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Abstract 

Background  The Human Cell Atlas resource will deliver single cell transcriptome data spatially organised in terms of 
gross anatomy, tissue location and with images of cellular histology. This will enable the application of bioinformatics 
analysis, machine learning and data mining revealing an atlas of cell types, sub-types, varying states and ultimately 
cellular changes related to disease conditions. To further develop the understanding of specific pathological and his-
topathological phenotypes with their spatial relationships and dependencies, a more sophisticated spatial descriptive 
framework is required to enable integration and analysis in spatial terms.

Methods  We describe a conceptual coordinate model for the Gut Cell Atlas (small and large intestines). Here, we 
focus on a Gut Linear Model (1-dimensional representation based on the centreline of the gut) that represents the 
location semantics as typically used by clinicians and pathologists when describing location in the gut. This knowl-
edge representation is based on a set of standardised gut anatomy ontology terms describing regions in situ, such 
as ileum or transverse colon, and landmarks, such as ileo-caecal valve or hepatic flexure, together with relative or 
absolute distance measures. We show how locations in the 1D model can be mapped to and from points and regions 
in both a 2D model and 3D models, such as a patient’s CT scan where the gut has been segmented.

Results  The outputs of this work include 1D, 2D and 3D models of the human gut, delivered through publicly acces-
sible Json and image files. We also illustrate the mappings between models using a demonstrator tool that allows the 
user to explore the anatomical space of the gut. All data and software is fully open-source and available online.

Conclusions  Small and large intestines have a natural “gut coordinate” system best represented as a 1D centreline 
through the gut tube, reflecting functional differences. Such a 1D centreline model with landmarks, visualised using 
viewer software allows interoperable translation to both a 2D anatomogram model and multiple 3D models of the 
intestines. This permits users to accurately locate samples for data comparison.
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Background
Following a short preamble introducing the Human Cell 
Atlas endeavour, the main objective of this background 
section is to provide the reader with the biomedical con-
text of our work. Specifically, we begin with brief intro-
ductions of (1) human gut anatomy, the focal point of 
our models, (2) Inflammatory Bowel Disease, a primary 
medical concern ultimately to benefit from this research, 
(3) clinical investigations, which underpin the nature of 
our models, and (4) single Cell RNA sequencing technol-
ogy, which is the main development pushing biomedical 
atlasing work down to the cellular level. Building on this 
basis, we set out the general case for so-called Common 
Coordinate Frameworks and the specific objectives of 
our work.

Introduction to human cell atlas
The mission of the Human Cell Atlas (HCA) programme 
[1] is “To create comprehensive reference maps of all 
human cells—the fundamental units of life—as a basis 
for both understanding human health and diagnosing, 
monitoring, and treating disease” [2]. The human body 
is a complex amalgamation of cells organised into tissue, 
organs and systems which can be studied in health and 
disease states. The ability to study complex organisms at 
the most basic cellular level has generated vast quantities 
of molecular data necessitating suitable data capture and 
modelling platforms to support the interpretation of the 
data. The ability to visualise and map cell to tissue and 
tissue to organ data will allow in future for a more com-
prehensive understanding of changes related to health 
and pathological conditions.

Human gut anatomy
The gastrointestinal tract can be represented as a long 
cylindrical tube from oesophagus through stomach, small 
intestines, large intestines, to anal canal, terminating at 
the anus. The main function of the gut is to digest and 
absorb nutrients with the excretion of waste products. It 
also has essential roles in endocrine, immune and barrier 
function, delicately balancing the symbiotic relationship 
with the microbiome and supporting continuous epi-
thelial tissue renewal. Here, we focus on the small and 
large intestines, from gastro-duodenal junction to anus. 
These gut components have internationally standardised 
gut anatomy ontology terms that describe the various 
regions, such as duodenum, jejunum and ileum of the 
small intestines, and caecum, ascending colon, transverse 
colon, descending colon, sigmoid colon, rectum and anal 
canal of the large intestines. A number, but not all, of the 
junctions between these component regions are sepa-
rated by established landmarks, such as ileo-caecal valve, 
hepatic flexure, splenic flexure and anorectal junction 

for example. These gut regions with landmarks, together 
with consensus average length measurements, can be 
used to generate a 1-dimensional map or model of the 
gut that allows normal or disease samples to be located 
more precisely.

