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Abstract 

Background:  We aimed to develop an early warning system for real-time sepsis prediction in the ICU by machine 
learning methods, with tools for interpretative analysis of the predictions. In particular, we focus on the deployment of 
the system in a target medical center with small historical samples.

Methods:  Light Gradient Boosting Machine (LightGBM) and multilayer perceptron (MLP) were trained on Medical 
Information Mart for Intensive Care (MIMIC-III) dataset and then finetuned on the private Historical Database of local 
Ruijin Hospital (HDRJH) using transfer learning technique. The Shapley Additive Explanations (SHAP) analysis was 
employed to characterize the feature importance in the prediction inference. Ultimately, the performance of the sep-
sis prediction system was further evaluated in the real-world study in the ICU of the target Ruijin Hospital.

Results:  The datasets comprised 6891 patients from MIMIC-III, 453 from HDRJH, and 67 from Ruijin real-world data. 
The area under the receiver operating characteristic curves (AUCs) for LightGBM and MLP models derived from 
MIMIC-III were 0.98 − 0.98 and 0.95 − 0.96 respectively on MIMIC-III dataset, and, in comparison, 0.82 − 0.86 and 
0.84 − 0.87 respectively on HDRJH, from 1 to  5 h preceding. After transfer learning and ensemble learning, the AUCs 
of the final ensemble model were enhanced to 0.94 − 0.94 on HDRJH and to 0.86 − 0.9 in the real-world study in the 
ICU of the target Ruijin Hospital. In addition, the SHAP analysis illustrated the importance of age, antibiotics, net bal-
ance, and ventilation for sepsis prediction, making the model interpretable.

Conclusions:  Our machine learning model allows accurate real-time prediction of sepsis within 5-h preceding. Trans-
fer learning can effectively improve the feasibility to deploy the prediction model in the target cohort, and ameliorate 
the model performance for external validation. SHAP analysis indicates that the role of antibiotic usage and fluid 
management needs further investigation. We argue that our system and methodology have the potential to improve 
ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and 
intervention.
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Background
Sepsis, an infection-induced syndrome of physiologi-
cal, pathological, and biochemical abnormalities, is 
a global healthcare issue associated with unaccept-
ably high mortality and long-term morbidity among 
patients in the intensive care unit (ICU) [1, 2], and is 
responsible for a substantial cost burden on health care 
resources [3]. Early detection and timely administration 
of appropriate antibiotics are important for improving 
the prognosis and survival of septic patients [4]. How-
ever, nonspecific symptoms of sepsis may cause delayed 
diagnosis and intervention, leading to the high mortal-
ity of septic patients [5].

Machine learning has emerged as a promising tool for 
the early detection of sepsis occurrence based on elec-
tronic medical records, laboratory data, and biomedical 
signals [6–14]. Several prospective studies have shown 
that the implementation of machine learning-based sep-
sis prediction algorithms can reduce in-hospital mortal-
ity and length of stay [15, 16]. Except for the excellent 
prediction performance, the translation of these risk 
prediction models into clinical practice requires external 
independent validation to determine the generalizability 
of the model to different cohorts [17]. However, most of 
the newly proposed risk prediction models have wors-
ened performance when applied to external samples [18]. 
Re-training of the prediction model on local datasets in 
the target medical center might enhance the predictive 
accuracy in the specific situation [19]. Based on the same 
objective, transfer learning has been reported to improve 
model performance when the dataset is small in the tar-
get medical center [20, 21]. Additionally, the interpret-
ability of machine learning models reflects the extent to 
which the decision-making process of the model can be 
understood and accepted in clinical practice. The lack of 
interpretability for most available prediction models is 
currently the major barrier to their clinical adoption [22, 
23]. The objective of this study is to develop an interpret-
able early warning system (named SEPRES, Sepsis PRE-
diction System) for real-time sepsis prediction in the ICU 
and to improve its generalizability to the target medical 
center through the transfer learning technique.

Methods
SEPRES includes a data integration system equipped 
with a sepsis early warning module. The data integra-
tion system collects, stores, processes, and displays 

medical data. The sepsis early warning module included 
a sepsis prediction model and an interpretative tool. 
The sepsis prediction model is an ensemble of multiple 
machine learning models. The interpretative tool pro-
vides information on how the model works by assigning 
importance to the input features. Our study complies 
with the relevant reporting guidelines, namely the 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRI-
POD) statement [24].

