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Abstract 

Background:  This study aimed to explore whether explainable Artificial Intelligence methods can be fruitfully used 
to improve the medical management of patients suffering from complex diseases, and in particular to predict the 
death risk in hospitalized patients with SARS-Cov-2 based on admission data.

Methods:  This work is based on an observational ambispective study that comprised patients older than 18 years 
with a positive SARS-Cov-2 diagnosis that were admitted to the hospital Azienda Ospedaliera “SS Antonio e Biagio e 
Cesare Arrigo”, Alessandria, Italy from February, 24 2020 to May, 31 2021, and that completed the disease treatment 
inside this structure. The patients’medical history, demographic, epidemiologic and clinical data were collected from 
the electronic medical records system and paper based medical records, entered and managed by the Clinical Study 
Coordinators using the REDCap electronic data capture tool patient chart. The dataset was used to train and to evalu-
ate predictive ML models.

Results:  We overall trained, analysed and evaluated 19 predictive models (both supervised and unsupervised) 
on data from 824 patients described by 43 features. We focused our attention on models that provide an explana-
tion that is understandable and directly usable by domain experts, and compared the results against other classical 
machine learning approaches. Among the former, JRIP showed the best performance in 10-fold cross validation, and 
the best average performance in a further validation test using a different patient dataset from the beginning of the 
third COVID-19 wave. Moreover, JRIP showed comparable performances with other approaches that do not provide a 
clear and/or understandable explanation.

Conclusions:  The ML supervised models showed to correctly discern between low-risk and high-risk patients, even 
when the medical disease context is complex and the list of features is limited to information available at admission 
time. Furthermore, the models demonstrated to reasonably perform on a dataset from the third COVID-19 wave that 
was not used in the training phase. Overall, these results are remarkable: (i) from a medical point of view, these mod-
els evaluate good predictions despite the possible differences entitled with different care protocols and the possible 
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influence of other viral variants (i.e. delta variant); (ii) from the organizational point of view, they could be used to 
optimize the management of health-care path at the admission time.

Keywords:  COVID-19, Machine learning, Explainability, Patient risk prediction

Background
Machine learning (henceforth ML) methods are nowa-
days applied to an increasing range of research fields that 
include industrial applications [1], biology and medicine 
[2, 3], computer vision [4], self-driving systems [5], natu-
ral language processing [6], sentiment analysis [7] and so 
on. However, many ML approaches, particularly those 
belonging to the field of deep learning, lack explainability. 
This may represent a major issue from ethical and judi-
cial points-of-view in scientific fields where the model 
results may positively or negatively influence the health 
of human beings. Suggestions may be questioned by 
medical doctors and life scientists if explanations about 
the reasons and/or features that have been selected and 
taken into account by the model are missing.

Methodologies coming from the field of explainable 
Artificial Intelligence (henceforth AI) provide instead 
interpretable explanations which are understandable 
to humans and which can be analyzed, tested, verified 
and/or refuted using either real experiments and data 
or other knowledge-driven approaches. Among these, of 
particular interest are those approaches that produce as 
outcome models based for example on rules or decision 
trees, as these models can be directly and easily under-
stood by domain experts (such as medical doctors, biolo-
gists, epidemiologists, policy makers etc.) without having 
any specific background.

Explainable AI methods can be fruitfully applied to 
unravel the real behavior of complex diseases that enti-
tle a wide range of heterogeneous outcomes, especially 
in emergencies where decisions must be taken promptly. 
In this scenario their use as second opinion systems 
may greatly improve both medical and management 
decisions.

A clear example of such critical situations is repre-
sented by the ongoing COVID-19 pandemic, caused by 
the Severe Acute Respiratory Syndrome CoronaVirus 
2 (SARS-CoV-2). SARS-CoV-2 was first identified in 
Wuhan, China, in December 2019 [8].

The Coronavirus 2019 Disease (COVID-19) repre-
sented a global health emergency since its appearance, 
so the WHO declared a pandemic on 11 March 2020. 
To contain the outbreak and reduce its spread numer-
ous countries around the world adopted lockdowns and 
similar societal restrictions [9], leading to global severe 
social and economic disruption and recession [10]. As 
of date, over 507 million confirmed cases and over 4.9 

million deaths have been reported since the start of the 
pandemic [11].