Inflammatory bowel disease
Mapping of disease location accurately within the gut is 
important for Inflammatory Bowel Diseases (IBD). These 
are chronic inflammatory conditions of the gastrointes-
tinal tract with an increasing incidence worldwide [3]. 
The underlying inflammation is postulated to be second-
ary to the interactions between the microbiome, an acti-
vated immune system and mucosal barrier dysfunction in 
genetically susceptible individuals. The increase in inci-
dence has been linked to adoption of a westernised diet 
with ultra-processed food [4, 5] and medications such as 
proton pump inhibitors [6, 7]. There are two main types 
of IBD: Ulcerative Colitis and Crohn’s Disease  (CD). 
Ulcerative Colitis affects the large bowel, often starting 
in the rectum and progressing proximally, resulting in 
abdominal pain and a change in bowel function. Crohn’s 
Disease is the more complex disorder affecting any part 
of the gastrointestinal tract from mouth to anus, with 
distinct disease manifestations associated with the spe-
cific region of the affected gut [8].

Clinical investigations
IBD is diagnosed by standard methods including clini-
cal assessment, radiological, endoscopic and histological 
evaluation. The Lennard–Jones criteria are considered 
the gold standard for confirming the diagnosis of Crohn’s 
Disease [9]. Endoscopic evaluation is used frequently 
to obtain tissue samples which are analysed to confirm 
the pathognomonic changes of discontinuous transmu-
ral inflammation, often with a fissuring pattern of deep 
ulceration and fibrosis [10]. In addition to the fissuring 
ulcers, there is both acute and chronic inflammation with 
focal cryptitis, crypt destruction and granuloma forma-
tion in around 60% CD cases. Longstanding inflamma-
tion may predispose to dysplasia which in some may 
evolve to invasive adenocarcinoma. Some patients may 
develop fibrotic tissue resulting in narrowing or strictur-
ing of the affected bowel precipitating bowel obstruction. 
Subsequently, fibrotic tissue can be surgically excised 
although the mechanism of fibrosis is poorly understood 
and other treatment strategies are less effective [11].

It is a challenge to accurately map these changes to 
their correct positions in a three-dimensional model 
to illustrate the distribution within the gastrointesti-
nal tract. If the patient has undergone surgery and there 
is associated radiological imaging, then location can 
be determined reasonably straightforwardly. During 
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endoscopic procedures (and many surgical resections), 
the endoscopist (or surgeon or pathologist) usually 
describes the small or large intestinal region (e.g. ileum, 
ascending colon, etc.) involved by a lesion and sometimes 
provides a distance (in cm) from the anus using the dis-
tance markings on the endoscope surface (see Fig. 1), or 
for surgical resection specimens, a distance of the lesion 
from a landmark such as the ileo-caecal valve or the 
resection margin of the specimen. Some change to clini-
cal practice is required to capture these data routinely as 
distances from recognisable gut landmarks.

Single cell RNA sequence data analysis
Single-cell sequencing is a powerful technology for pro-
filing the transcriptome of large numbers of individual 
cells (see [12, 13] and [14] for a recent review). The tech-
nique generates large amounts of data that requires spe-
cialised computational and statistical analysis. Generally, 
single cells are isolated into wells of a plate or into drop-
lets, such that transcripts from each cell can be barcoded 
or tagged (marking them with a unique molecular identi-
fier; UMI), allowing the expression profile of the cell to 
be ascertained after RNA-sequencing, which is normally 
performed on pools of transcriptomes from many cells. 
The major variables in all single cell sequencing experi-
ments are the number of cells profiled and the depth 
of sequence generated for each cell. The initial steps of 