Data acquisition
Data sources
Our study used the Medical Information Mart for Inten-
sive Care (MIMIC-III) database (version 1.4) [25] and the 
private Historical Database of Ruijin Hospital (HDRJH). 
MIMIC-III encompasses 61,532 patients admitted to the 
ICU at Beth Israel Deaconess Medical Center in Boston 
from 2001 to 2012, and HDRJH encompasses approxi-
mately 1777 patients from 2011 to 2019. In addition to 
retrospective data, we also collected predictions of con-
secutive 67 patients from the SEPRES system running in 
the ICU at Ruijin (RJ) Hospital between February 2021 
and June 2021 as a validation of the model in the real 
world.

Sepsis definitions
We defined sepsis according to the definition of the Third 
International Consensus for sepsis (Sepsis-3) [2], com-
bining suspected infection and Sequential Organ Failure 
Assessment (SOFA) score. Details can be found in Addi-
tional file 1: Appendix 1.

Feature extraction
We extracted 78 and 63 patient variables from the 
MIMIC-III and HDRJH, respectively. After data cleaning, 
we extracted these variables as features, i.e., maximum, 
average, median, and minimum, at hourly intervals, and 
the missing data were padded by the nearest value before 
or a preset default value. We filtered out 1057 posi-
tive and 5834 negative patients in the MIMIC-III data-
set, and 144 positive and 309 negative patients in the 
HDRJH dataset, respectively. We used a 5-h time window 
from the patients to predict sepsis. See Additional file 1: 
Appendix 1 for details.
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Machine learning models
In the following two sections, we describe the methodol-
ogy for developing a sepsis prediction model that outputs 
the risk of sepsis onset within 5-h preceding at most. To 
improve the prediction performance in the specific hos-
pital and to avoid the poor performance of direct training 
due to its insufficient data, the models were first trained 
in MIMIC-III and then finetuned in HDRJH using trans-
fer learning techniques. The ultimate sepsis prediction 
model was obtained by integrating multiple models using 
ensemble learning techniques.

Multiple models were trained on the MIMIC-III data-
set, including support vector machine (SVM), multilayer 
perceptron (MLP), gradient boosting machine (GBM), 
and long short-term memory (LSTM). For GBM, we used 
XGBoost [26] and LightGBM [27] as implementations.

We utilized the standard training methods to train 
these models with necessary normalization which can be 
summarized by the following formula:

where xij is the value of the j-th feature of the i-th sample, 

and xij is the value after scalarization. The hyperparam-
eters and structures of each model were tuned based on 
the validation set.

See Additional file 1: Appendixs 4 and 5 for details.

Transfer learning
Based on the integrated considerations of the perfor-
mance including accuracy, the area under the receiver 
operating characteristic curve (AUC), sensitivity, and 
inference speed on the MIMIC-III dataset, we selected 
the LightGBM and MLP for sepsis prediction on the RJ 
Hospital data.

The process of transfer learning can be divided into two 
steps. First, we normalized the data in the MIMIC-III 
dataset and the HDRJH dataset respectively so that the 
features were all scaled between 0 and 1. Second, we per-
formed the transfer of the model parameters. Specifically, 
for LightGBM, the previous four hours of features in 
MIMIC-III were masked during training to assist transfer 
learning. After that, inputs from the HDRJH dataset were 
fed to finetune with the initial parameter values taken 
from the trained model from MIMIC-III. For MLP, we 
first froze the parameters of the first three of the six lay-
ers of the MIMIC-III models and initialize the parame-
ters of the last three layers. After training on HDRJH, the 
models were unfrozen and fine-tuning is performed. We 
also used an ensemble learning method to integrate the 
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′
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LightGBM and MLP models by taking the inference aver-
age. The ensemble model is employed for practical sepsis 
prediction in RJ Hospital.

Interpretive analysis
We interpreted our prediction models using Shapley 
additive explanation (SHAP) [28], a game theory-based 
approach that assigns an importance value to each fea-
ture of each prediction.

Real‑time prediction system
We detail the implementation of our real-time predic-
tion system in [29]. When a model inference command 
is executed, the sepsis early warning module obtains 
real-time features of the patient from the data integration 
system via SQL query statements, which are then pre-
processed, inferred, and interpreted by the module. The 
data integration system includes a physical server with 
the PostgreSQL database for storage of sepsis warning-
related data and a webserver deploying the portal for user 
access. The medical device integration hub was placed at 
the bedside, receiving and transmitting data to the data 
integration system with a time delay of less than 10  s. 
Using the network or RS-232 interface, the data integra-
tion system can integrate data from IntelliVue Informa-
tion Center, ventilators, Philips ICCA system, Laboratory 
Information System (LIS), and Hospital Information Sys-
tem (HIS).

