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Abstract 

Background  The natural history of many chronic diseases is characterized by periods of increased disease activity, 
commonly referred to as flare-ups or exacerbations. Accurate characterization of the burden of these exacerbations is 
an important research objective.

Methods  The purpose of this work was to develop a statistical framework for nuanced characterization of the three 
main features of exacerbations: their rate, duration, and severity, with interrelationships among these features being a 
particular focus. We jointly specified a zero-inflated accelerated failure time regression model for the rate, an acceler-
ated failure time regression model for the duration, and a logistic regression model for the severity of exacerbations. 
Random effects were incorporated into each component to capture heterogeneity beyond the variability attributable 
to observed characteristics, and to describe the interrelationships among these components.

Results  We used pooled data from two clinical trials in asthma as an exemplary application to illustrate the utility of 
the joint modeling approach. The model fit clearly indicated the presence of heterogeneity in all three components. 
A novel finding was that the new therapy reduced not just the rate but also the duration of exacerbations, but did 
not have a significant impact on their severity. After controlling for covariates, exacerbations among more frequent 
exacerbators tended to be shorter and less likely to be severe.

Conclusions  We conclude that a joint modeling framework, programmable in available software, can provide novel 
insights about how the rate, duration, and severity of episodic events interrelate, and enables consistent inference on 
the effect of treatments on different disease outcomes.
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Background
The course of many chronic diseases is highlighted by 
periodic worsening, commonly referred to as exacerba-
tions, flare-ups, or attacks. Examples include asthma, 
chronic obstructive pulmonary disease (COPD), mul-
tiple sclerosis, Parkinson’s disease, and cystic fibrosis. 
These exacerbations are often an important component 
of the natural history of such diseases and constitute a 
major source of their burden. Given the substantial con-
tribution of exacerbations to the overall burden of such 
diseases, characterizing the occurrence and intensity of 
exacerbations is a major focus of research and patient 
care [1, 2].

In general, the total burden of exacerbations is deter-
mined by three dimensions: their rate (frequency), their 
duration, and their severity. Individual patients might 
differ in the extent of these dimensions. For example, 
in both asthma and COPD, it has been established that 
individuals have significantly different rates of exacerba-
tion [3–5], as well as different tendencies towards expe-
riencing severe versus mild exacerbations [6]. Further, as 
interventions that target exacerbations can differentially 
affect each dimension, a comprehensive understanding of 
treatment effect requires evaluating all three dimensions 
simultaneously.

Evaluating interventions that target the burden of 
exacerbations has conventionally focused on exacerba-
tion rate. This is manifested in exacerbation rate (or risk) 
being the primary end-point in the majority of clinical 
trials in asthma. Common analytic approaches include 
marginal models [7–9], modeling time to the first exacer-
bation in a survival analysis framework [10], using mod-
els for count outcomes [11, 12], or employing models for 
recurrent events [13, 14]. Recent developments in the 
analysis of exacerbation trials include the use of random 
effect models to account for between-individual variabil-
ity in exacerbation rates [13, 14], and the use of a mixture 
of a random  effect or a gap-time model with a logistic 
regression model to allow for the excessive presence of 
individuals without any exacerbations (“zero inflation”) 
during follow-up [13–15]. Another approach could be 
using marginal regression analysis of recurrent point pro-
cesses (and their extensions) for recurrent events (see, 
e.g., [16]). See [17] as a recent systematic review of differ-
ent models for recurrent events data.

The commonality among these developments is the 
desire for more accurate modeling of exacerbation rate. 
On the other hand, the majority of such models consider 
exacerbations as instantaneous events. Ignoring exacer-
bation duration may lead to biased rate estimates [18]. 
To address this issue, [19] extended the Cox proportional 
hazards model for situations where the event is recur-
rent and the event duration is non-negligible. They did 

not explicitly model the durations, but adjusted the risk 
set to accommodate event duration in order to improve 
modeling of event rate. To enable inference on both event 
rate and duration, [20, Chapter 6] proposed an alternat-
ing two-state process, which paralleled the two states of 
“at risk” and “not at risk”, and modeled the event rate and 
duration using the times of transitions between the two 
states. Very few previous studies have explored how the 
severity of exacerbations can be studied in tandem with 
their frequency. An exception is a recently proposed joint 
frailty-logistic model for simultaneous inference on exac-
erbation rate and severity [6, 21]; however, exacerbation 
duration was not evaluated in this framework.