single cell sequencing data quality control include remov-
ing data associated with UMIs that are not well repre-
sented, these are often associated with cells that are dying 
or are damaged, and to then examine the proportion of 
multi-mapping, un-mappable and mitochondrial reads 
for each cell, the frequency of which tend to correlate 
with poor data quality. Since the aim is to profile the tran-
scriptome at single cell resolution, empty droplets, cell-
free RNA and doublet-cells are removed using software 
such as EmptyDrops, SoupX and DoubletFinder respec-
tively. Following on from these steps the data is normal-
ised to account for differences in sequencing depth and 
where appropriate batch correction to account for non-
biological factors such as time of sample collection. Fur-
ther data processing steps can involve data smoothing 
and imputation, cell cycle analysis, unsupervised clus-
tering as a prelude to dimensionality reduction and data 
visualisation, which can be performed using approaches 
such as PCA, t-SNE and UMAP. Where differential 
expression analyses are a key parameter, various methods 
have been developed including MAST and MetaCell. The 
field of single cell sequence analysis is rapidly evolving 
with many robust and elegant approaches allowing data 
exploration and there is a requirement for integration of 
such data with histological, radiological, clinical disease 
metadata and other data using a common coordinate 
framework approach. In addition, mapping the locations 

Fig. 1  Endoscope showing distance markings. These could be used to establish a gut-location by taking readings for the sample location coupled 
with the nearest proximal and nearest distal gut landmarks e.g. the hepatic and splenic flexures for locations within the transverse colon



Page 4 of 17Burger et al. BMC Medical Informatics and Decision Making           (2023) 23:36 

of the source tissue samples within the gut context will 
allow the discovery and analysis of the gradients of vari-
ation along the proximal–distal gut axis and reveal novel 
understanding of the gut biology. Without a mechanism 
for capturing gut location this aspect of gut-biology will 
remain undiscovered.

Towards a human gut cell atlas common coordinate 
framework
The primary aim of the Human Gut Cell Atlas (HGCA) is 
to capture a detailed atlas of tissue and single cell data in 
the spatial context of the adult human gut. Whether for 
clinical purposes for individual patients or more general 
research studies concerning the gut, data ranging from 
patient-specific information, histopathological image 
data and radiological images, to single cell sequencing 
data of gut cells as part of research work, all are now col-
lected and stored by hospitals and research institutions, 
respectively. Data integration is a key prerequisite to 
facilitate AI techniques, in particular Machine Learning, 
to derive medically useful knowledge from these large, 
distributed data sources, in order to reveal the spatial 
organisation of the underlying molecular and cellular 
processes in normal and diseased samples. One of the 
primary integration criteria is the anatomical origin of 
tissues and cells which the collected data refers to. In the 
context of the Human Cell Atlas, such anatomical loca-
tions are to be recorded using a computational frame-
work called the Common Coordinate Framework (CCF) 
[15].

The number and types of use cases for a Human Gut 
Cell Atlas and therefore the requirements for its CCF, 
are large and varied. A balance has to be struck between 
catering for all eventualities and a simplicity that makes 
the use of the CCF practical. In this paper, we describe a 
CCF for the human gut that is based on clinical practice, 
has at its core an easily understandable 1D gut model, but 
extends to complex 2D and 3D representations. A mech-
anism for capturing proximal–distal gut location is criti-
cal to enable not just an atlas of cell-types as revealed by 
scRNA-seq but also the gradients of change of the cell-
types, sub-types and cell states, as well as cell populations 
along the gut axis and how that links to gut anatomy in 
both health and disease. Once we have introduced our 
own models for a Human Gut Cell Atlas CCF in the 
Methods and Results sections, we provide further details 
on related frameworks in the Discussion.

Objectives
The primary objective of the Human Gut Cell Atlas pro-
gramme is to enable data integration of all data-types to 
deliver a research and analysis capability to support sci-
ence discovery and clinical benefit in the context of the 

gut and related tissue diseases and pathological abnor-
malities. Our objective with this work is to deliver a prac-
tical CCF for the gut that make this possible. For that we 
have developed a conceptual model of the gut based on 
the natural coordinate of distance along the gut midline 
with semantic extension to specific tissues and cells. In 
addition, we develop a mapping mechanism that allows 
cross comparison with 2D and 3D gut representations 
including patient-specific data. A further aim is the 
interoperability of the proposed CCF with other similar 
efforts, to facilitate cross-CCF data integration.