Results
Characteristics of patients from different datasets
The baselines of characteristics of patients from MIMIC-
III, HDRJH, and Ruijin real-world data were analyzed. 
As shown in Additional file 1: Table S2, the baselines of 
most characteristics were significantly different between 
patients from MIMIC-III and patients from HDRJH 
except for 21 characteristics. Therefore, to avoid the 
influence of these differences on model performance in 
the target cohort, retraining of the model was performed 
on HDRJH using the transfer learning technique after 
training on MIMIC-III.

Prediction performance on internal and external validation 
of MIMIC‑III
The performance of our sepsis prediction models has 
been evaluated based on the accuracy, AUC, sensitivity, 
and specificity on the test set. The default classification 
threshold is 0.5. As shown in Additional file 1: Fig. S3, the 
GBM-based models (XGBoost and LightGBM) outper-
formed others (See Additional file 1: Table S3 for the per-
formance of the five models). Furthermore, we compared 
our LightGBM and MLP models with other models that 
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were developed from MIMIC-III, using Sepsis-3 criteria 
and reporting the prediction outcomes within 5 h before 
the onset of sepsis. As shown in Table 1, our LightGBM 
and MLP models were superior to the others, with AUC 
of 0.98 and 0.96 respectively. However, it should be 
noticed that although these models all used MIMIC-III 
database, there were still differences in the training and 
test sets due to specific data extraction and sepsis criteria.

For the external validation of our LightGBM and MLP 
models, we evaluated their prediction performances on 
HDRJH, the dataset from the target medical center (the 
ICU in RJ Hospital). The AUCs were 0.82 − 0.86 and 
0.84 − 0.87 respectively on HDRJH from 1 − 5 h preced-
ing, indicating the substantially worsened performance 
of these models when applied to external independent 
cohorts.

Improved prediction performance on HDRJH after transfer 
learning
To improve the prediction performance on HDRJH, 
these models were retrained and ensembled using trans-
fer learning and ensemble learning technique. As shown 
in Table  2, transfer learning improved the prediction 
performance when deploying the models derived from 
the public dataset (MIMIC-III) to the target hospital 
(HDRJH). The ultimate AUCs of the ensemble sepsis pre-
diction model were 0.94 − 0.94 from 1 to 5  h preceding 
on HDRJH, as shown in Additional file 1: Table S4.

Furthermore, as shown in Fig.  1, LightGBM and 
MLP models showed consistent transfer benefits in 
the target hospital at different sampling ratios of the 
target hospital dataset. Meanwhile, the models after 
transfer learning showed higher AUCs on MIMIC-III, 

indicating improved generalizability of the model to 
different datasets.

Feature interpretability of the prediction models
The top 20 features for the LightGBM model predict-
ing sepsis in 4-h preceding were shown in Fig. 2, and the 
results for full analysis of LightGBM and MLP models 
were shown in Additional file  1: Fig. S10, S11. Some of 
these features (antibiotics, respiratory rate, temperature, 
ventilation, and heart rate) were related to the definition 
of Sepsis-3 or Systemic Inflammatory Response Syn-
drome (SIRS). Additionally, the association of some of 
these features (respiratory rate [30], fibrinogen [31], net 
balance [32], and age [33]) with the severity or mortal-
ity of sepsis has been reported. These data indicate the 
good interpretability of our prediction model for clinical 
application.

Table 1  The results of different models on the MIMIC-III dataset

AISE Artificial Intelligence Sepsis Expert, MGP-TCN Multi-task Gaussian Process and Temporal Convolutional Networks, DTW-KNN Dynamic Time Warping and 
K-Nearest Neighbours, MLA Machine Learning Algorithm, DSPA Deep SOFA-Sepsis Prediction Algorithm, MGP-AttTCN Multi-task Gaussian Process and Attention Time 
Convolutional Network

Model Preceding hours Accuracy AUC​ Sensitivity Specificity

InSight 4 0.57 0.74 0.8 0.54

AISE 4 0.64 0.84 0.85 0.64

MGP-TCN 4 – Approximately 0.85 – –

DTW-KNN 4 – Approximately 0.88 – –

MLA 0 – 0.88 0.8 0.78

MLA 24 – 0.84 0.8 0.72

DSPA 4 – 0.98 – –

MGP-AttTCN 4 – 0.75 – –

NAVOY Sepsis 3 0.81 0.84 0.74 0.83

LightGBM 4 0.91 0.98 0.85 0.97

MLP 4 0.85 0.96 0.73 0.96

Table 2  The results of models trained on different datasets on 
the HDRJH test set

