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Abstract 

Background Maintaining medication adherence can be challenging for people living with mental ill-health. Clini-
cal decision support systems (CDSS) based on automated detection of problematic patterns in Electronic Health 
Records (EHRs) have the potential to enable early intervention into non-adherence events (“flags”) through suggest-
ing evidence-based courses of action. However, extant literature shows multiple barriers—perceived lack of benefit in 
following up low-risk cases, veracity of data, human-centric design concerns, etc.—to clinician follow-up in real-world 
settings. This study examined patterns in clinician decision making behaviour related to follow-up of non-adherence 
prompts within a community mental health clinic.

Methods The prompts for follow-up, and the recording of clinician responses, were enabled by CDSS software  (AI2). 
De-identified clinician notes recorded after reviewing a prompt were analysed using a thematic synthesis approach—
starting with descriptions of clinician comments, then sorting into analytical themes related to design and, in paral-
lel, a priori categories describing follow-up behaviours. Hypotheses derived from the literature about the follow-up 
categories’ relationships with client and medication-subtype characteristics were tested.

Results The majority of clients were Not Followed-up (n = 260; 78%; Followed-up: n = 71; 22%). The analytical themes 
emerging from the decision notes suggested contextual factors—the clients’ environment, their clinical relationships, 
and medical needs—mediated how clinicians interacted with the CDSS flags. Significant differences were found 
between medication subtypes and follow-up, with Anti-depressants less likely to be followed up than Anti-Psychotics 
and Anxiolytics (χ2 = 35.196, 44.825; p < 0.001; v = 0.389, 0.499); and between the time taken to action Followed-up0 
and Not-followed  up1 flags  (M0 = 31.78;  M1 = 45.55; U = 12,119; p < 0.001; η2 = .05).

Conclusion These analyses encourage actively incorporating the input of consumers and carers, non-EHR data 
streams, and better incorporation of data from parallel health systems and other clinicians into CDSS designs to 
encourage follow-up.
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Background
Medication adherence—that is, a person consistently and 
correctly following a mutually agreed upon, collaborative 
plan made with their clinician for using medication to 
manage a condition [1]—is core to successfully managing 
chronic conditions across a variety of populations [2–7].

Medications are often an essential component of plans 
to reduce the risk of relapse for many people diagnosed 
with complex mental illnesses; as such, they are core 
parts of lives of many people living with schizophrenia [3, 
8], bipolar disorder [9, 10], and major depressive disorder 
[11]. Investigating means of promoting and maintaining 
adherence to these medications is, therefore, a priority in 
clinical mental health research [4, 5]. Indeed, between 1 
in 2 and 1 in 4 people who take antipsychotics become 
non-adherent during the course of their illness, and 
half of people diagnosed with bipolar are estimated to 
become non-adherent to their medications at least once 
during the long-term course of their illness [10, 12–14]. 
This can occur for a variety of reasons. Supporting one 
perspective, a systematic review exploring the identifi-
cation of “potentially modifiable” (ie., feasible bases for 
developing interventions) reasons for non-adherence to 
anti-psychotics identified poor insight, substance abuse, 
negative attitudes toward medication and side-effects—
among others [6]. However, other studies have argued 
that non-adherence is not solved by policing or sidelin-
ing concerns and beliefs about medication [10]. First, 
people—regardless of the perceived severity of their ill-
nesses—can and do discontinue medication for valid 
and well thought out reasons [15]. Additionally, the gen-
eralisation of population-level outcomes used to justify 
common pharmacotherapeutic treatments to individuals 
may delay recovery for some [16]. Regardless of perspec-
tive, core to protecting long-term mental and physical 
health outcomes of people with complex mental illnesses 
is ongoing support from their clinicians and commu-
nity [16–18]; and, where non-adherence is identified as 
problematic, that support is provided in a context that 
encourages candour, trust, and transparency from and 
between all parties [15, 19, 20].

However, complexity of illness is not the sole factor 
predicting non-adherence, nor do “lower-risk” diagnoses 
and psychiatric medications necessarily result in less risk 
to people’s health if they abruptly discontinue; namely 
antidepressants [7, 13, 17, 18, 21, 22], which are pre-
scribed to an increasing share of the population. Indeed, 
two Selective Seratonin Reuptake Inhibitors (SSRIS)—
Escitalopram (5.47 million prescriptions) and Sertraline 
(5.12 million prescriptions)—appeared in the top ten 
drugs by prescription count in Australia in 2020–21 [23]. 
In a naturalistic study of a sample from the United States 
of America, it was found that — when participants were 

asked about their medication adherence in the year prior 
to their participation in the study—22% of anti-depres-
sant users had discontinued antidepressants without cli-
nician advice or approval [13]. Another study found that 
the rate of discontinuation also increases over time in 
anti-depressant users, showing adherence rates of only 
37.6% at 3 months, and 18.9% at six months [21]. These 
data, alone, are not necessarily cause for concern—but 
are important to keep in mind when contrasting the rela-
tive low-risk assigned to anti-depressant discontinuation 
effects in policy [17] with recent literature [7, 18, 24]. For 
example, a recent systematic review found 56% of people 
discontinuing anti-depressants experienced withdrawal 
effects, 46% of whom described them as severe and 
longer than outlined in current UK and US guidelines 
[18]. These potentially urgent grounds for intervention 
are complicated further by these events often coincid-
ing with the termination of the clinical relationship [22], 
making important clinical scaffolds for discontinuation—
identifying facilitators for successful discontinuation, 
co-designing a personalised plan with the person dis-
continuing, relapse planning, involving a family member 
or trusted other, and setting up continuity of care pro-
vision with the person discontinuing [25, 26]—a virtual 
impossibility.