In the Methods section we set the scientific context for 
our models in terms of the specific use case underpinning 
our work and then describe how the models were devel-
oped. The Results section presents the 1D, 2D and 3D 
models that we created and which form the core of the 
proposed CCF. In addition, a publicly accessible online 
tool illustrating the use and interaction of these models 
is presented. Related work is reviewed in the Discussion 
section, as are limitations as well as future prospects of 
the Gut CCF. The Conclusions summarise the primary 
contribution of the models and their implementations, as 
well as their importance and potential impact in the con-
text of the Human Gut Cell Atlas endeavour.

Methods
Edinburgh–Cambridge Helmsley trust project HGCA CCF 
use‑case
Although the exact CCF requirements across different 
projects will vary, the project described here includes 
many of the typical components for this kind of work, 
and thus facilitated the development of the gut models 
with common clinical and research practice in mind. 
For this project, Crohn’s disease lesion samples are 
collected from surgical resections. From the resection 
specimen tissue slices are taken from various sample 
points capturing both diseased and morphologically 
healthy (no visible pathological abnormality) tissue. 
The CCF must be able to capture the location from 
where in the gut the samples (either biopsies or blocks 
from a surgical resection) were taken, and for multiple 
tissue slices, the relative location of slices in terms of 
their sequence order as taken from the surgical resec-
tion specimen. Following slicing of a surgical resection 
specimen of gut, one or more parts of the slices form 
blocks of tissues for further processing, for either dis-
sociation of fresh tissue into single cells for single-cell 
transcriptome sequencing, or fixation for histologi-
cal analysis. In the latter case tissue blocks are fixed 
in buffered formalin, processed into paraffin and sec-
tions are cut for staining, scanning and analysis. Both 
the source of the sections—in terms of their original 
blocks—and their relative ordering and adjacency in 
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the blocks must be tracked. Histology and sequence 
data generated during analysis are annotated with rele-
vant CCF location information to allow the integration 
of data based on the same precise location of tissue, 
but also to map across different samples from different 
patients. Datasets will be made available where possible 
in accordance within the appropriate legal framework 
or within a secure research environment [16]. A con-
ceptual overview of the project is provided in Fig. 2.

Regev et al. [1] state that “To be useful, an atlas must 
also be an abstraction, comprehensively representing cer-
tain features, while ignoring others.” What then are the 
appropriate abstractions for a Human Gut Cell Atlas? 
The answer to this question is guided by what data can 
be reliably obtained to build the atlas in the first place 
and then how to map new data onto the atlas, e.g. what 
is the location from where a resection specimen was 
obtained, and secondly, what are the questions we want 
to answer using this data. We start with a simple, clini-
cally orientated, 1D abstraction, which in turn we extend 
to 2D and 3D models, including the mappings between 
them. These are complemented with a semantic layer of 
location descriptions. How we created these abstractions 
is discussed next and specific details and parameters are 
provided in the Results section.

1D—core model
The primary abstraction of the gut, representing both the 
small and large intestines, is that of a tube connecting 
the stomach to the anus. Location is captured in terms 
of distance along the centreline of the tube to anatomi-
cal landmarks, as measured, for example, by the use of an 
endoscope during a colonoscopy.

2D—anatomograms
Anatomograms have been developed at the European 
Bioinformatics Institute (EBI) within the Single Cell 
Expression Atlas (SCEA) programme as 2D graphical 
representations of certain organs, tissues and cellular 
assemblies for the purpose of presenting a pictorial over-
view of transcriptome data and potentially as a graphi-
cal interface for data query [17]. Here we have taken the 
gut 2D anatomogram image and created image domains 
(regions) that were drawn within the anatomogram 
for the anatomy of the large and small intestines. These 
domains were then segmented into sub-domains corre-
sponding to the regions delineated in the anatomogram, 
e.g. anus, anal canal, descending colon, splenic flexure, 
etc. Where the anatomogram depicted distant parts of 
the gut domains as overlapping or touching, e.g. as the 
small intestine passed behind the transverse colon, then 

Fig. 2  Edinburgh-Cambridge Helmsley Trust project HGCA CCF use-case. The project design includes pre-surgery MRI imaging followed by Crohn’s 
lesion resection. The resected material is processed to produce histological sections for staining and imaging matched to adjacent tissues used 
for single-cell transcriptomics. The transcriptome data is archived at and accessible from the Single Cell Expression Atlas and the radiological and 
histology image data is submitted to the HCA archive
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cut-domains were created to preserve the appropriate 
connectivity for the intestines.