These models predict sepsis in 4-h preceding and the complete results can be 
found in Additional file 1: Tables S5 and S6. MIMIC-III + HDRJH means training on 
MIMIC-III first and then tuning on the training set of HDRJH by transfer learning 
techniques

Model Transfer 
learning

Training set Accuracy AUC​

LightGBM N MIMIC-III 0.74 0.86

LightGBM N HDRJH 0.81 0.92

LightGBM Y MIMIC-III + HDRJH 0.83 0.93

MLP N MIMIC-III 0.76 0.86

MLP N HDRJH 0.84 0.92

MLP Y MIMIC-III + HDRJH 0.78 0.93
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Prediction performance in the real world
Each patient was labeled by the change in SOFA score 
and the doctor’s examination for infection. Data from the 
control group and near onset of sepsis in the case group 
were included in the analysis. As shown in Table  3, the 

AUCs for sepsis predictions in 1 − 5  h preceding were 
0.86 − 0.90.

In the real-world study, the classification threshold was 
increased to 0.7 to reduce the false alarm rate of sepsis 
warnings. Figure 3 illustrated examples of the prediction 

Fig. 1  The results of models trained on sampled HDRJH dataset. The training set of HDRJH was sampled at different ratios to simulate a medical 
center with fewer records. These trained models were tested on the common MIMIC-III test set (top) and the HDRJH test set (bottom), respectively. 
The shaded part in the figure represents the 95% confidence interval. These models predict sepsis in 4-h preceding and the complete results can be 
found in Additional file 1: Figs. S5–S8
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of sepsis by SEPRES over a random period (See Addi-
tional file  1: Appendix  10 for more details). In the con-
tinuously early warning process of 67 patients admitted 
to the ICU, 22 septic patients and 29 non-septic patients 
were correctly predicted, whereas 17 non-septic patients 

and 6 septic patients were incorrectly predicted as false-
positive and false-negative cases.

Discussion
Machine learning has been considered a promising 
method for sepsis prediction in the ICU [6–16, 20–22]. 
Early diagnosis and timely management of septic patients 
can effectively improve the prognosis [34]. However, sep-
sis may not be diagnosed in time in the clinic due to the 
day-night shift and inattention of medical staff. There-
fore, an accurate and efficient early prediction system 
for sepsis at the bedside is urgently needed. In this study, 
we established an ICU bedside sepsis early warning sys-
tem, SEPRES, to conduct real-time sepsis prediction for 
patients in the ICU by integrating IntelliVue Information 
Center, ventilators, Philips ICCA system, LIS, and HIS 

Fig. 2  Feature importance of LightGBM model in the sepsis early warning module. The model predicted sepsis in 4-h preceding and the complete 
results can be found in Additional file 1: Fig. S10

Table 3  The results of real-world data

Preceding 
hours

Accuracy AUC​ Sensitivity Specificity

1 0.82 0.86 0.83 0.82

2 0.84 0.88 0.87 0.78

3 0.85 0.9 0.86 0.81

4 0.85 0.9 0.88 0.78

5 0.86 0.89 0.9 0.76
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data. Although SEPRES could not provide a definitive 
basis for our therapeutic regime, the predicted probabil-
ity of sepsis occurrence allows us to pay more attention 
to at-sepsis-risk patients.

Generalizability is the major obstacle to the deploy-
ment of machine learning into medical practice. Suf-
ficiently large data size is crucial for the training of the 
machine learning model to achieve good performance. 
Moreover, the performance of the model derived from 
one cohort is always worsened when applied to exter-
nal independent cohorts due to the differences in race, 
medical environment, disease type, and disease severity 
in different cohorts. In addition to this, as new tests and 
techniques are added, new features may help our pre-
diction task, but direct inclusion into existing machine 
learning models is usually not feasible. In our study, we 
deployed the transfer learning technique to improve the 
performance of our models in the target medical center. 
The transfer learning process effectively improved the 

prediction AUCs of LightGBM and MLP models on the 
HDRJH dataset, learns patterns from additional features, 
and showed consistent benefits across different data sizes 
of the target cohort. Hence, we argue that transfer learn-
ing might be a promising and feasible strategy to main-
tain the effectiveness of the trans-center deployment of 
machine learning models. Furthermore, transfer learn-
ing has been applied to similar domains or similar tasks 
in several medical fields, reducing the size requirements 
of the target dataset, and improving the training speed 
and the prediction performance [35–38]. In our context, 
transfer learning can be used to predict different types of 
diseases, such as disseminated intravascular coagulation 
(DIC) or acute kidney injury (AKI).