The purpose of this work is to expand on previous 
developments to provide a unified inferential frame-
work for all three dimensions of exacerbations. Such a 
unified framework has two important potentials. First, 
it can provide better insight into the natural history of 
exacerbations; for example, this framework enables one 
to assess the hypothesis that individuals who exacer-
bate more frequently are generally more susceptible to 
the causes of such events, and concordantly experience 
longer and more severe events. Second, this framework 
enables more comprehensive evaluation of treatment 
effects, by enabling simultaneous inference on determi-
nants of the burden of exacerbations and not just rate. 
The implementation of our framework is provided in 
available commercial software, facilitating access for the 
applied research community.

Motivation: a case study in asthma
As an example of a chronic disease with episodic events, 
we studied asthma where exacerbations are a source of 
considerable morbidity for patients and economic burden 
for both patients and providers [22, 23]. We used pooled 
data from two large randomized placebo-controlled trials 
(DREAM and MENSA [24, 25]) of the new biologic med-
ication mepolizumab to illustrate how our unified frame-
work is able to comprehensively characterize the burden 
of exacerbations and the impact of this novel therapy on 
the different aspects of this burden.

Briefly, in DREAM, 621 patients were randomized to 
placebo or one of three doses of intravenous mepoli-
zumab (75  mg, 250  mg, or 750  mg), and were followed 
for 52 weeks. In MENSA, 580 patients were randomized 
to placebo or one of two doses of mepolizumab (75 mg 
or 100 mg), and were followed for 32 weeks. Preliminary 
analyses (involving descriptive analysis of patient char-
acteristics and observed outcomes, and fitting the model 
with study ID and its interaction with treatment arms) 
supported the pooling of the data from the two trials (see 
Section  1 of the Additional file  1 for more details). The 
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pooled data therefore provided outcomes for placebo and 
four different doses of mepolizumab.

The primary outcome in both studies was the rate of 
asthma exacerbations. Exacerbations were defined con-
sistently in both studies. The timing since randomiza-
tion, the duration, and severity of exacerbations were 
recorded. For the purposes of our study, we consider 
exacerbation severity as a binary response: exacerbations 
requiring an emergency department visit or hospital 
admission are considered severe, while those managed in 
outpatient settings are considered not severe. All individ-
uals were exacerbation-free at the beginning of follow-up.

Methods
All methods were carried out in accordance with relevant 
guidelines and regulations.

Definitions and notation
Let states 1 and 2 represent the recovered and exacerba-
tion states, respectively. Suppose n patients were followed 
over time to generate data on n independent alternat-
ing two-state processes. For patient i ( i = 1, . . . , n ), let 
Mi be the number of observed exacerbations over their 
follow-up time Ti . In our case study, the times Ti dif-
fer across patients because the nominal follow-up peri-
ods differed in the two trials under consideration, some 
patients dropped out during follow-up, and in both stud-
ies patients who were experiencing an exacerbation at the 
end of their nominal follow-up period were further fol-
lowed to the termination of that event.

For the jth exacerbation of the ith patient, let Ui,j and 
Vi,j be, respectively, the time of exacerbation onset and 

termination. Thus, the exacerbation duration (within-
exacerbation period) is Wi,j = Vi,j −Ui,j and the 
between-exacerbation period (the time from the termi-
nation of the previous exacerbation to the beginning of 
the jth exacerbation) is Bi,j = Ui,j − Vi,j−1 . In the recur-
rent event literature, these periods are often referred to 
as gap times. Since we do not know the termination time 
of the patient’s last exacerbation prior to study entry, 
we assume the randomization date coincides with the 
beginning of the initial exacerbation-free period; that is, 
we set Vi,0 ≡ 0 . We will later discuss the implications of 
this simplifying assumption in the context of our case 
study. Similarly, we define Si,j as the binary severity out-
come of the jth exacerbation ( Si,j = 1 if the exacerbation 
is severe, Si,j = 0 otherwise). We assume the censoring 
due to dropout occurs independently of the within- and 
between-exacerbation gap times and severity. In our 
case study, only the between-exacerbation gap times are 
censored as all individuals who were experiencing an 
exacerbation at the end of the nominal follow-up period 
were followed until the end of that exacerbation. Exten-
sion of our approach for situations with censored within-
exacerbation gap times is immediate. Figure 1 provides a 
schematic illustration of the history of exacerbations in a 
given patient and the relationship between the three dis-
ease features of interest.

In addition, we let X i,j (for j = 1, . . . ,Mi ) be the vector 
of covariates for the jth episode of patient i; the vector X i,j 
includes both baseline covariates and episode-specific 
covariates that are measured at the onset of the jth exac-
erbation-free period. For simplicity of notation, in what 
follows we consider the same set of covariates X i,j for 

Fig. 1  Schematic illustration of model specification. This graph illustrates within (W’s) and between (B’s) exacerbation durations (gap times), 
exacerbation severity (S’s), and follow-up time termination (T) for a subject who had two exacerbations during the follow-up period
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modeling each of the three features, but optionally differ-
ent sets of covariates can be used for each component.