Clinical decision support systems
Given the adverse consequences for many people who 
discontinue their medication [26–28], early intervention 
is key [29]. Digital tools offer potential means for health 
services to proactively provide care and support in these 
contexts. Clinical decision support systems (CDSS) are 
an example of such a tool. CDSS first curate data from 
sources that can include but are not limited to sources 
such as: electronic health records/clinical information 
systems [30, 31], sensing technologies ranging from 
consumer products like mattress sensors to therapeutic 
devices like continuous glucose monitoring systems [32, 
33], SMS surveys of clients [34], and self-monitoring 
apps [35, 36], amongst others. These data are then pre-
sented to users in a manner that informs a clinical deci-
sion—either through algorithmic interpretation, using 
decision rules based on a pre-existing knowledgebase to 
suggest a course of action [37], or simply through a more 
intuitive presentation of the raw data [38]. These systems 
assist in making sense of sometimes vast data, trans-
forming individuals’ patterns in service use, medication 
adherence, and in some cases elements of their day-to-
day life to a form more immediately legible to clinicians 
[39]. This making-legible of raw data in turn enables the 
development and delivery of interventions with, theo-
retically, highly granular levels of client-specificity that 
would not be feasibly achievable at scale and within the 
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time constraints of a human agent; both augmenting 
human delivered support at the point of care and poten-
tially enabling tailored, automated follow-up independ-
ent of traditional in person contact with a clinician [37]. 
In the context of medication adherence this latter consid-
eration is particularly important, with multiple authors 
emphasising the lack of a “one-size-fits-all” intervention, 
and need to tailor any approach on a client-by-client 
basis using nuanced, ecological insights into their lives 
as a basis [19, 20, 40]. Finally, where these data streams 
are real-time or close-to-real time, clinical teams can be 
enabled to monitor to evaluate the success of these inter-
ventions and respond to any changes in the client’s state, 
should they arise, in a proactive and timely manner.

While the systems described above certainly have the 
potential to reduce the burden of relapse and deteriora-
tion of mental health associated with non-adherence 
on clients and services, the evidence in the literature is 
ambivalent [31, 41–45]. Indeed, reviews have consistently 
noted the low quality of evidence, risk of bias, and need 
for further research in this field [42, 45, 46]. Regardless, 
CDSS are already in use for the management of some 
high-risk medications within mental health services in 
Australia—for example, in clozapine management to 
enable proactive intervention into non-adherence trig-
gered relapse and early detection of adverse events and 
side effects [47, 48]. Authors of a recent, 5-year database 
study of antipsychotic utilisation and persistence in a 
large Australian sample conclude that oral Clozapine’s 
significant persistence in comparison to both other oral 
anti-psychotics and Long-Acting Injectable antipsychot-
ics could be attributable not only to efficacy but intensity 
of follow-up [49].

Contextual barriers to decision support
Thorough and multifaceted work on a variety of fronts 
is required when designing these tools and their associ-
ated interventions. Proficiently executing facets of CDSS 
development like user interfaces, user experience, and 
balancing alert fatigue with under-prompting are rightly 
identified by many as important for success [46, 50–52]. 
However, equally important is the manner in which a 
CDSS integrates into both the workflows and self-per-
ceptions of its future users [53, 54].

Regarding the latter, clinicians have shown resistance to 
the use of algorithms in healthcare—both “analogue” in 
the early days of guideline based care [55, 56], and digital 
[41, 53]. This resistance stems from clinicians’ strengths 
in adaptive expertise [57], but can also limit acceptance 
of other experts’ opinions [53, 55]. For researchers com-
mitted to actualising the potential for CDSS to enable 
proactive and evidence based care, knowledge of these 
complexities and their effect on behaviour is crucial to 

success but can be elusive—emerging more prominently 
in the naturalistic, day-to-day work performed by clini-
cians than under controlled circumstances [41, 49, 53, 56, 
58]. This is important to consider in the context of study 
designs for evaluating CDSS. The results of Randomised 
Control Trials (RCTs), where clinician actions are strictly 
protocolisation, may not fully reflect the behavioural and 
practical realities of clinical practice [41, 58, 59]. Time 
limited, protocolised workflows introduce an artificial 
“order” to clinical work for trial durations, resulting in 
masking the biases and work practices that may occur 
automatically, as a result of external pressures, or for any 
other reason in day-to-day practice outside of the trial 
[51, 52, 60].

Outside of these external factors, it is important to note 
that—for many clinicians—it is preferable for a variety of 
reasons to rely on their experience and judgments rather 
than that of a system [53]. These factors can severely 
impact the efficacy of CDSS interventions, regard-
less of trial and software design quality [41]. As such, it 
is important not only to understand at a systemic and 
organisational cultural level why CDSS implementations 
face challenges, but also to develop methods and design 
tools that can collect data from which we can establish 
how and why individual clinicians make decisions using 
these systems, naturalistically and in the moment [53, 
61].

The current study
This study presents results from the pilot of a real-time, 
CDSS-integrated technique to gather data showing how, 
why, and when clinicians acted on automated medication 
non-adherence flags, aiming to: (1) Describe patterns of 
follow-up behaviour within these non-adherence data; 
(2) Identify areas for design intervention within CDSS; 
and (3) Identify any relationship between client and 
medication subtype characteristics and the likelihood 
of follow-up. These flags were generated by a CDSS—
Actionable Intime Insights  (AI2), a web-based medication 
and appointment adherence CDSS—using data from the 
Australian Medicare claims databases [29, 30, 39]. Free-
text justifications of decisions to follow-up or not follow-
up were input by clinicians throughout the trial, and 
extracted in parallel with other flag metadata, including 
medication subtype, client ID, days taken to action the 
flag.

Descriptive data outlining decision behaviours—along-
side medication-subtype and client characteristics—were 
extracted from the raw  AI2 flags. These data were then 
analysed and synthesised using parallel qualitative and 
mixed methods [62–65]: first, through thematic syn-
thesis, with analytical themes generated through quali-
tative synthesis of the descriptive codes [63]; second, 
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hypothesised relationships between medication-subtype 
and client characteristics with follow-up were tested 
using inferential statistical techniques [62, 65]. The dis-
cussion presents a summary and synthesis of these find-
ings, focussing on the implications for future CDSS 
design and implementation studies.