Moreover, the lack of interpretability of these data-
driven models prevents the practitioners to trust and 
accept these machine learning models in the clinic. In 
the present study, SHAP analysis as the interpretive tool 
helps medical practitioners identify top risk factors. 

Fig. 3  Some illustrative examples of prediction. Each subplot described the confidence index for multiple models (Y-axis) at the indicated time 
(X-axis). (i) The condition of the patient aggravated in the early morning, with multiple organ dysfunction, and the patient was diagnosed with 
sepsis at noon. Our model prediction exceeded the warning threshold of 0.7 for the prediction at 9:00 AM. (ii) Despite the high SOFA score (7.0), 
there was no evidence of ΔSOFA ≥ 2 within 72 h. Consistently, the predictions were all lower than the threshold. (iii) Although the patient’s SOFA 
score was stable at 6.0, our model made incorrect predictions of sepsis. (iv) The SOFA score showed an increase from 6.0 to 9.0 at 06:00 PM. In 
combination with evidence of infection, the patient was diagnosed with sepsis. However, the prediction was below the warning threshold
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What needs to be noted is fluid net balance and the use of 
antibiotics. Due to the difficulty of collecting the net bal-
ance data in most datasets, net balance has neither been 
considered as a feature for most machine learning mod-
els based on MIMIC-III datasets nor been analyzed as an 
important factor for sepsis prediction inference. Indeed, 
the positive cumulative fluid balance has been reported 
to be an independent predictor of ICU mortality [32]. 
Moreover, Lin et  al. [39] have shown that patients with 
an early positive fluid balance have an increased risk of 
developing venous thromboembolism. Our SHAP analy-
sis further emphasized the importance of careful fluid 
management in critically ill patients. In addition, Our 
SHAP analysis results suggested that heavy antibiotic use 
corresponds with an increased predictive value for the 
occurrence of sepsis. Due to the uncertainty regarding 
antibiotic initiation in patients with suspected infection, 
the use of antibiotics is mostly empirical in ICU patients 
[40]. It has been reported that inappropriate antibiotic 
treatment may accelerate the death of mice via increasing 
gut proliferation and systemic spreading of a multi-drug 
resistant (MDR) Escherichia coli strain [41]. Moreover, 
the initial inappropriate broad-spectrum antibiotic ther-
apy may promote the dissemination of multidrug-resist-
ant bacteria (MDRB), increase opportunistic infection, 
and is associated with poor prognoses of patients [42, 
43]. The SHAP analysis inspired us to focus more on 
antibiotic use and fluid management, but it should be 
emphasized that this evidence is not sufficient for inter-
vention in clinical practice, but should be judged based 
on the patient’s clinical features.

SEPRES has certain limitations. First, we enrolled only 
patients who were non-septic during the entire period in 
the ICU as negative controls. The enrollment condition 
may be too pure which may cause false-positive cases. 
Second, as we observed in consecutive case studies, 
patients diagnosed with sepsis shortly after being trans-
ferred to the ICU were difficult to be predicted by our 
model, which is probably due to that our model tends to 
give lower predictions when the collected data are lim-
ited. Finally, variables such as antibiotics and mechanical 
ventilation were incorporated into our model, resulting in 
the influence of the model predictions by the subjective 
behavior of the doctor. However, considering that the use 
of antibiotics and mechanical ventilation are associated 
with the severity of the patient, it is essential to include 
them in our model. These limitations will be addressed 
in future work through diverse methods, including fine-
grained labeling, inclusion of data collected from the data 
integration system in the future, and methods to enhance 
generalization capabilities such as data augmentation or 
feature selection. We also highlight that the application of 
transfer learning and interpretive tools can significantly 

improve the generalization and interpretability of the 
model but still possesses a distance to totally solve it.

Conclusions
In conclusion, the early prediction of sepsis occurrence 
by our SEPRES has the potential to guide medical practi-
tioners to appropriately pay more attention to at-sepsis-
risk patients, leading to early diagnosis of sepsis and more 
efficient ICU patient management. Our SHAP analysis 
suggests the need for further investigation regarding the 
role of fluid net balance and the use of antibiotics. More-
over, with the help of the data integration system to col-
lect necessary features and data, the workflow of SEPRES 
can be applied to disease warnings other than sepsis in 
the ICU, such as DIC and AKI. Furthermore, our work 
confirms the effectiveness of applying transfer learning 
in sepsis prediction, improving the predictive ability and 
reducing the number of records required in the target 
medical center. The proposed system can be applied to a 
larger number of medical centers with a certain number 
of records through transfer learning.
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