COVID-19 patients suffer from varying symptomatol-
ogy, differing from mild symptoms to severe illness [12]. 
The symptomatology includes flu-like symptoms, fever, 
cough or shortness of breath, sneezing, runny nose, sore 
throat, vomiting, diarrhea, anosmia and dysgeusia. Con-
junctivitis and skin rashes are less common [13]. Many 
patients are asymptomatic or have only mild symptoms, 
even if they are able to transmit the virus [14].

Cases can progress for the worse evolving into a severe 
form with risk of complications, especially respiratory 
[15], and multi-organ failure, leading to death in the most 
vulnerable individuals. A prompt COVID-19 diagno-
sis may include medical history, medical examinations, 
potential extrapulmonary manifestations, and laboratory 
and radiologic data [16].

Whereas no specific treatment was available at the 
beginning of the pandemic, nowadays several medica-
tions have been approved in different countries [17, 18] 
and several experimental treatments are being continu-
ously studied in clinical trials [19]. For example, COVID-
19 vaccines are widely credited for their role in reducing 
the severity and death caused by COVID-19 [20].

However, as there is still a high degree of uncertainty 
on how the health status of patients affected with SARS-
CoV2 evolves, in this study we aim to explore whether 
explainable AI methods can be fruitfully used to improve 
the medical management of hospitalized patients suffer-
ing from complex diseases such as COVID-19, using the 
limited set of information available ad admission time.

To this end, we used data collected by the “Azienda 
Ospedaliera SS Antonio e Biagio e Cesare Arrigo” Hos-
pital in Alessandria, Italy, about patients with a positive 
COVID-19 diagnosis hospitalized from February 24, 
2020 to April 4, 2021 to find out if explainable ML meth-
odologies are able to distinguish between patients at low 
and high risk of death, only using baseline clinical char-
acteristics available at recovery. In particular, we mainly 
focused on ML approaches which provide a clear and 
understandable explanation for medical experts (for an 
in-depth discussion see [21]).

Methods
This study was approved by the Institutional Ethics Com-
mittee (Comitato Etico Interaziendale Alessandria, pro-
tocol number ASO.IRFI.20.03). All study procedures 
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complied with the 1946 Declaration of Helsinki [22], 
the Good Clinical Practices guidelines [23] and relative 
updating.

Study design
The “COVID-19 Registry study” has been designed as 
an ambispective observational study which includes 
all consecutive patients older than 18 years, admitted 
to Alessandria Hospital with a confirmed diagnosis of 
SARS-CoV-2 infection by reverse-transcriptase polymer-
ase chain reaction (RT-PCR) of a nasopharyngeal swab. 
Retrospective data of hospitalized patients were retrieved 
between February 24, 2020 and July 14, 2020. Prospective 
data has been collected since July 15, 2020 up to May, 31 
2021. Patients discharged from the Emergency Depart-
ment were excluded. The study was approved by the 
Institutional Ethics Committee (Comitato Etico Intera-
ziendale Alessandria, protocol number ASO.IRFI.20.03).

Data source
Clinical Study Coordinators of the Alessandria Hospital 
Clinical Trial Center recorded patients data from elec-
tronic medical records system (TrackCare) and paper 
based medical records into a dedicated electronic case 
report form (eCRF). A pseudonymised code was used 
to keep safe patient identity according to clinical study 
and data protection regulations. eCRFs were created by 
using the freely available Research Electronic Data Cap-
ture (REDCap) platform [24, 25], a web-based software 
platform for designing clinical and translational research 
databases. The data-entry is done manually and requires 
a significant effort in terms of time, involving a delay on 
its availability.

The “COVID-19 Registry” records different patients’ 
data, including demographics, admission data, past and 
proximal medical history, onset symptoms, laboratory 
data, chest X-ray or CT scan results, complications, 
performed treatments and outcome. A more detailed 
description is shown in Table 1. For each patient, we cal-
culated Charlson Comorbidity Index [26] and Glasgow 
Coma Score [27] when possible.