Midline-paths were computed from the anus to the tip 
of the appendix for the large intestine and from the ileo-
caecal valve—ileum (ICVi) to the gastro-duodenum junc-
tion for the small intestine. A propagation algorithm in 
which possible image locations are considered in priority 
order was used to compute initial midline paths. Image 
location priority was determined by a combination of 
the distance to the path endpoint and from the domain 
boundary. From the ordered set of path image locations 
found along each path a smooth B-spline curve was then 
computed as the primary path representation. All image 
processing was done using Woolz [18].

3D—radiological‑image based models
3D models of the human gut (limited to the large intes-
tine and ileum of the small intestine) were computed 
from anonymised CT images. Two models have been 
built, one from an image in which the colon had been 
inflated and a second from an image in which the colon 
was non-inflated. In both cases the image domain of the 
large intestine and all or part of the ileum was segmented 
from the 3D CT image. For the inflated colon the domain 
was computed by using threshold-based region growing 
and morphological operations, with the region growing 
seed locations entered manually. ITKsnap [19] was used 
for region growing and Woolz was used for all other 
image processing operations.

For the non-inflated colon, threshold-based segmen-
tation could not be used because of the wide variation 
in image values and textures throughout the colonic 
region, so a pre-segmentation image classification was 
performed using a machine learning approach based on 
the full convolutional neural network described by Long 
et al. [20] and implemented as “U-Net” by Ronneberger 
et  al. [21]. To train the convolutional neural network a 
small number of virtual sections were cut through the 3D 
image with a range of sectioning parameters—including 
position and 3D orientation, these were manually seg-
mented using MAPaint [22] an interactive drawing appli-
cation for segmenting 3D image data. The segmented 
section images (2D) were then used to train a u-net 
classifier.

To reduce the manual segmentation effort, the num-
ber of segmented images was augmented using a com-
bination of affine and non-affine transforms. The trained 
network was then used to generate a colon classification 
2D image for all planes parallel to a virtual section of 
the original 3D image resulting in a full 3D classification 
image. The prediction was repeated for 36 sets of virtual 
sectioning parameters and the resulting 3D classification 
images were averaged to give a single such image. The 

classification image was then segmented using region 
growing and morphological operations in a similar man-
ner to that used for the inflated model. The u-net was 
built using PyTorch [23], all other image processing was 
executed using Woolz. With the large intestine and ileum 
domains segmented from the 3D images, paths through 
them were computed using the same approach as for the 
2D anatomogram.

Model–model mapping transforms
Each of the 1D, 2D and 3D models represent a spatial 
context in which data locations can be visualised and 
queried. It is critical for spatial query and analysis that 
a location in one model can be mapped to any other so 
that the spatial frameworks are interoperable and data 
can be cross compared. For this the 1D linear model 
was mapped onto the 2D and 3D midline paths com-
puted through the anatomogram and 3D image models 
respectively. Actual distances along each path are model 
dependent so a piecewise-linear mapping approach was 
adopted as an initial or base-level cross-mapping. On 
each path within each of the 1D, 2D and 3D models the 
landmarks defined in Fig. 3 are marked. These are indi-
cated within the anatomogram (Fig. 4) and the 3D models 
(Fig. 5) with marker “flags” and a change in colour of the 
visualised intestine segment. A location within a model 
is defined by the proportional distance along the midline 
path between the closest proximal (towards the mouth) 
and closest distal (towards the anus) landmarks. This 
simple definition allows locations and any data associated 
with them to be mapped between 1D, 2D and 3D models 
of the large and small intestines. This base-level mapping 
of locations between two landmarks without additional 
information is linear, however, this can be enhanced to 
a non-linear mapping to better reflect the anatomical 
structure as more detailed knowledge is acquired. Loca-
tions away from the midline path (but within the gut 
region) are mapped to the closest midline point of the 
same region. For efficiency this may be precomputed.