Methods
Ethics and consent to participate
The  AI2 study protocol was approved by the Southern 
Adelaide Local Health Network Clinical Research Ethics 
Committee (AK03478) and published prospectively [29]. 
An informed consent was obtained from clinicians par-
ticipating in this study. As per the My Health Records Act 
(2012) legislation, all consenting clinicians have rights 
to use  AI2 CDSS to access health records of patients for 
the purposes of care provision without requiring explicit 
consent. The extraction and analysis of de-identified  AI2 
CDSS data for this study was in accordance with the 
guidelines approved by the ethics committee.

Abridged primary trial procedure
As this study analyses data from the  AI2 implementa-
tion, relevant details of the design of that study have been 
included here to contextualise this analysis.

Participants
Clinicians
Two clinical monitors used the  AI2 decision support soft-
ware prospectively with 354 clients under their care man-
agment, choosing to follow-up or not follow-up on flags 
as they were raised:

1. A Social Worker and Team Leader within the service; 
and

2. A Senior Consulting Psychiatrist, Author JS

Clients seen by clinical monitors had: (1) attended 
the community mental health clinic associated with 
this study at least once before in the six months prior 
to the study; (2) prescribed medication for their mental 
health condition; (3) had a My Health Record (Australia’s 
national digital health record); and (4) were registered 
in the clinic’s client information systems and subse-
quently enrolled in  AI2 and monitored for non-adherence 
between 1 July 2019 and 28 February 2020.

Materials:  AI2

Figure  1 illustrates the interactive flow with  AI2 expe-
rienced by clinicians in the trial in more detail; more 
detail about the software and primary trial is reported 
elsewhere [29, 30, 38, 39, 66]. The pilot trial studied the 
implementation and impact of  AI2 by incorporating it 

into the usual provision of care at the pilot site. As such, 
the protocol included no specifications about when to 
follow up, worked within the team structures and staff-
ing resources available at the site, and within the day-
to-day working norms of the clinical monitors [29, 30]. 
This approach was chosen to allow for insights closer 
to the naturalistic conditions facing implementations in 
practice.

The procedure for clinicians using  AI2 involves follow-
ing steps:

1. Reviewing non-adherence flags on the dashboard 
(Fig. 2).

2. If a non-adherence flag, in the reviewing clinician’s 
judgment, warrants further investigation they exam-
ine the client’s records—including:

2a) The timeline within  AI2 (Fig. 3), which visualises 
patterns in medication pick-up and appointment 
attendance data collected in near real-time [38];

2b) Relevant data in the implementing service’s clini-
cal information system;

3. Based on these data, the clinician then chooses to fol-
low up (or not) on the flag

4. Finally, they record this choice in  AI2, and provide 
brief comments in the follow-up notes form (Fig. 4).

Following this, specific to the trial site, the clinician 
emailed a coordinating Registered Nurse appointed to 
oversee the follow-up and data entry. Clients who were 
followed-up were contacted by their case manager, clini-
cal monitors associated with the study, or their GPs. In 
the case of clients being uncontactable, contact was made 
with their GP, housing provider, pharmacist, and other 
contacts to determine their clinical status [30].

The current study
Data collection technique: theoretical background 
and design
The objective of the  AI2 pilot implementation study was 
to establish a more comprehensive, naturalistic evidence 
base from which the multi-faceted requirements of full-
scale implementations of CDSS can be elucidated [29]. 
Extracting patterns in clinician-user behaviour was iden-
tified as a key adjunct to the primary quantitative analy-
sis in answering the research questions of the trial—with 
the aim to iteratively improve the fit the intervention to 
clinician workflows. [67]. However, these naturalistic 
conditions also necessitated careful design. Researchers 
needed to balance adversely impacting clinical work-
flows with encouraging action on flags. To the former, 
researchers risked either potentially discouraging use 
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Fig. 1 Flow diagram demonstrating interactive patterns with  AI2 alerts
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of the tool, or—conversely—creating an artificial level 
of adherence to a protocolised version of our imagined 
usage of the tool that would result in key implementation 
barriers in the day-to-day of health services being missed. 
To the latter, the researchers equally did not want to 
inadvertently fail to achieve the primary aim of the trial 
through this naturalism—to encourage action of flags 
and understand the effect of this proactive care on health 
services and individual clients.

This design problem is common to guidelines engage-
ment interventions more broadly, and solutions to 
encourage adherence without compromising workflows 
or naturalism have proven less than intuitive. For exam-
ple, while integration with clinical information systems 
(CIS) seems an intuitive option, this work is technically 
difficult [37]. Additionally, CIS are often misused—in 
a benign way—to sidestep time-consuming or poorly 
designed features. An example of this can be found in 

Fig. 2 AI2 Alerts Dashboard using primary trial investigator names for example purposes

Fig. 3 Timeline Detail, with example “pop-up” information-boxes associated with clicking on flags, MBS, and PBS events shown
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Förberg and Colleagues’ CIS-integrated decision sup-
port study, where nurse participants’ use of a more 
generic template to log data—rather than the template 
intended for use to record outcomes for the clinical 
action of interest—inadvertently resulted in participants 
missing the guideline reminders that formed the core of 
the intervention [41]. Within and outside of CIS-based 
interventions factors such as alert fatigue, and a reduc-
tion in perceived “seriousness” of alerts in the context 
of an overwhelming amount of data can also challenge 
designers and implementation scientists in this space 
[41, 68–70]. One method with a more established history 
of success in addressing tendencies to avoid or dismiss 
advice is designing systems to require entering a reason 
when overriding advice, which one systematic review 
found resulted in higher adherence to CDSS advice [68]. 
However, the authors note that highly insistent systems 
can either frustrate clinicians into underuse or encourage 
un-critical acceptance of automatically generated advice 
[68]. Additionally, this review also note that systems 
using structured data collection techniques can inadvert-
ently bias responses through priming [68].

To balance these concerns, we settled on a simple data-
collection technique—a non-compulsory, free text field at 
the time of alert actioning—in which we asked clinicians 
to briefly note their reasoning behind following-up or not 
following-up on an alert (Fig. 4). This was operationalised 
within a concurrent-nested mixed methods design, col-
lecting these data in parallel to the primary non-adher-
ence flag metadata—such as medication subtype, the 
time lag for actioning the flag, and so on—of interest to 
the primary  AI2 implementation study.