Data description and preparation
The data provided for this study is composed of two data-
sets. The first dataset is related to the data recorded at 
the admission time of all hospitalized patients between 
February 24, 2020 and December 31, 2020, and approxi-
mately refers to the first and the second pandemic waves. 
This dataset initially contained a total of 1405 patients 
and has been used as baseline for the training of the ML 
algorithms we tested so far.

The second dataset is composed of the first 100 cases 
observed during the third wave, in the course of the 

Table 1  COVID-19 registry data description

feature Name Value Type

Demographics

age Integer

sex M/F

residence text

Admission data

date date

in-hospital ward Text

diagnosis text

vital signs text

Past and proximal medical history

active cancer in the last 5 years Yes/No

Metastatic disease Yes/No

acute myocardial infarction Yes/No

cerebrovascular disease Yes/No

chronic heart failure Yes/No

chronic obstructive pulmonary disease Yes/No

chronic renal failure Yes/No

connective tissue disease Yes/No

deep vein thrombosis Yes/No

dementia Yes/No

diabetes with or without chronic complications Yes/No

dyslipidaemia Yes/No

hepatitis and HIV infection Yes/No

hypertension Yes/No

kidney disease Yes/No

liver disease Yes/No

obesity Yes/No

peptic ulcer disease Yes/No

peripheral vascular disease Yes/No

pulmonary embolism Yes/No

other comorbidities text

home medications Text

previous vaccinations Yes/No

smoke habits unknown/
non-smoker/
former smoker/
smoker

Charlson Comorbidity Index Integer

Glasgow Coma Score Integer

Onset symptoms

fever Yes/No

chills Yes/No

hacking cough Yes/No

phlegm cough Yes/No

conjunctivitis Yes/No

rhinorrhea Yes/No

headache Yes/No

muscle pain Yes/No

fatigue Yes/No

nausea Yes/No
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spreading of the Delta variant (B.1.617.2), collected from 
February 15, 2021 to April 4, 2021. This dataset has been 
used to further test and validate ML techniques trained 
on the first dataset.

All the patients who did not complete the whole disease 
treatment inside the same structure and were transferred 
to other structures during their hospitalization period 
have been excluded from the analysis. We discarded 
such patients, because any information about the disease 
development and the patient conditions after the transfer 
was no more recorded. Furthermore, in most cases, the 
transferring of a patient to another hospital was mainly 
determined by administrative and management reasons 
(e.g., to decrease the pressure on the hospital) rather 
than health reasons (i.e. based on the disease evaluation). 
Consequently, the baseline dataset was reduced to 824 
patients. The pre-processing for the second dataset led 
instead to a total of 71 records.

For what regards the features that were used for the 
analysis, these are mainly related to the fields available 
at the admission time. Such features include all the onset 
symptom attributes, comorbidity attributes, age, sex and 
Charlson comorbidity index.

There were other potentially interesting features in the 
COVID-19 Registry observational study. These features 
include, for example, information about previous vac-
cinations, smoke habits and the Glasgow Coma Score. 
However, after careful verification, we found that these 
fields were either poorly populated (for the Glasgow 
Coma Score) or set to “unknown” (for the smoke hab-
its and the previous vaccinations) for a high percentage 
of values. Thus, such features were excluded from the 
analysis. For what regards laboratory data, this kind of 
data was typically not available at admission time. Also, 
it presented various missing fields and inconsistencies. 
For these reasons we also excluded such data from the 
analysis. In general, the high percentage of missing data 
for some fields was due to the elevated number of hos-
pital admissions that, particularly during the first wave, 
did not always allow to record of all the supplementary 
information.