This mapping mechanism allows data from other coor-
dinate frameworks to be mapped to these models. It also 
allows data from a specific patient to be mapped either 
through distances to landmarks noted during sample col-
lection or retrospectively using pre-surgery 3D image 
data.

Semantic extension
The descriptions of locations in the gut so far have 
focused on distances along its tubular structure from 
the anus to the caecum and appendix (for the large 
intestine) and from the ileocaecal valve proximally (for 
the small intestine), but they are unable to provide a 
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mechanism to capture more detailed cell location infor-
mation with respect to the layers of the gastrointestinal 
wall at the given position, i.e. the mucosa, submucosa, 
muscularis propria and serosa. We therefore semanti-
cally complement the location by combining them with 
the relevant ontological concepts representing these 
layers, tissue types and cell-types. More specifically, 
the corresponding standard anatomy terms are those 
that were agreed as part of the HuBMAP project as a 
series of Anatomy Structures, Cell Types and Biomark-
ers (ASCT + B) tables [24, 25], which include links to 
matching terms in UBERON [26], the Foundational 
Model of Anatomy (FMA) [27] and the Cell Ontology 
(CL) [28]. Hence, a typical description might specify 
the origin of a tissue sample as coming from the mucosa 
halfway along the transverse colon and scRNAseq data 
could include further specification of cell-type e.g. gob-
let cell. Future work will also address the representa-
tion of location in terms of villus versus crypt (for small 
intestine) and left versus right (for large intestine).

Results
1D—core model
The 1D core model of the gut as described above results 
in its representation as a graph distinguishing anatomical 
landmarks (nodes) and regions (edges), shown in Fig. 3. 
The path from the anus to the caecum captures the large 
intestine, the path from terminal ileum to the duodenum 
captures the small intestine. The ileocaecal valve node 
represents the joining point between the large and small 
intestines. The numbers attached to nodes represent their 
respective consensus distance (in mm) to the anus, in 
case of the large intestine, and the distance to the ileocae-
cal valve in case of the small intestine.

The distances presented here are literature-consensus-
based averages [29–31] for an adult living human (dis-
tances measured in cadavers are typically longer than 
the live size due to lack of muscular tone), but of course 
in reality they vary from person to person. The specific 
values are provided in Fig. 3 and in the model configura-
tion files are available from the project website and asso-
ciated GitHub archive [32]. Where the actual distances 

Fig. 3  1D Core Model depicted as a graph, with nodes representing anatomical landmarks and edges representing anatomical regions. Regions 
are generally delimited by their start and end landmarks. The rectum has an additional intermediate landmark known as the anterior peritoneal 
reflection (APR) and the caecum has an additional intermediate landmark known as the ileocaecal valve (ICV). In the context of the large intestine, 
the latter is referred to as the ileocaecal valve-caecum centreline (ICVc), whereas the end point for the small intestine is labelled as the ileocaecal 
valve-ileum (ICVi). Numbers in nodes represent the landmarks’ distances (in mm) to the anus (for large intestine) and the ICVi (for small intestine). 
Numbers on links represent the lengths (in mm) of the corresponding gut region. The numbers shown in this diagram reflect a typical live human’s 
anatomy, different patients will have different measurements
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Fig. 4  Gut Anatomogram with segmented domains, midline paths and all gut landmarks displayed. This image is captured as a screen shot from 
the model online visualisation, on the screen the markers and associated text are easier to read. The orange bar at the proximal end of the sigmoid 
colon depicts the position of the region of interest

Fig. 5  Screenshot of the 3D model viewer showing the segmented large intestine and ileum. The mid-line paths are shown as thin white curved 
lines with landmarks between sections indicated as small “flags” each labelled with their respective abbreviation. Note in this screenshot image 
the markers and text are not very distinct compared with the live viewer with a zoom capability. The viewer allows arbitrary sections through the 
original image to be viewed in the context of the surface models and the cross-sectional disc through the descending colon indicates the position 
of the image view through the colon shown in Fig. 5

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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(approximate) for a specific patient can be determined, 
for example from either a colonoscopic measurement or 
a CT scan of the patient, a unique model can be derived. 
The issue of mapping locations across models is dis-
cussed below. In the following sections we expand the 
basic 1D model into 2D and 3D.

