F‑FDG‑PET raw scans for generating 3D as well 
as 2D inputs for custom 3D model and TL models. For 3D input we 
build 3D matrix having 60 slices along the axial plane. To transform 
input for 2D‑TL models, we arrange these 60 slices into a 2D grid
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comparative analysis of TL and 3D models
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We used occlusion to analyze network attention 
towards significant areas of interest indicated by the mod-
els. Occlusion Sensitivity helps to determine whether the 
output of the model is based on the correct identifica-
tion of objects with the high sensitivity associated to spe-
cific local structures in input images [31]. The occlusion 
experiment is performed by repeatedly occluding spe-
cific regions in the input image and observe the change 
in the output probability of the model. When important 
regions for correct classifications are occluded, the prob-
ability drops, hence we can observe a significant change 
in activations of the corresponding feature maps. We per-
formed occlusion sensitively for 3D and TL models using 
2D window of size 6× 5 to be removed from each input 
slice with a stride of 2 . We used 2D window for occlusion 
to hide the same number of pixels for TL and 3D models.

Our last comparative analysis task is dedicated to evalu-
ate the robustness of the models using brain scans of a new 
dementia type that was not included in training set. For 
such sensitivity analysis we used eight Frontotemporal lobar 
degeneration (FTLD) 18F-FDG-PET scans as another exter-
nal test set for different models. 18F-FDG-PET brain scan 
of an FTLD patient is expected to have low FDG uptake in 
the frontal and temporal lobes [26]. A patient with a chronic 
AD can eventually have involvement of the frontal lobes 
and eventually see like a FTLD. Thus, we preformed the last 
experiment to evaluate the predicted labels of these eight 
cases using different models, also to visualize the generated 
representation of these cases and analyze sensitivity of the 
models towards similar common types of dementia.
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