The model
We propose a parametric model to jointly character-
ize the distribution of Bi,j (between-exacerbation gap 
time, related to exacerbation rate), Wi,j (within exacer-
bation gap time or duration), and Si,j (severity of exac-
erbation). Each of the three submodels incorporates 
a random  effect to capture heterogeneity beyond that 
explained by included covariates, thus inducing auto-
correlations among the repeated gap times of each type 
and the repeated severities within a patient. Joint mod-
eling of the three random  effects for each patient also 
allows for inter-correlations among the three model 
dimensions. We opted for parametric specification of all 
model components to allow straightforward estimation 
of random effects and prediction of outcomes. A further 
advantage of a parametric specification is that the likeli-
hood function for the model can readily be programmed 
in available software.

The rate submodel
We use hazard-based models for the alternating two-state 
process [20]. The event hazard function gives the instanta-
neous rate of an event occurring at time t, conditional on 
the process history. For simplicity, we suppress the depend-
ence on the process history and covariates in our notation. 
For the onset of an exacerbation event (the between-exac-
erbation gap times Bi,j ), we use an accelerated failure time 
(AFT) model with an additive random effect (RE) [26, 27]. 
Specifically, conditional on a zero-mean individual-specific 
random effect ZB,i , the Bi,j ’s of patient i ( i = 1, . . . , n and 
j = 1, . . . ,Mi ; for simplicity, the range of the indices will be 
suppressed hereafter) are assumed to be independent. The 
hazard function for Bi,j is modelled as

where h0B(.) is the baseline hazard function for the onset 
of exacerbation events and θi,j,B = exp

(

−ηi,j,B
)

 where 
ηi,j,B = X

T
i,jβB + ZB,i , with βB the covariate coefficient 

vector.
This parametrization of the AFT, which can equiva-

lently be represented as

where exp
(

ǫi,j,B
)

 has hazard function h0B(.) , has the 
attractive feature that interpretations of the regression 
coefficients are the same either conditionally (on the 
random effect) or marginally [28]. We refer to this as an 
AFT-RE model.

hi,j,B
(

t|ZB,i

)

= θi,j,Bh
0
B

(

θi,j,B
(

t − Vi,j−1

))

, for t > Vi,j−1

log
(

Bi,j

)

= ηi,j,B + ǫi,j,B

Parametric time to event models require specification 
of the baseline hazard function. We suggest evaluat-
ing different functions and making a selection based on 
goodness-of-fit (e.g., as measured by the Akaike Informa-
tion Criterion [AIC] [29]), as well as visual comparison of 
observed and predicted time to event curves. In contrast 
to hazard ratios estimated from proportional hazards 
models, the regression coefficients of AFT models can 
be interpreted intuitively and simply in terms of factors 
that contribute to the acceleration or deceleration of the 
time to events [30]. More precisely, with the parametriza-
tion of the AFT hazard function specified above, if β is 
the regression coefficient for a particular covariate, a one 
unit increase in that covariate is associated with multipli-
cation of the expected time to event by the factor exp(β) . 
In what follows, we refer to these as AFT factors.

The duration submodel
We use another AFT-RE model for the termination of an 
exacerbation event (the within-exacerbation gap times 
Wi,j ). Conditional on a zero-mean individual-specific ran-
dom effect ZW ,i , the Wi,j ’s of patient i are assumed to be 
independent. The hazard function for Wi,j is modelled as

where h0W (.) is the baseline hazard function for the termi-
nation of exacerbation events and θi,j,W = exp

(

−ηi,j,W
)

 
where ηi,j,W = X

T
i,jβW + ZW ,i , with βW  the covariate 

coefficient vector. This parametrization of the AFT can 
equivalently be represented as

where exp
(

ǫi,j,W
)

 has hazard function h0W (.) . Again, one 
can evaluate several parametric baseline hazard func-
tions and make a selection based on goodness-of-fit.

The severity submodel
We specify a logistic regression model for the condi-
tional probability of an exacerbation being severe once it 
occurs, pi,j = P

(

Si,j = 1|ZS,i

)

 , as

where βS is the covariate coefficient vector. Conditional 
on a zero-mean individual-specific random  effect ZS,i , 
the Si,j ’s of patient i are assumed to be independent.