The list of selected features, whose distribution for the 
baseline dataset is presented in Figs. 1, 2 and 3, has a total 
of 43 input features, and one output feature represented 
by the disease outcome (i.e. discharge type: death or dis-
charge). For what regards this last feature, the number of 

Table 1  (continued)

feature Name Value Type

vomiting Yes/No

diarrhea Yes/No

dyspnea Yes/No

haemoptysis Yes/No

haematemesis Yes/No

ageusia Yes/No

anosmia Yes/No

abdominal pain Yes/No

chest pain Yes/No

pharyngodynia Yes/No

other symptoms Text

Laboratory

hematology numeric

biochemistry numeric

blood coagulation numeric

inflammatory markers Text/Numeric

Chest X-ray or CT scan results

normal Yes/No

monolateral or bilateral ground-glass opacity Yes/No

interstitial involvement Yes/No

irregular shading Yes/No

Complications

acidosis Yes/No

acute heart damage Yes/No

acute kidney injury Yes/No

acute respiratory distress syndrome Yes/No

deep vein thrombosis Yes/No

heart failure Yes/No

hemorrhages Yes/No

hypoproteinemia Yes/No

pneumonia Yes/No

pulmonary embolism Yes/No

respiratory decompensation Yes/No

respiratory failure Yes/No

rhabdomyolysis Yes/No

sepsis and septic shock Yes/No

Performed Treatments

antibiotics Yes/No

antifungals Yes/No

antithrombotic prophylaxis Yes/No

antivirals Yes/No

chloroquine/hydroxychloroquine Yes/No

corticosteroids Yes/No

extra-corporeal membrane oxygenation Yes/No

immunoglobulins Yes/No

non-invasive or invasive mechanical ventilation Yes/No

oxygen therapy (ECMO) Yes/No

renal replacement therapy Yes/No

other treatments in accordance to guidelines or experi-
mental drugs

Yes/No

Table 1  (continued)

feature Name Value Type

Outcome hospital dis-
charge/trans-
fer/death
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dead patients is around 37,38%. We underline here that 
this percentage refers only to the hospitalized patients 
(i.e., patients with mild to severe symptoms), that com-
pleted the whole treatment in the “Azienda Ospedaliera 
SS Antonio e Biagio e Cesare Arrigo” Hospital, rather 
than to the total death rate of SARS-CoV-2 patients in 

the Alessandria province. For what regards the validation 
dataset, in Figs. 4, 5 and 6 we report the distribution of 
the 43 input involved features and of the output feature. 
In such cases, we see that percentage of dead patients 
drops down to approx. 16,19%, showing how this dataset 
is somewhat skewed towards discharge outcomes.

Fig. 1  Dichotomic variables distribution. Data refers to the training dataset

Fig. 2  Age distribution. Data refers to the training dataset
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Machine learning methods
The aim of our work was to demonstrate how the use of 
understandable ML approaches is, at the same time, use-
ful to support medical staff in their work and potentially 
acceptable thanks to the supplied explanation, which is 
really important in the medical field. In particular, we 

focused only on ML models providing an explanation 
that can be directly understood and then validated by 
(medical) experts in their application area [21].

The decision of focusing on a specific set of “white box” 
models only (see Approaches2 above) was supported by 
the results of a preliminary study [28], where we tested 

Fig. 3  Charlson Comorbidity Index distribution. Data refers to the training dataset

Fig. 4  Dichotomic variables distribution. Data refers to the validation dataset
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both white and black box ML approaches on a (reduced) 
dataset of about 400 patients mainly coming from the 
first epidemic wave. These results showed that both 
supervised white and black box approaches performed 
similarly, with the advantage of the former of provid-
ing explainable models. Even if in this preliminary study 
supervised ML models had very weak performances, for 
sake of completeness we decided to include them here by 
using an increased amount of data with respect to that 
used in [28].

In our study, we have exploited WEKA’s algorithms 
to perform our experimentation [29]. WEKA is a tool 
developed at the University of Waikato, New Zealand 
and it contains tools for data preparation, classification, 
regression, clustering, association rules mining, and visu-
alization, thus implementing the most common ML algo-
rithms. WEKA is open source software issued under the 
GNU General Public License.1 The ML algorithms have 
been trained with different configurations. All our exper-
iments on ML models are carried out with 10-fold cross 
validation on the training set. For sake of simplicity, we 
report only the configuration with the best results.

First, we tested a set of unsupervised ML models to dis-
cover possible regularities in the profiles of the patients. 
The unsupervised ML models build clusters of patients 

and provide as output for each cluster a centroid, cou-
pled with a description for it. We tested the following 
approaches (henceforth Approaches1):

•	 Canopy clustering [30];
•	 EM clustering [31] (using a free number of clusters 

and a number of required clusters equal to the num-
ber of classes);

•	 K-means algorithm [32] (K =2);
•	 Farthest First algorithm [33].
•	 Hierarchical clustering [34].