We begin with the extraction of descriptive data—
inductive and descriptive coding of the decision notes, 

descriptive statistics, and sorting of these combined data 
into a priori categories (Followed-Up, or Not Followed-
up)—from the raw flags. This was followed by paral-
lel analyses—beginning with Thematic Synthesis of the 
descriptive codes exploring design insights, and followed 
by mixed-methods hypothesis testing exploring relation-
ships between client and medication-subtype character-
istics and follow-up behaviour. Table 1 outlines the aims, 
objectives, hypotheses (where appropriate), and out-
comes (including measures and tests, where appropriate) 
of this study (Table 2).

Analysis plan
De-identified decision note and flag metadata from  AI2 
were analysed using NVivo R1 (QSR Software, 2021) 
and SPSS v.27 (IBM Corp, 2020). The data included 771 
medication and appointment non-adherence flags across 
304 clients. The trial occurred between 11th Jan 2020 and 
14th of November 2020. Importantly, a client may have 
multiple flags on the same date based on different algo-
rithms. On these occasions, the assessing clinician dupli-
cated their notes across both flags, as they were actioned 
in the same manner at the same time in all cases. For the 
purposes of analysis, these duplicates were coded iden-
tically so as not to unbalance numbers of flags across 
categories.

Coder details and risk of bias
For the initial descriptive analysis of the codes this study 
utilised a single coder with clinical oversight—provided 
by Author JS, one of the clinical monitors in the trial—to 
ensure closeness of the analysis to the clinical context on 
which it reports [63]. While a single coder is not prefer-
able in most qualitative approaches, there are mitigating 

Fig. 4 AI2 Alert actioning and decision data collection interface
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Table 2 Follow-up categories and descriptive codes × number of flags

N Ref Category/Sub-Category/descriptive 
decision code

Explanatory notes Example codes

71 F Followed up

20 F.1 Adverse Outcomes

1 F.1.1 Died “Pt has died”

14 F.1.2 Hospital Admission Different dispensing system, no data “Recent hospital admission discharged 12/3. 
case manager confirmed current compliance”

5 F.1.3 Incarcerated Different dispensing system, no data “Given antipsychotic and oral meds in June. (so 
likely a delay in PBS data) This client is now in 
remand. Prison health service has been made 
aware of his medications. No longer residing in 
our catchment area.”

46 F.2 Confirmed adherence

6 F.2.1 Ambiguous source of confirmation Ie., source was not named in the notes “Compliant with medication (Data incorrect 
collects scripts every month)”

5 F.2.2 Client Confirmed “25/5/20 contact with client. confirmed compli-
ance. no problems”

14 F.2.3 Clinician or Case Manager Confirmed “Case manager: According to CPMS all medica-
tion has been dispensed for every month”

5 F.2.4 Clozapine Monitored elsewhere in service “R/v client file. P/c and 1:1 with Hyde and 
partners GP. Client presented for GP appt and 
collected script for clozapine on 10/08/2020. Nil 
concerns raised”

2 F.2.5 Depot records showing compliance “Accumulating data from all sources client 
received depot as prescribed on the below 
dates”

4 F.2.6 Family confirmed “His mother pick-ups the medication and 
deliver at his place”

13 F.3 Confirmed non-adherence

1 F.3.1 Appointment booked to discuss compliance “Awaiting appointment for follow up with infor-
mation regarding compliance of medication”

2 F.3.2 Client lost to follow-up, case manager pursu-
ing

Client disappeared, or disengaged “Client whereabouts unknown. Case manager 
aware of non-compliance”

2 F.3.3 Client refused further intervention “P/C to client, declined services. Fax sent to GP.”

7 F.3.4 Discontinuation confirmed on follow-up “Ceased September 2020 was doing well then 
come unstuck and thought he needs to go 
back to the GP and re-commence taking it”

3 F.3.4.1 Ambiguous Unclear who initiated/supported “Intentional cessation”

1 F.3.4.2 Initiated with Medical professional support “Spoke to client, stopped antipsychotic as 
recommended by [clinician]”

3 F.3.4.3 Patient initiated, unsupported “Stopped taking medication as he had been on 
it for a long time (2 months) and it did not help.”

260 N Not followed-up

140 N.1 Likely to be Clinician Supported

11 N.1.1 Changed Medication “Paliperidone injection monthly changed to 
3-monthly (TRINZA)”

1 N.1.1.1 Changed to depot “Change to depot”

13 N.1.2 In residential care Monitored by facility in Aus. context “Lives in boarding house where medication is 
supervised”

79 N.1.3 Likely PRN PRN = taken as needed “PRN medication such as diazepam and oxace-
pan should not set triggers”

22 N.1.4 Script likely a short-term solution “Was a once off script, regular GP visits”

15 N.1.5 Seen their GP, while “Seen GP since, assuming it was intended as 
CPZ was commenced since”

13 N.1.5.1 Compliant with other medications “Regular in everything else, likely per Gp”

2 N.1.5.2 Started a new medication “GP seemingly trying different antidepressants”

133 N.2 Unclear without further investigation
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circumstances in the case of this study. First, the small 
scale and reduced scope of this pilot analysis, and the 
focus on design insights of the findings tempers the 
potential generalisability of these findings clinically, miti-
gating the risks of publishing these data. Second, the rela-
tive simplicity and brevity of the qualitative data included 
for analysis in this study (examples are given within the 
results section of this paper) reduce the potential for 
different categorical interpretations of the flags. Third, 
authors JS and NB contributed to the generation and 
refinement of the more inferential, perspective-driven 
analytical themes—meaning the core generalisable design 
findings of this study represent consensus between multi-
ple authors and mitigating single-coder bias.