The zero‑inflated component
In many circumstances, there is an excess number of 
patients who experience no exacerbations over the fol-
low-up period (either because they are not susceptible 

hi,j,W t|ZW ,i = θi,j,Wh0W θi,j,W t − Ui,j for t > Ui,j

log
(

Wi,j

)

= ηi,j,W + ǫi,j,W

logit
(

pi,j
)

= X
T
i,jβS + ZS,i
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to exacerbations or have a very low rate of events - a so-
called “ non-susceptible” subgroup). This is similar to 
the situation motivating ‘cure models’ in survival analy-
sis to model the presence of long-term survivors [31, 
32]. To accommodate this aspect of the population, one 
can consider a mixture component which models πi , the 
probability patient i is non-susceptible, through a logistic 
regression model in terms of the baseline covariates X i,0 
as

where βZI is the covariate coefficient vector. As there are 
no repeated events related to this mixture modeling, we 
do not include a RE in this model component.

Modeling the interdependencies
We assume for patient i, given the random  effects, 
Bi,j and ( Wi,j , Si,j ) are independent, and given the ran-
dom  effects and Bi,j , Wi,j and Si,j are independent 
(for j = 1, . . . ,Mi ). These assumptions allow for two 
types of correlation between the outcomes based on 
the random  effects. The random  effects in each sub-
model account for autocorrelation in that outcome 
across repeated events on the same patient. In addi-
tion, to accommodate potential dependencies among 
the three outcomes (e.g., if individuals with higher 
exacerbation rates tend to experience more severe 
exacerbations), we allow for correlation between the 
random  effects across submodels. Specifically, we 
assume Zi = (ZB,i,ZW ,i,ZS,i)

T  , i = 1, . . . , n , are inde-
pendent and identically distributed with mean zero. For 
our motivating case study, we will take this distribution 
to be multivariate normal with covariance matrix �Z . 
The distribution of the random effects is thus governed 
by 3 variance and 3 correlation parameters; these corre-
lation parameters indirectly describe the relationships 
across patients between the rate, duration, and severity 
of the exacerbations.

Implementation
The likelihood function is provided in Section 2 of the 
Additional file  1. We use PROC NLMIXED in SAS 
(with the built-in Newton–Raphson ridge optimiza-
tion algorithm) to obtain the maximizer of the full 
likelihood, together with its estimated variance-covar-
iance matrix (using SAS 9.4 PROC NLMIXED [SAS 
Institute, Cary NC]). To obtain the AFT factors/odds 
ratios (ORs) and their confidence intervals (CIs), we 
exponentiate the estimated coefficients and their CIs 
from the linear predictors. An annotated SAS macro 

logit(πi) = X
T
i,0βZI

that implements the model in a generic fashion, along 
with a manual and a simulated dataset, is available at 
our website (http://​resp.​core.​ubc.​ca/​softw​are/​RDSmo​
del). The macro flexibly accommodates various aspects 
of the model such as the inclusion or exclusion of the 
duration and severity submodels, or which submodels 
should include a random effect.

Results
Characteristics of patients
Table 1 provides the characteristics of the final sample, 
including the covariates and outcomes. After excluding 
84 and 7 patients because of missing or outlying covari-
ate values, respectively, 1,110 patients remained in the 
final dataset (mean age 49.2, SD=12.9, 60.0% female). 
We conducted a sensitivity analysis to assess the impact 
of removing patients with missing values in covariates 
(Additional file  1—Section  3). The average follow-up 
time was 0.78 years and the overall withdrawal rate was 
11%, with similar rates across all trial arms. As there 
were only 4 deaths and none of these were related to 
the disease, we did not incorporate death as a compet-
ing risk event in the model. These patients experienced 
1,128 exacerbations (with an average duration of 14.4 
days), corresponding to an exacerbation rate of 1.31 per 
year. The largest number of exacerbations observed in a 
patient was 10, but 52.8% of the patients did not experi-
ence any events during the study period. Of the exacer-
bations, 181 (16.0%) were severe.

After consulting with clinical experts, we included 
fourteen baseline covariates (listed in Table  1) in all 
four submodels. Two episode-specific covariates were 
also utilized: the number of previous exacerbations 
during follow-up (N) and the number of previous 
severe exacerbations during follow-up ( NS).

Model outputs
We examined exponential, Weibull, log-normal, and 
log-logistic baseline hazard functions. As our primary 
purpose with the case study was to illustrate the util-
ity of the modeling approach, for ease of presentation, 
attention was focused on use of the same distribution 
for both the between- (rate) and within- (duration) 
exacerbation gap times ( Bi,j and Wi,j ). As judged in 
terms of AIC (Additional file  1—Section  3) and visual 
agreement between the observed and estimated mar-
ginal survival curves (Fig.  2), the log-normal provided 
the best fit. Not surprisingly, as more than half of 
patients did not experience any exacerbations during 
the study period, the zero-inflated component yielded 

http://resp.core.ubc.ca/software/RDSmodel
http://resp.core.ubc.ca/software/RDSmodel
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a substantial reduction in the AIC and hence was 
retained in the final model.