Then, we have trained and evaluated different supervised 
ML models. In particular, we experimented with the fol-
lowing types of classifiers that provide an easily under-
standable explanation for domain experts (henceforth 
Approaches2):

•	 Learning decision lists (PART) based on the repeated 
generation of partial decision trees in a separate-and-
conquer manner [35] decision list.

•	 Decision Tree (DT) classifier, performed with stand-
ard C 4.5 algorithm [36];

•	 Rule classifier (JRIP) performed with standard RIP-
PER algorithm [37] allowing pruning;

•	 Random Tree (RT) classifier that considers K ran-
domly chosen attributes at each node performing no 
pruning [34];

Fig. 5  Age distribution. Data refers to the validation dataset

Fig. 6  Charlson Comorbidity Index distribution. Data refers to the validation dataset

1  Available at https://​waika​to.​github.​io/​weka-​wiki/​downl​oading_​weka/.

https://waikato.github.io/weka-wiki/downloading_weka/
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•	 Reduced Error Pruning Tree (REPTree), a fast 
decision tree learner that uses the information gain 
as the splitting criterion, and allows pruning using 
the error pruning algorithm [34];

Let us point out that the prediction of a new patient 
is used to identify the class of risk. Thus, a predic-
tion of “In-hospital Death” means that she/he is iden-
tified as a high risk patient, otherwise a prediction of 
“discharged” corresponds to identifying him/her as 
a low risk patient. Thus, the medical staff can behave 
accordingly with special attention on high risk patients 
to better monitor their health status and to readily 
provide medical interventions when needed. Moreo-
ver, having a clear explanation of the classification is 
fundamental for the medical staff that can directly 
understand it and evaluate the credibility of the pro-
vided suggestions.

For the construction of the ML models the first data-
set of patients, described by a total of 43 input fea-
tures, plus 1 describing the outcome, has been used. 
Then the second dataset has been used to further test 
and validate the models.

In the interests of completeness, we finally applied 
the same experimental framework to some classic ML 
algorithms (henceforth Approaches3) that do not pro-
vide an explanation, or that provide an explanation 
that is not directly understandable and thus usable 
by medical experts (such as a mathematical function 
or a Bayesian network). In particular, we considered 
the ML algorithms analyzed in the preliminary study 
[28]:

•	 Bayesian Network (BN) classifier [38] with maxi-
mum 1 parent per node,

•	 Logistic Regression (LR) classifier based on [39] 
with ridge value 1.0E-8;

•	 KNN classifier [40] using as number of neighbors 
to consider in the range from 1 to 9 (we report 
only the best result, i.e. 8 neighbors);

•	 SVM classifier with John Platt’s sequential minimal 
optimization algorithm for training [41].

We also considered the following (black-box) 
algorithms:

•	 Voted Perceptron (VP) algorithm by Freund and 
Schapire [42].

•	 Random Forest (RF) algorithm [43].
•	 Adaboost M1 classifier, a statistical classification 

meta-algorithm [44].
•	 A bagging classifier to reduce variance. [45]

Results
824 patients with COVID-19 SARS-Cov-2 were used to 
train the different ML approaches described above via 
WEKA.

As previously stated, in the first instance we tried to 
execute models in Approaches1 set. Table 2 shows their 
performances. As it is possible to observe, none of the 
unsupervised models studied here is able to capture pos-
sible regularities in the patients’ profiles, leading in gen-
eral to very weak performances.