Finally, the risk of bias associated with a single coder 
was also managed by engaging a researcher external 
to the project. Author DT, who conducted the analyses 
in this study, began work at Flinders after the cessation 
of the trial, has no prior relationships with any partici-
pants or clinicians involved in the trial, is not involved 
in the  AI2 project, and his pay and role originate from 
an entirely separate project. His role in clinical mental 
health services—as a peer practitioner—is separate to 
that of both clinical monitors, but has also encompassed 
triage, assessment, and intervening in non-adherence.

Descriptive data analyses
Flags relating to medication non-adherence with clini-
cal note data were included for anaylsis. First, research 
questions were set aside, and decision notes associated 
with medication non-adherence flags were inductively 
coded based on the behavioural justifications for follow-
up they described [63]. These flags were then sorted into 
the deductive, a priori categories embedded in research 
question one and the study protocol [29]—Followed-up 
and Not Followed-up—and further subcategories induc-
tively derived following a framework method approach 
[62, 65].

Following this, quantitative data, matched to the deci-
sion notes, were extracted from  AI2. These data—flag 
ID, system-generated client ID, “flag raised” time stamp, 
“flag actioned” time stamp, medication subtype—
were imported into IBM SPSS Statistics (version 27, 
2021). Data analyses were conducted by author DT and 
reviewed by author NB. Time stamps were used to com-
pute a days-to-action variable for each flag, providing the 
number of days before flags were actioned for each flag. 
Shapiro–Wilk Tests of Normality were used to deter-
mine the normality of the resulting distributions associ-
ated with these data. Descriptive statistics were produced 
through mixing the qualitatively derived framework 
method categories and flag metadata of interest.

Inferential analyses
The qualitative element of these analyses continued the 
thematic synthesis derived approach of initiated in the 
descriptive analyses through the generation of analyti-
cal themes—that is, inferential, generative, and explora-
tory themes that “go beyond” the implications of the raw 
data and identify sites for CDSS design intervention [63]. 
These themes were derived through both individual and 
consensus exploration of patterns between and within 
descriptive codes by the authors of the study. These 
insights, along with their respective descriptive code 
bases, were reported.

This work was augmented utilising a mixed-methods 
approach, mixing the qualitatively-derived Follow-
Up categories with quantitative data derived from the 
metadata—relating to medication subtype, patterns in 
client adherence, and time taken to follow-up. Hypoth-
esised relationships between these metadata and their 
impact of on clinicians’ follow-up behaviour were derived 
from the literature presented in the background to this 
paper; the nature of these relationships and how they 
will be tested is outlined in Table  1. This mixing is jus-
tified; indeed, combining these data provides a coherent 

Table 2 (continued)

N Ref Category/Sub-Category/descriptive 
decision code

Explanatory notes Example codes

14 N.2.1 Assumed to be a trial “As only once dispensed I assume that it was 
poorly tolerated”

68 N.2.2 GP visit regularity only source of data for 
assumption

“Several GP appts since- assuming intentioned”

42 N.2.3 Irregular prescription pickup pattern Ie., assumed normal behaviour for pt “Likely timing issue, he picked up the last repeat 
too early, long term very reliable”

9 N.2.4 Patient known to be non-compliant, not 
followed up

“Patient has a history of noncompliance with 
limited benefit of medication, as such likely real 
alert but no action taken before next scheduled 
review”

2 N.2.4.1 Patient has case manager Unclear if C.M. was followed up “Case managed, known non-compliance”
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integration of longitudinal and rich mixed data, aug-
menting the standalone quantitative and qualitative 
data. What constitutes “follow-up” is deeply contextual 
to both the type of clinician and service under investiga-
tion, as are the behaviours that inform these decisions. 
This mixed-methods approach flexibly allows for high-
level comparisons (at the follow-up level) and nuanced 
exploration of variations in how services and clinicians 
conceptualise and operationalise these constructs. This 
means this approach is, ultimately, reusable—allowing for 
replications that reflect the nuances of new contexts and 
clinicians while still accommodating comparisons and 
syntheses between contexts.

Reporting guidelines
This paper reports data conformant with APA-JARS 
MMARS standards [71, 72]. See Additional file 1: Appen-
dix 1 for an annotated copy of these guidelines with sec-
tion references for relevant data.

Results
Descriptive analyses
Following these initial analyses, 331 flags for 179 clients 
met the inclusion criteria for further analysis. Clinical 
decision related notes fell into two top-level categories: 
Followed-up (n = 71; 22%) and Not Followed-up (n = 260; 
78%). The Followed-up category was further subcatego-
rised into: (1) Adverse outcomes (n = 20); (2) Confirmed 
evidence of non-adherence (n = 12); and (3) Confirmed 
adherence (n = 46), either from the client, their family 
or their GP. The Not Followed-up category was further 
subcategorised into: (4) Unclear without further investi-
gation (n = 133), where there was evidence of non-adher-
ence, action was deemed unnecessary by the clinician, 
and the clinical notes did not specify or minimally speci-
fied the evidence for their decision; and (5) Likely to be 
Clinician Supported (n = 140), where there were multi-
ple data-points supporting the hypothesis that the client 
was being well-managed. Subcategories, frequencies, and 
example codes for this analysis are provided in Table 3.

Qualitative analysis: design insights from thematic 
synthesis of decisions notes
Three major themes, two with sub-themes, were identi-
fied across follow-up categories; Table 4 shows associated 
descriptive codes and case frequencies for each.

A.1 Access to contextual information enables decision 
making
This theme contained two subthemes: A.1.1) Data gath-
ered from other record-keeping systems; and A.1.2) Data 
gathered person-to-person. Beginning with the former, 
in 56 cases the screening clinician was able to determine 

the status of people flagged for non-adherence through 
querying other record-keeping systems. Regarding the 
other codes in this category, while medications and pre-
scriptions issued in residential care, long acting injecta-
bles, with the support of a case manager, or as part of the 
clozapine protocol would be visible on PBS records as 
this version of  AI2 operated on a weekly refresh it is rea-
sonable that the clinician—upon confirming any of the 
latter—would not spend time following up on data that 
may be superceded by the next system refresh. In both 
cases, these insights would either have been requested 
from other systems and databases or noted within the 
trialling service’s clinical information system. Accessing 
these data constitutes a form of follow-up; while the per-
son flagged as non-adherent was not directly contacted, 
non-AI2 data provided veracity for the clinician’s deci-
sion. This code also highlights the impact of the lack of 
integration within Australian contexts in which medi-
cal support is provided on attempts to monitor adher-
ence and, indeed, on the maintenance of comprehensive 
records for people with complex interactions with health 
and carceral systems [73].