The estimated baseline hazard functions for both rate 
and duration were nearly constant, so the different distri-
butions provided a similar fit to that of the exponential as 
shown in Fig. 2. It follows that the baseline hazard func-
tion for the rate did not depend in any substantial way on 
the time since the termination the previous exacerbation. 
This is reassuring as it indicates negligible impact of the 
assumption that the first between-exacerbation gap time 
starts from the randomization date, while in fact this 
time is left-truncated.

Table  2 reports the estimated AFT factors in the rate 
and duration submodels, and the estimated ORs in the 
logistic regression submodel for the exacerbation severity 
and in the zero-inflated submodel, along with their 95% 
CIs. Given our parameterization of the model, a positive 
regression coefficient (AFT factor> 1 or OR > 1) corre-
sponds to an increase in the mean of the distribution of 
between-exacerbation gap times represented by the rate 
submodel (or equivalently a decrease in the rate of exac-
erbations), an increase in the mean of the distribution 
of exacerbation durations (or equivalently a decrease in 
the rate of exacerbation termination), and an increase in 
the probability of severe exacerbation as the value of the 
covariate increases [30].

With respect to the rate component, our analysis 
largely reproduced the findings of the DREAM and 
MENSA studies on the beneficial effects of mepolizumab 
on the between-exacerbation times: the 250  mg dose 
yielded the largest effect (AFT factor 2.18, 95%CI 1.44, 
3.29). On the other hand, the joint model also allows 
detailed inference concerning both duration and sever-
ity, as well the interrelationships among all three dimen-
sions of asthma exacerbations. The treatments seemed 

to be associated with modest decreases in exacerbation 
duration with some indication of a dose-response rela-
tionship. However, only the highest dose (750  mg) was 
significantly (at the conventional 0.05 significance level) 
associated with shorter exacerbation duration (AFT fac-
tor 0.85, 95% CI: 0.72, 1.00). No treatment effects were 
detected on exacerbation severity.

Table 3 reports the estimates of the shape parameters 
of the log-normal baseline hazard functions and the vari-
ance and correlation parameters of the random  effects. 
Figure 3 shows the distribution of the estimated (empiri-
cal Bayes) random  effects (panel A), their pairwise 
scatterplots (panel B), and marginal predicted mean out-
comes (panel C) for patients who had at least one exac-
erbation. We excluded individuals with no exacerbations 
from this plot because the random effects for the duration 
and severity components cannot be estimated for this 
subgroup. Such plots can be used as a visual tool to assess 
the overall goodness of fit of the model as well as the 
necessity of including random effects in each submodel. 
According to the predicted values, there were substantial 
levels of between-individual variability (heterogeneity) in 
the burden of exacerbations: the mid-95% ranges of the 
marginal predicted means in the sample were: 147–840 
days for the between exacerbation gap times, 11–27 days 
for the within exacerbation gap times, and 0.02−0.51 for 
the probabilities of an exacerbation being severe. Some of 
this heterogeneity can be attributed to between-individ-
ual variations in covariates. However, there was substan-
tial unexplained variability in each of rate, duration and 
severity, as documented by the estimated random effect 
standard deviations of 0.78, 0.54, and 1.46, respectively, 
each with confidence intervals that are clearly removed 
from 0 (Table 3).

Fig. 2  Empirical (observed) versus estimated marginal cumulative distribution functions (averaged over the predictors) of between-exacerbation 
(A) and within-exacerbation (B) times



Page 7 of 11Safari et al. BMC Medical Informatics and Decision Making            (2023) 23:6 	

The correlation between the random effects for the rate 
and duration submodels was 0.40 (95% CI: 0.25, 0.55), 
indicating that, after controlling for observed charac-
teristics, exacerbations in patients with more frequent 
exacerbations tended to be shorter. The corresponding 
correlation between the rate and severity submodels was 
0.47 (95% CI: 0.18, 0.76), indicating that more frequent 
exacerbators tended to have fewer severe exacerbations. 
The duration and severity submodels were also positively 
correlated (0.47, 95% CI: 0.27, 0.68), indicating that severe 
exacerbations tended to be longer in duration than non-
severe ones. Section  3 of the Additional file  1 illustrates 
the extent to which the model adequately reflects the cor-
relations between the outcomes. In addition, Section 3.3 
of the Additional file 1 presents the results of a sensitiv-
ity analysis based on multiple imputation of missing 

data, which generated similar results to the main analysis 
(which excluded observations with missing values).