Then, we tested the performances of models in 
Approaches2 set taking into account the discharge 
feature as output value (see Table  3). In this scenario, 
it is instead possible to observe how the models in 
Approaches2 set lead in general to far better perfor-
mances with respect to the ones in Approaches1 set. 
Thus, we used the second dataset collected at the begin-
ning of the third pandemic wave as validation dataset 

Table 2  10-fold cross validation performances of Approaches1 

Clustering algorithm No. of incorrectly 
clustered instances

% of incorrectly 
clustered 
instances

Canopy cluster 267 32.4029%

EM with free no. of clusters 409 49.6359%

EM with 2 clusters 224 27.1845%

Farthest First 278 33.7379%

K-means 315 38.2282%

Hierarchical clustering class 307 37.2573%

Table 3  10-fold cross validation performances of Approaches2 

ML Model Accuracy Precision Recall F-measure Roc Area

JRIP 79.1262 0.818 0.791 0.795 0.825

RT 73.7864 0.739 0.738 0.739 0.723

REPTree 78.8835 0.800 0.789 0.791 0.836

PART​ 75.6068 0.764 0.756 0.759 0.796

DT 79.4903 0.809 0.795 0.798 0.818

Table 4  Performances of Approaches2 on the patient dataset 
from the begin of the third COVID-19 wave

ML Model Accuracy Precision Recall F-measure Roc Area

JRIP 76.0563 0.813 0.761 0.780 0.714

RT 70.4225 0.796 0.704 0.736 0.656

REPTree 69.0141 0.809 0.69 0.726 0.701

PART​ 74.6479 0.825 0.746 0.772 0.695

DT 67.6056 0.824 0.676 0.716 0.701
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for models belonging to Approaches2 set. Table 4 shows 
the obtained results for such a scenario. In this case, it 
is possible to observe a drop in terms of performance 
for the models in Approaches2 set.

Finally, we built and tested the performances of mod-
els in Approaches3 set. Tables  5 and 6 show the per-
formances obtained by 10-fold cross validation and by 
using the second dataset as test set, respectively.

The performances presented in Table 5 are (in gen-
eral) quite similar to the ones presented in Table  3. 
Instead, Table  6 shows that the eight approaches do 
not produce a homogeneous behaviour in this sce-
nario, with more or less consistent performance 
variations.

All the ML models built, their configurations for the 
training and the complete output files of the performance 
are available at the following link: https://​github.​com/​
svezio/​Covid​Study.

Discussion
While unsupervised models (in the Approaches1 set) 
seem to fail in catching the disease complexity, super-
vised ML models are in general able to produce rea-
sonable results. Considering models belonging to the 
Approaches2 set, both JRIP and DT seem to overall pro-
vide the most solid results, being always first or second 
for Accuracy, Precision, Recall and F-measure, with only 
the exception of ROC Area, in which both models are 
just behind REPtree.

When using the supervised models on the dataset from 
the third pandemic wave, despite the expected drop, we 
found that JRIP continues to provide reasonable results, 
with a precision of 0,813, an F-measure of 0,78, and 
a Roc Area > 0,7. By taking a deeper look at the confu-
sion matrices, we observed that the majority of incor-
rect instances refer to patients erroneously classified as 
potentially dead, while the number of patients incorrectly 
classified as discharged is in general very low. This sug-
gests that the performance drop is most likely attributa-
ble to updated care protocols and/or better management 
strategies available during the beginning of third wave.

Taking a look at the produced classification model, 
JRIP is able to bring out a very compact model composed 
of only 6 rules, as reported in Table 7. Purely by way of 
example, PART produces a set of 29 rules. By looking 
at the features selected by JRIP for the definition of the 
classification rules, age and Charlson comorbidity index 
represent two of the most important features for profile 
classification. Also dyspnoea, fever and diabetes may 
have an important role. These findings are in line with the 
related literature [46], where older age and comorbidities 
such as diabetes, hypertension, cardiovascular disease 
or respiratory diseases have been assessed as major risk 
factors for moving towards critical or mortal conditions. 
According to the study, the proportion of diabetes and 

Table 5  10-fold cross validation performances of Approaches3 

ML Model Accuracy Precision Recall F-measure Roc Area

BN 79.733 0.824 0.797 0.801 0.877

LR 80.9466 0.810 0.809 0.810 0.873

KNN 75.2427 0.752 0.752 0.752 0.813

SVM 79.9757 0.802 0.800 0.801 0.792

VP 69.4175 0.707 0.694 0.649 0.678

RF 79.4903 0.804 0.795 0.797 0.871

Adaboost M1 76.5777 0.785 0.766 0.769 0.837

Bagging 80.3398 0.813 0.803 0.806 0.866

Table 6  Performances of Approaches3 on the patient dataset 
from the begin of the third COVID-19 wave