In 32 cases, person-to-person data (A1.2) was an 
important part of confirming adherence status. Sources 
included family, case managers, other clinicians, or the 
client themselves. This is important to note.

A.2 Deferral of action to closer clinical contacts 
of the non-adherent person
In 123 cases, the screening clinician deferred to the judg-
ment of the clinician who most recently saw the person 
flagged as non-adherent. Most regularly cited were gen-
eral practitioners, sometimes in combination with  AI2 
showing compliance with other medications (n = 13), or a 
new medication in place of the medication ceased (n = 2), 
but in the majority of cases with no other justification 
(n = 68).

Table 3 Flags × medication type

Prescription type N. Flags % Followed-up Not 
followed-up

Mood stabilisers 21 6 5 16

Anti-Parkinsonians 6 2 1 5

Anti-psychotics 102 31 37 65

Anxiolytics 50 15 2 48

Sedatives 5 2 0 5

Anti-depressants 130 39 23 107

Psychostimulants 12 4 2 10

Nervous system drugs 5 2 1 4

Totals 331 71 260
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A.3 Rules don’t always meet the contextual needs 
of prescribers and clients
This theme contained two subthemes: A.3.1) Medica-
tions are prescribed and taken in more than one way; and 
A.3.2) This style of follow-up is not always warranted or 
appropriate. To the former, people often take medica-
tions in patterns that differ from the most common use. 
Medication taken pro re nata—or, when needed—is 
course of action undertaken regularly in mental health 
services [74]. Additionally, changing dosage of a medica-
tion on a relatively fixed schedule—such as in some pres-
entations of premenstrual dysphoric disorder [75]—also 
does not translate into a set-dose-per-day usage easily 
detected algorithmically. As such, the clinical monitor 
determined in 115 cases that the medication had been 
prescribed outside of the usecases monitored by the  AI2 
algorithm—but in line with what they might expect in 
practice for that drug. While any additional sources for 
making this determination were not cited in any of these 
cases, this code reinforces the potential utility of the data 
captured in A.1 for verifying these assertions.

In terms of the latter theme, in 51 cases the screening 
clinician made the determination that this style of follow-
up was not warranted or appropriate (A.3.2). On the face 
of it, the two descriptive codes in this category contain 
radically different categories of risk—people known to by 
non-adherent, and those who pick up their prescriptions 
in an irregular manner. In terms of the latter, the labour 
costs involved in following up may outweigh the benefits. 
On the other hand, in the former, for repeatedly non-
adherent clients a phone call to follow-up may be mini-
mally impactful on their behaviour, or possibly adversely 
affect the therapeutic alliance with the service.

Mixed-Methods Analysis: Preliminary insights into cli-
ent and medication subtype characteristics’ impact on 
follow-up behaviours.

H1: Differences between medication subtypes and their 
likelihood to be followed-up
The proportion of flags that were not followed up and 
provided insufficient evidence, on review by the research 
team, to assume adherence (see Table 2) differed signifi-
cantly between medication types (χ2 = 67.37; p < 0.001). 
Pair-wise Chi-squared tests between the four largest 
medication subtypes showed Anti-depressants were sig-
nificantly less likely to be followed up than Antipsychot-
ics (χ2 = 35.196, p < 0.001, v = 0.389), and Anxiolytics 
(χ2 = 44.825, p < 0.001, v = 0.499), but not Mood Stabilis-
ers (χ2 = 1.455; p = 0.228). The other medication subtypes 
were excluded from this analysis due to their small sam-
ple sizes limiting reliable reporting of results (Tables 5, 6, 
7).

H2: Differences between medication subtypes 
and timeliness of follow‑up
The distributions associated with Days to Action x 
Medication Subcategory were not all normally dis-
tributed. A Kruskal–Wallis H-Test showed no signifi-
cant differences in the distribution of days to respond 
between medication subtypes (H = 12.825; p = 0.077).

H3. Differences in time‑to‑action 
between follow‑up categories.
The days taken to action Not Followed-up(0) and 
Followed-up(1) flags were compared (Fig.  5). The 
normality of the distributions was tested using Shap-
iro–Wilk tests of Normality, which showed significant 
deviance from normality  (p0 < 0.001;  p1 = 0.026). A 
Mann–Whitney U test found a significant difference, 
however with a modest effect size, between the distri-
butions of response times between follow-up catego-
ries  (M0 = 31.78;  Range0 = 116;  IQR0 = 38;  M1 = 45.55; 
 Range1 = 129;  IQR1 = 30; U = 6341; p < 0.001; Z = 4.043; 
η2 = 0.05).

H4: Time × Event differences within‑clients 
with mixed‑follow up status flags
Data for 179 clients was included in this analysis. Most 
clients were flagged once, although this varied up to six 
flags for some (Fig.  6). 39 clients were exclusively fol-
lowed up, 133 clients were exclusively not followed up, 
and 9 clients had flags in both categories. These data were 
insufficient for further quantitative analysis.