Discussion
We developed and implemented a parametric multi-com-
ponent model to jointly characterize the three important 
dimensions of exacerbations or flare-ups present in many 
chronic diseases: their rate, duration, and severity. Our 
model can describe the relationships between these three 
aspects of the natural history of exacerbations, can quan-
tify the between-individual variability (heterogeneity) 
in each of these aspects, and can elucidate the effect of 
exposures (e.g., intervention in a clinical trial) on each of 
these dimensions simultaneously.

As a case study, we implemented our method using 
pooled data from two large asthma trials. Some of 
the novel findings from the application of this unified 

Fig. 3  Histograms of estimated random effects with superimposed approximating normal densities (A), pairwise scatterplots of estimated 
random effects with 95% confidence ellipses (B), and histograms of marginal predicted mean outcomes (C). Estimated random effects ( ̂ZB,i , ̂ZW ,i , 
and ̂ZS,i ) are obtained using the empirical Bayes method, implemented with the PREDICT statement of SAS PROC NLMIXED. As the random effect 
estimates of the duration and severity submodels are meaningful only for patients with at least one exacerbation during the follow-up period, only 
such patients are included in these plots
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modeling approach were the potential effect of the treat-
ment on the duration of exacerbations, which was not 
evaluated in the original studies, and the elucidation of 
dependencies among the rate, duration, and severity of 
exacerbations. We could demonstrate that, after control-
ing for observable characteristics, exacerbations among 
more frequent exacerbators tended to be shorter and less 
likely to be severe. This might reflect a ‘threshold’ effect: 
that different patients might have different thresholds 
in registering a period of intensified disease activity as 
an exacerbation; thus, those with lower thresholds will 
tend to report more exacerbations, but a lower fraction 
of such exacerbations would be severe enough that would 
require urgent or inpatient care.

To the best of our knowledge, this is the first study that 
jointly characterizes the three important aspects of exac-
erbations. Most studies to date have only modeled the 
rate of a complete healthy or sick episode [24, 33–36], 
while a few have jointly modeled rate and severity of the 
episodes but did not consider their duration [6]. In addi-
tion to providing novel insights into the natural history of 
such diseases, the proposed approach can mitigate some 

of the biases that can arise from not modeling these com-
ponents jointly. As an example, [18] showed that ignor-
ing the durations can lead to serious bias in estimating 
the rate of COPD exacerbations. Moreover, the model 
addresses the issue of the excessive presence of individu-
als without any exacerbations during follow-up (zero-
inflation), which has been frequently discussed in the 
literature [13–15]. Importantly, the proposed framework 
can be implemented with standard statistical software; 
to enhance its accessibility, an annotated SAS macro that 
implements the model in a generic fashion, along with a 
manual and a simulated dataset, is available at our web-
site (http://​resp.​core.​ubc.​ca/​softw​are/​RDSmo​del).

Our study also has limitations. We used fully paramet-
ric models for the time to start/end of exacerbations. 
While such models accommodate straightforward esti-
mation of random effects and facilitate outcome predic-
tion, parametric modeling inherently involves stronger 
assumptions on the shape of the hazard function com-
pared with the semi-parametric methods such as the Cox 
proportional hazards model. One can employ more flex-
ible approaches (such as splines) to model time-to-event 

Table 1  Descriptors for baseline characteristics (average (SD) or count (%), as appropriate) and outcomes of the final sample

*Pooled data from both studies FEV1: Forced expiratory volume at one second

Predictors Overall (n=1110) Placebo* (n=323) 75 mg 
Mepolizumab* 
(n=317)

100 mg 
Mepolizumab 
(n=171)

250 mg 
Mepolizumab 
(n=150)

750 mg 
Mepolizumab 
(n=149)

Female 668 (60%) 193 (60%) 193 (61%) 102 (60%) 92 (61%) 88 (59%)

Age (years) 49.0 (12.9) 47.7 (13.2) 49.8 (13.0) 50.3 (14.5) 49.1 (11.5) 48.3 (11.1)

Body Mass Index (kg/m2) 28.1 (5.9) 28.2 (5.8) 28.0 (5.9) 27.7 (6.0) 28.4 (5.9) 28.7 (5.8)

Duration of asthma (years) 19.3 (14.0) 18.8 (14.3) 19.3 (13.9) 20.2 (12.9) 20.4 (14.0) 18.7 (15.0)

Maintenance daily dose of oral 
corticosteroids (mg)

4.2 (10.3) 3.5 (8.2) 3.7 (8.9) 3.4 (8.3) 6.4 (17.0) 5.1 (10.3)

Nasal polyps 147 (13%) 47 (14%) 40 (13%) 25 (15%) 22 (15%) 13 (9%)