ML Model Accuracy Precision Recall F-measure Roc Area

BN 70.4225 0.831 0.704 0.740 0.876

LR 76.0563 0.798 0.761 0.776 0.732

KNN 77.4648 0.804 0.775 0.787 0.846

SVM 80.2817 0.843 0.803 0.817 0.749

VP 84.507 0.831 0.845 0.836 0.693

RF 74.6479 0.809 0.746 0.769 0.850

Adaboost M1 69.0141 0.792 0.690 0.724 0.737

Bagging 77.4648 0.833 0.775 0.795 0.775

Table 7  JRIP produced rules

Rule Predicted outcome

(dyspnoea = Yes) and (charlsoncomorbidityindex ≤ 6) Death

(charlsoncomorbidityindex ≤ 4) and (dyspnoea = Yes) (age ≤ 89) Death

(charlsoncomorbidityindex ≤ 4) and (fever = Yes) and (age ≤ 72) Death

(age ≤ 74) and (charlsoncomorbidityindex ≤ 5) Death

(diabetes = Yes) and (charlsoncomorbidityindex ≤ 5) Death

Else Discharge

https://github.com/svezio/CovidStudy
https://github.com/svezio/CovidStudy
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other comorbidities is statistically significantly higher in 
critical/mortal conditions compared to non-critical ones. 
Furthermore, it has been found that clinical manifesta-
tions such as shortness of breath, dyspnoea or fever could 
imply the progression of COVID-19 and are more likely 
to develop into critical illness or even death [46].

Also, models from the Approaches3 set are able to pro-
vide very solid performances (see Tables  5 and 6 ), and 
some of them show results that are comparable (if not 
slightly better) to the best results obtained by models in 
Approaches2 for both the tested scenarios (i.e., by using 
10-fold cross validation or an external dataset from the 
third wave).

It is worth noting how BN,2 KNN and RF obtain a 
very remarkable result in terms of ROC Area even when 
used with the second validation dataset. However, as 
this second dataset is quite imbalanced (as described in 
subsection Data description and preparation, the use 
of ROC Area “requires special caution when used with 
imbalanced datasets” [47]. As suggested in the current 
literature (see e.g. [47, 48] or for a detailed analysis Chap-
ter 3 in [49]) since ROC Area alone may not be the best 
informative measure for evaluating the overall model 
performances, precision and recall scores, and/or other 
indicators that rely on these (such as F-measure), should 
be taken instead into consideration for model evalua-
tion as they may be better depict the real model perfor-
mances. As a consequence of that, we believe that the 
best approach coming out from the Approaches3 set is 
probably represented by SVM.

If we then compare SVM and JRIP (i.e. the best 
approach among Approaches2 model set) we will see that 
the performances of the former seem to be slightly higher 
than those provided by the latter. However, the small gain 
of SVM (and in general of Approaches3 vs. Approaches2), 
if any, remains negligible with respect to the added value, 
represented by an easily understandable explanation for 
the domain experts, that the methods in Approaches2 are 
able to provide. As already stated, in the medical domain 
explainability is considered a mandatory feature, which 
may determine both the acceptability and the applicabil-
ity of such models.

A similar scenario arises if we compare JRIP with LR 
(Logistic Regression) from Approaches3. Both models, 
belonging to the field of explainable AI, show very simi-
lar performance (see e.g. Tables  4 and 6, respectively). 
However, the explanation provided by LR is difficult to be 
directly understandable and usable by medical experts. 
The LR explanation [50] is an equation that uses all the 

43 input attributes. In this equation, there are 43 dis-
tinct weights3 (i.e. one weight for each attribute), which 
have a multiplicative effect on the prediction. Thus, the 
interpretation of attribute relevance is difficult and may 
not be (in general) so immediate. Furthermore, the real 
effect of a coefficient on the output cannot be determined 
independently from the other coefficients even because, 
for example, the attributes representing rare events (i.e., 
attributes that are true only for very small portions of the 
population) may entitle very high coefficients and thus 
very high odds ratios. However, these attributes result 
of little relevance in real practical scenarios where such 
rare events are not so commonly detected. On the other 
hand, the compactness of the JRIP explanation (i.e., only 
6 dichotomous rules) makes the interpretation easier 
than the LR explanation for the medical experts, as the 
number of attributes selected for classification is highly 
reduced (i.e. showing only the relevant attributes for the 
prediction).