Discussion
This study provides insights into CDSS design and cli-
nician behaviours, from which researchers and ser-
vices can derive sites of intervention to better improve 

Table 5 Medication type × follow-up status chi-squared test of 
homogeneity

As only one cell has an expected count < 5 (ie., 12.5% of cells), and χ2 > 7.82 
(the critical χ2 value for tests with three degrees of freedom), therefore the 
assumptions of the test are met [88–90]

Prescription 
Type

N. Flags % N. Followed-up 
(Expected 
Count)

N. Not 
Followed-up
(Expected Count)

Mood stabilisers 21 6 5 (4.64) 16 (16.35)

Anti-psychotics 102 31 37 (22.55) 65 (79.45)

Anxiolytics 50 15 2 (11.06) 48 (38.94)

Anti-depressants 130 39 23 (28.76) 107 (101.25)

Totals 331 71 260

χ2 (p) 22.9121 (< .001)
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Table 6 Pairwise Fisher’s exact tests of independence for follow-up status between-medication subtypes

Prescription type N. Flags N. Followed-up (Expected 
Count)

N. Not Followed-up
(Expected Count)

Mood stabilisers × Anti-psychotics

Mood stabilisers 21 5 (4.64) 16 (16.35)

Anti-psychotics 102 37 (22.55) 65 (79.45)

Totals: 123 42 81

Fisher’s exact test p = .322; no significant difference in follow-up status

Mood stabilisers × Anxiolytics

Mood stabilisers 21 5 (4.64) 16 (16.35)

Anxiolytics 50 2 (11.06) 48 (38.94)

Totals: 71 7 64

Fisher’s exact test p = 0.021; significant difference in follow-up status

χ2 (p; v) 4.49 (p = 0.0341; v = .303)

Anxiolytics × Anti-psychotics

Anxiolytics 50 2 (11.06) 48 (38.94)

Anti-psychotics 102 37 (22.55) 65 (79.45)

Totals 152 39 113

Fisher’s exact test: p < 0.001; significant difference in follow-up status

χ2 (p; v) 16.67 (p < 0.001; v = 0.341)

Anti-depressants × Mood stabilisers

Anti-depressants 130 23 (28.76) 107 (101.25)

Mood stabilisers 21 5 (4.64) 16 (16.35)

Totals: 151 28 123

Fisher’s exact test p = 0.5463; no significant difference in follow-up status

Anti-depressants × Anxiolytics

Anti-depressants 130 23 (28.76) 107 (101.25)

Anxiolytics 50 2 (11.06) 48 (38.94)

Totals: 180 25 155

Fisher’s exact test: p = 0.016; significant difference in follow-up status

χ2 (p; v) 5.66 (p = 0.0174; v = 0.1773)

Anti-depressants × Anti-psychotics

Anti-depressants 130 23 (28.76) 107 (101.25)

Anti-psychotics 102 37 (22.55) 65 (79.45)

Totals: 232 60 172

Fisher’s exact test: p = 0.0015; significant difference in follow-up status

χ2 (p; v) 10.29 (p = 0.0013; v = 0.2106)

Table 7 Normality of distributions—days to action × medication subtypes

Distribution M (SD, 95% CI) Shapiro–Wilk tests of normality

Statistic df Significance

Days to action × Anti-epileptics 5.000 (2.302, 3.952–6.047) .916 21 0.071

Days to action × Anti-parkinsonians 3.667 (2.065, 1.499–5.834) .917 6 0.487

Days to action × Anti-psychotics 4.637 (2.331, 4.183–5.091) .938 102 < 0.001

Days to action × Anxiolytics 3.800 (2.050, 3.217–4.824) .849 50 < 0.001

Days to action × Sedatives 3.000 (2.121, 0.336–5.634) .899 5 0.405

Days to action × Anti-depressants 4.369 (2.382, 3.956–4.783) .932 130 < 0.001

Days to action × Psychostimulants 5.833 (2.125, 4.483–7.183) .971 12 0.918

Days to action × Nervous system drugs 4.200 (2.683, 0.868–7.532) .838 5 0.160
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to medication guidelines in real-world clinical mental 
health services.

Summary of findings
The majority of clients who were flagged were not fol-
lowed-up. In those that were, qualitative analysis showed 
that contextual information enabled decision making. 
Where there was no follow-up, there was a tendency to 
defer—where contact had been made recently—to the 

judgment and monitoring of more recent clinical con-
tacts (usually primary care) of the client. Additionally, the 
clinical monitors in many cases determined that either 
the rules of the algorithm or the intervention itself did 
not meet the context of the client. These findings indi-
cate, overall, that contextually aware CDSS designs—that 
is, design that can take into account the person’s environ-
ment, clinical relationships and medical needs, executed 

Fig. 5 Follow up status × Days to Action

Fig. 6 Frequency of number of flags per client
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with or without automation—show potential for enabling 
naturalistic follow-up interventions.

These qualitative findings were further elaborated by 
the mixed-methods results, which indicate—preliminar-
ily—that time and effort costs associated with following 
up lower-risk non-adherence events (such as anti-depres-
sants) may be perceived to outweigh the benefits (H1). 
Additionally, the quantitative results indicate more 
broadly the lack of faith in the veracity of prompts to fol-
low-up generated from EHR data alone; indeed, the find-
ing that Followed-up flags took significantly longer than 
Not Followed-Up flags may indicate that more clear-cut 
non-adherence data were a key ingredient, at least in this 
trial, for encouraging action (H3). Finally, that there were 
insufficient data to test within-client changes in follow-up 
status (H4) indicates the complexities of what repeated 
non-adherence—either actual, or as an artefact of algo-
rithms—can represent. Indeed, these findings further 
affirm the Thematic Synthesis finding that the inflexibility 
of algorithmic “rule-breaking” inherently produces a reli-
ance on clinical judgment of non-adherence, the general 
lack of veracity indicated in both the thematic synthesis 
and results for H3, and the importance of integrating 
non-EHR data into CDSS to address these limitations.