Percentage of predicted pre-bron-
chodilator FEV1

60.3 (17.1) 61.1 (16.9) 60.2 (17.5) 59.7 (17.7) 59.3 (16.8) 60.7 (16.0)

FEV1 reversibility (%) 26.4 (21.6) 26.7 (22.4) 26.2 (20.2) 28.9 (25.1) 26.4 (21.0) 23.4 (18.9)

Score on asthma control question-
naire

2.3 (1.1) 2.3 (1.3) 2.2 (1.1) 2.2 (1.2) 2.4 (1.1) 2.2 (1.1)

Blood eosinophil count ( 109/L) 0.42 (0.40) 0.44 (0.42) 0.40 (0.38) 0.45 (0.43) 0.39 (0.44) 0.36 (0.31)

IgE (U/ml) 447 (1093) 435 (850) 548 (1318) 354 (364) 361 (847) 450 (1593)

Ethnicity (Black/Hispanic) 107 (10%) 31 (10%) 32 (10 %) 16 (9%) 14 (9%) 14 (9%)

History of smoking 247 (22%) 67 (21%) 74 (24%) 41 (24%) 30 (20%) 35 (24%)

Exacerbations requiring admission 
in year prior to study

3.6 (2.9) 3.7 (3.3) 3.6 (2.7) 3.8 (2.8) 3.4 (2.4) 3.5 (2.9)

Follow-up time (years) 0.78 (0.24) 0.75(0.24) 0.75 (0.24) 0.61 (0.11) 0.94 (0.21) 0.92 (0.22)

Outcomes

Number of exacerbations (annual 
rate)

1128 (1.31) 468 (1.94) 251 (1.05) 86 (0.83) 179 (1.27) 144 (1.04)

Duration of exacerbations (days) 14.4 (11.6) 15.0 (12.6) 15.1 (13.3) 12.9 (9.5) 14.1 (8.5) 12.4 (10.0)

Number of severe exacerbations 
(annual rate)

181 (0.21) 68 (0.28) 39 (0.16) 14 (0.13) 32 (0.23) 28 (0.20)

http://resp.core.ubc.ca/software/RDSmodel
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data if the common parametric distributions do not per-
form well in an application (this was not needed in our 
case study) [37–40]. Further, we dichotomized exacer-
bation severity as moderate (requiring outpatient care) 
versus severe (requiring emergency department visit or 

hospital admission). One can easily extend the current 
model to incorporate severity as an ordinal categori-
cal outcome by replacing the severity submodel with a 
multinomial or ordinal model. Overall, as our focus was 
on proposing a novel methodology rather than provid-
ing definitive clinical results, we have made simplifying 
assumptions (removal of outlying variables, dichotomiza-
tion of outcome), but in general this framework is flexible 
for further expansion to accommodate such features.

Characterizing between-individual variability (het-
erogeneity) in different dimensions of exacerbations, 
through implementing random  effects, is an important 
feature of the proposed approach. In addition, such a 
joint model can potentially facilitate prediction of future 
burden of exacerbations, including their rate, duration, 
and severity in tandem, albeit the predictive perfor-
mance of such a modeling framework needs to be inves-
tigated in future studies [41]. It is worth mentioning that 
incorporating random  effects in all components of the 

Table 2  AFT and OR estimates for the adjusted model with log-normal random effects

*Significant at 0.05 level AFT: accelerated failure time multiplicative factor ( = exp(β) ); OR: odds ratio ( = exp(β) ); FEV1: forced expiratory volume at one

second; ACQ: asthma quality of life questionnaire; SCS: systemic corticosteroid; BMI: body mass index
† : ln the AFT model, each regression coefficient, when exponentiated, yields the multiplicative factor by which a one unit change in the

covariate shortens/elongates the mean time to event
‡ : Episode-specific covariates used in the model: N = number of previous exacerbations during follow-up; NS = number of previous

severe exacerbations during follow-up

Covariate Submodel

Between exacerbation Duration Severity Zero-inflated

AFT† (95%CI) AFT† (95%CI) OR (95%CI) OR (95%CI)

Mepolizumab (75 mg) 1.60 (1.19, 2.16) * 0.97 (0.83, 1.13) 1.25 (0.65, 2.39) 2.11 (0.90, 4.92)

Mepolizumab (100 mg) 1.38 (0.99, 1.92) 0.95 (0.82, 1.09) 1.66 (0.70, 3.94) 1.59 (0.62, 4.05)

Mepolizumab (250 mg) 2.18 (1.44, 3.29) * 0.94 (0.76, 1.16) 1.14 (0.40, 3.27) 2.62 (0.95, 7.18)

Mepolizumab (750 mg) 2.02 (1.38, 2.96) * 0.85 (0.72, 1.00) * 1.30 (0.53, 3.17) 1.42 (0.47, 4.33)