It is worth noting that other studies available in the 
scientific literature also confirmed the potential use of 
explainable ML techniques on complex diseases such as 
Covid-19 [51–53]. These studies also assessed similar 
findings to those shown in this study, as the prominent 
role of comorbidities such as diabetes, cardiovascular dis-
eases or the presence of dyspnoea as major risk factors.

Conclusions
The importance of AI and ML is constantly growing in 
the last years and their use is rapidly changing the way we 
approach to and face with real life problems. As a mat-
ter of fact, the results in many fields are amazing, but 
the lack of explainability represents a deal-breaker, espe-
cially when the health and safety of human beings are 
involved. In this scenario (e.g. medical domain), explain-
able AI techniques should be taken instead into serious 
consideration.

In our work, we analyzed the performances of 
ML approaches in the complex medical context of 
COVID-19. We studied whether ML approaches can 
predict between low-risk and high-risk COVID-19 
hospitalized patients at the admission time. At this 
step, the early detection of patient risk is crucial, 
since it can promptly allow appropriate care of high-
risk patients. Furthermore, during a pandemic period, 
such a prediction can improve both organizational and 
management decisions. Thus, the considered features 
(i.e. the patient data) are usually limited to ones avail-
able at the admission time. In our study, we principally 

3  The weights of LR equation are provided in the WEKA output file as supple-
mentary material at the following link: https://​github.​com/​svezio/​Covid​Study, 
under the folder Approaches3.

2  Graphical network representation is provided as supplementary material 
at the following link: https://​github.​com/​svezio/​Covid​Study under the folder 
Approaches3.

https://github.com/svezio/CovidStudy
https://github.com/svezio/CovidStudy
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focused on ML approaches which also provide a clear 
and understandable explanation for domain experts, 
fostered by the fact that even if a ML model produces 
good performances, it will hardly be taken into con-
sideration in the medical field without an explanation 
about its predictions. For the sake of completeness, we 
also compared such models with other classical ML 
approaches.

In particular, we have tested 19  ML approaches on 
COVID-19 patients hospitalized during 2020. While 
the performances of the all methods in Approaches1 
(i.e. unsupervised ML approaches) were not satisfac-
tory, we showed that methods from Approaches2 and 
Approaches3 entitled quite similar good performances 
overall.

Let us point out that the methods from the 
Approaches2 set can not only be able to correctly dis-
cern between low-risk and high-risk in a complex med-
ical disease context and with a limited list of features, 
but also provide an explanation that is directly usable 
by medical experts.

The use of patient data from the third COVID-19 
wave as test set represents a very important evalua-
tion step, since such patients have not been used to 
build the models. Models from Approaches2 set dem-
onstrated able to reasonably perform even in this sce-
nario. From a medical point of view, such a result is 
also very interesting, because the models produce good 
predictions despite the possible differences entitled 
with different care protocols and the possible influence 
of other viral variants (i.e. delta variant). Moreover, we 
have compared the results of models from Approaches2 
and Approaches3 sets. Some methods in Approaches3 
show a small performance advantage, but this gain does 
not justify their adoption, since explainability is a man-
datory feature in the medical domain.

JRIP [37], a propositional rule learner, is one of the 
approaches showing the best performances overall. Let 
also us point out that the explanation provided by JRIP 
is very compact, i.e. a set of six rules with, at most, two 
or three Boolean conditions. Thus, it is consequently 
easily understandable and (potentially) usable in real 
clinical contexts.

Finally, it is worth noting that a possible limitation 
of this study is given by the fact that the data refers to 
a period going from the beginning of the pandemic 
emergency up to the start of the third wave. Virus 
mutations, as well as improved care protocols and 
novel treatments (such as antivirals and vaccines), may 
influence the entire landscape and thus, with a view 
to a perspective use, models and results should be re-
evaluated and refined upon the availability of novel 
data.
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