Implications for further research
Encouraging client and caregiver engagement 
and autonomy
The majority of clients who were flagged for medication 
non-adherence in this study were not followed up, with 
a significant lack of follow-up for anti-depressant non-
adherence (H1)—a class of drugs, as established in the 
background to this study, prescribed for many conditions 
[76, 77], with potentially severe discontinuation effects 
[18], but considered low risk due to both their sometimes 
short-term use and guidelines indicating minimal discon-
tinuation effects [17]. Regardless of risk, these clients are 
difficult to identify in the data currently collected by  AI2, 
may have severed their relationship with their clinician 
[13, 22, 78], and the costs (time and effort) associated 
with the current intervention may outweigh the impact 
on the possibly small proportion of people who would 
benefit—an assertion backed by Analytical Themes A.1 
and A.3. In the context of the finding that followed-up 
flags took significantly longer to action (H3)—indicat-
ing that a longer period of time since the flag was first 
raised and, therefore, a more clear-cut indication of non-
adherence gave clinicians more impetus to act—it is fur-
ther indicated that follow-up, if it were to happen, would 
likely happen outside of the window where discontinu-
ation effects and/or encouraging restarting medication 
were feasible outcomes. Analytical Theme A.1 offers 
an inroad for design insights into these findings which, 

when synthesised, highlight a need for increased verac-
ity of data within the CDSS—which A.1 indicates may 
be achieved through the incorporation of different data 
streams between both different record-keeping systems 
and between human actors.

One avenue of achieving this is through incorporating 
clients and their caregivers as both empowered actors 
and data sources within systems. Indeed, a systematic 
review found CDSS studies that incorporated input and 
follow-up from clients and caregivers to be more effec-
tive, potentially through the empowering, engaging and, 
therefore, clinician accountability building effect hand-
ing consumers these data can have [68]. If well designed 
and implemented, these methods also have the potential 
to provide more actionable insights into the experiences 
of people who abruptly discontinue “lower-risk” drugs, 
such as anti-depressants [31, 42, 79]; addressing the 
cost–benefit dilemma of the current intervention. Finally, 
this approach could also be utilised in clients who iden-
tify themselves as struggling with adherence to provide 
motivational, health-promoting, or supportive content— 
an important and potentially efficacious adjunct for this 
group [79, 80].

Interoperability with, or automated data collection 
and follow-up between services and systems
Adherence is not a monolithic category [1]. Non-adher-
ence can appear as (a) clients simply not picking up a 
prescription (non-fulfilment); (b) clients can pick up a 
prescription, but then stop taking medication after ini-
tially taking it (non-persistence)—which can be both 
deliberate or due to lack of capacity or resources on the 
client’s part; and c) taking medication, but not in the 
manner in which it was prescribed (non-conforming) 
[1, 4]. Considering that: all three of these categories can 
occur simultaneously with the client not informing their 
GP or clinician of their non-adherence, low adherence 
among clients with chronic and complex conditions to 
all of their prescribed medications within complex drug 
regimes [7, 81–83], the finding in A.2 that clinical moni-
tors working with  AI2 had a tendency to defer to closer 
clinical contacts of the person flagged as non-adherence, 
the volume of Not Followed-Up flags categorised in the 
Framework analysis as Unclear Without Further Investi-
gation—it is clear that further development and evalua-
tion of communications between clinical monitors and 
other clinicians involved in the care of people flagged by 
 AI2 is necessary.

Indeed, adherence approaches at their best are col-
laborative [1, 4]—between clinicians, services, and cli-
ents—and the development of automated notification 
and data collection systems for further implementations 
should, therefore, also aim to integrate data from and 
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follow-up with other services and systems. Data col-
lected from other systems, services and clinicians could 
be feasibly extracted from other, yet-to-be-implemented 
areas of MyHealthRecord—such as prescription and 
dispense records, shared health summaries, and event 
summaries—using techniques such as natural language 
processing, or careful presentation of raw data to enable 
further insights. Additionally, automated email contact 
initiations could be utilised. Automated follow-up of 
other services, systems and clinicians could involve inter-
ventions such as prompting clinicians—via email or other 
methods—to consider the potential impacts of different 
follow-up paths or, more simply, reminding the clinician 
of the value of the intervention [84]—design patterns 
from other industries that have been suggested as being 
potentially applicable to health [61].

The continuing importance of human factors
Additional to our provocations to consider automated 
follow-up, it is important to continue to stress the con-
textual and human factors within-services that facili-
tate or block CDSS use [50, 53, 61]. This study provides 
a nuanced set of initial insights, using novel data, to the 
interaction design literature seeking to address this.

First, in all clinical decision support systems it is neces-
sary to balance the impulse to notify against the action-
ability of the notification, both to avoid alert fatigue and 
minimise the risk of adverse outcomes or legal ramifi-
cations [69, 70, 85]. In the context of these difficult—or 
unnecessary—to action flags, the use of filters in  AI2 and 
similar systems could be used to narrow the use case 
to target specific client groups—allowing for a greater 
sense of specificity, the optimisation of which may facili-
tate adherence to CDSS use [69]. For example, in this 
study site focussing on follow-up of anti-psychotics may 
have been preferable when considering, in hindsight, 
the quantity of data generated by  AI2 and the service’s 
priorities for follow-up. This methodology provides an 
option for clinics to ease into proactive care while balanc-
ing existing duties—or scoping the resources required 
to expand coverage as they arise. Combined with other 
methods of automated follow-up, this may improve time-
liness, clinician workload concerns, as well as client and 
clinician outcomes more broadly.

Limitations
This study demonstrates the potential of the Medi-
care data for monitoring and following up on non-
adherence. These data do not include services sought 
from private mental healthcare. However, because of 
the often chronic and high-cost nature of living with a 
mental health condition in Australia, Medicare funded 
services are widely utilised by people with mental 

illnesses in Australia. Additionally, while Medicare 
allows state based acute services to view federally regu-
lated and funded GP activities and occasions of pathol-
ogy, radiology, and so on, acute care services funded by 
state government like hospitals are not visible in this 
data. Finally, as these are pilot findings—collected from 
a small number of clinicians and analysed by a single 
coder—their generalisability should be considered 
cautiously.

Conclusions
This study highlights the interaction design challenges 
facing health services and researchers implementing 
proactive care processes using CDSS. In particular, 
these results point towards the importance of address-
ing perceptions of: (1) risks associated with non-adher-
ence to different medication-types; (2) the veracity of 
non-adherence data provided by CDSS; and (3) the per-
son’s environment, clinical relationships and medical 
needs, and how associated biases related to their adher-
ence. We suggest the importance of considering context 
in increasingly automated follow-up interventions as a 
priority for future research.
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