Age (in decades) 1.09 (0.98, 1.22) 1.02 (0.97, 1.08) 0.79 (0.63, 1.00) * 1.00 (0.78, 1.28)

Female 1.08 (0.86, 1.36) 1.05 (0.93, 1.18) 1.20 (0.65, 2.23) 0.37 (0.19, 0.73) *

FEV1 (liter) 0.81 (0.40, 1.66) 1.11 (0.77, 1.59) 0.89 (0.19, 4.26) 6.22 (0.90, 43.1)

Nasal polyp 1.15 (0.83, 1.60) 1.00 (0.85, 1.19) 0.94 (0.37, 2.36) 1.27 (0.51, 3.15)

ACQ score 0.90 (0.80, 1.00) 1.01 (0.96, 1.06) 0.97 (0.71, 1.33) 0.70 (0.52, 0.95) *

BMI 1.07 (0.89, 1.28) 1.14 (1.04, 1.26) * 1.94 (1.26, 3.00) * 0.63 (0.33, 1.19)

FEV1 reversibility (percentage) 1.27 (0.86, 1.89) 0.90 (0.74, 1.09) 0.94 (0.38, 2.34) 0.26 (0.04, 1.85)

Baseline eosinophil 0.77 (0.55, 1.08) 1.08 (0.95, 1.24) 2.01 (0.53, 7.67) 1.49 (0.79, 2.83)

History of smoking 1.13 (0.87, 1.46) 0.96 (0.85, 1.08) 1.31 (0.69, 2.48) 0.47 (0.19, 1.13)

Duration of asthma (in decades) 0.98 (0.90, 1.06) 1.03 (0.99, 1.07) 1.08 (0.85, 1.37) 1.00 (0.80, 1.26)

Baseline SCS daily dose 0.96 (0.88, 1.05) 1.08 (1.03, 1.14) * 1.32 (1.06, 1.65) * 0.18 (0.04, 0.92) *

Black/Hispanic v. White 0.76 (0.55, 1.06) 0.85 (0.72, 1.00) * 4.93 (2.39, 10.17) * 1.30 (0.42, 4.00)

Baseline IgE 1.04 (0.95, 1.15) 0.96 (0.91, 1.02) 1.02 (0.75, 1.37) 0.64 (0.34, 1.22)

No. of exacerbations year prior to study 0.47 (0.34, 0.64) * 0.73 (0.63, 0.86) * 1.65 (0.87, 3.16) 0.33 (0.07, 1.44)

N
‡ 1.10 (1.02, 1.19) * 1.04 (1.00, 1.08) * 1.20 (1.00, 1.43) -

N
‡
S

0.73 (0.58, 0.93) * 0.99 (0.89, 1.10) - -

Table 3  Log-normal shape parameter and random  effects 
parameter estimates

Parameter Estimate 95% CI

Shape Rate 1.22 (1.15, 1.29)

Duration 0.62 (0.59, 0.65)

SD Rate 0.78 (0.66, 0.90)

Duration 0.54 (0.45, 0.63)

Severity 1.46 (0.94, 1.97)

Correlation Rate-Duration 0.40 (0.25, 0.55)

Rate-Severity 0.47 (0.18, 0.76)

Duration-Severity 0.47 (0.27, 0.68)
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model may require substantial computation, particularly 
when the number of covariates present in each submodel 
is large, and convergence issues may arise (of note, the 
model employed in the case study required 30  min 
on a typical personal computer with 2.3 GHz in CPU 
and 16GB of RAM). Evaluating the feasibility of this 
approach with larger datasets and with the inclusion of 
more covariates should be studied. Additionally, incor-
porating other distributions for the random effect terms 
or more generally treating them non-parametrically [42] 
can be pursued in future studies. The approach could be 
further enhanced by extending the framework to incor-
porate competing risks and a more generally applicable 
approach for left-truncated outcomes. Although not 
required for our case study, these enhancements may be 
important in other contexts. Modeling such recurrent 
episodes data by using multi-state models or approaches 
to model point processes could be some alternative 
models that can be considered as further extensions to 
the present work.

In summary, the burden of exacerbations, a shared 
feature of many chronic diseases, is not manifested only 
in their frequency, but also in their duration and sever-
ity. Through joint modeling of these aspects of exacer-
bations, the proposed framework has the potential to 
improve our understanding of the natural history of epi-
sodic conditions and their overall burden. In addition, it 
enables the exploration of different aspects of how treat-
ments can impact the burden of episodic diseases, ulti-
mately improving our ability to quantify the benefit of 
treatments given each patient’s unique characteristics.
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