2D—anatomograms
The integration of the original gut anatomogram, the seg-
mented domains and the midline paths that we computed 
for mapping to the other models are shown in Fig. 4 and 
available as a series of configuration and image domain 
files from the project website and associated GiHub 
archive [32].

3D—radiological‑image based models
The domains or 3D regions of the large intestine and 
the ileum have been segmented from patient CT images 
as described above. These have been used to define the 
boundary surfaces and midline paths through both the 
large intestine from anus to appendix tip and the ileum, 
from the ileo-caecal valve proximally, including terminal 
ileum, for the small intestine. Landmarks on these paths 
have been defined manually using anatomical features 
visible in the CT scan. Because these features have all 
been defined with respect to image data then it is pos-
sible to display the image data together with this derived 
data. Figure 5 illustrates one of our patient models show-
ing segmented surfaces, paths from the anus to the tip of 
the appendix and from the ileocaecal valve to the ileum—
jejunum junction. These are shown with respect to a sin-
gle virtual plane through the image and a circular virtual 
section orthogonal to the path through the descending 
colon. Our web-based visualisation allows this derived 
data including orthogonal sections along the paths to be 
viewed interactively using a standard web-browser.

The two patient 3D models included so far primarily 
serve illustrative purposes to help the user of the CCF 
understand the core concepts of our models in the con-
text of 3D. The longer-term objective is to further auto-
mate the methods described earlier to allow the efficient 
creation of personalised models for each patient, based 
on their CT and/or MRI scans, that can be mapped into 
the general Human Gut Cell Atlas CCF.

Primary database and model Json files and image files
The schema concerning the anatomy terms in the Edin-
burgh GCA database is primarily based on the ASCT + B 
tables for large and small intestines [25], whose con-
struction has been coordinated by HuBMAP [33] (see 
also related work below). The data from the ASCT + B 
resource is parsed and augmented with location informa-
tion with further additions of specific landmarks which 

have been identified by the Edinburgh group and which 
are used in the measurement and mapping of various 
models. Each model (1D, 2D and 3D) has its own unique 
configuration file, which is in Json format. The contents 
of each Json configuration file are generated from the 
database, which has been further extended to include 
tables representing each of the Json objects/arrays. The 
derived configuration file is available from a RESTful web 
service driven by an Nginx/Payara/ PostgreSQL software 
stack.

All software and data files are publicly available and 
available from the Edinburgh Helmsley Gut Cell Atlas 
web-pages [32] under “Resources”.

Model demonstrator web application
The Edinburgh Gut Cell Atlas viewer is a web-based 
application to view and browse a combination of human 
gut models in 1D, 2D, and 3D. The viewer provides a tool 
to display locations and map data in the context of the 
abstract 1D model, the 2D anatomogram model, and 3D 
gut models reconstructed from volumetric CT scan data. 
Details of these models and any future model including 
the anatomical structures, their locations, and other con-
figuration data unique to each model are obtained via an 
MVC-based RESTful service layer with database connec-
tivity developed as part of the project.

The viewer display consists of two main panels divided 
by a horizontal splitter as shown in Fig. 6. The top panel 
displays the abstract 1D model and the bottom panel 
contains the 2D and 3D models. The 1D model view on 
the top panel is divided into three sub-panels: a slider 
panel (top), a zoom panel (bottom left), and an additional 
info panel (bottom right). The slider panel displays the 
abstract gut model including the colon and the ileum in 
a linear format with a proportionate scale. The bottom 
panel of the viewer displays the 2D and 3D models which 
are organised in a tiled layout by default.

The viewer allows the user to zoom in and zoom out in 
any of the 2D or 3D models and interactively rotate the 
3D models in different directions. Where CT scan image 
data is associated with a 3D model, image cross-sections 
orthogonal to the midline paths may be viewed at all 
locations along the paths. Those section images will dis-
play beside the 3D view of the model and are separated 
by an adjustable vertical splitter. The user can select a 
subset of the models to be displayed. The viewer allows 
focus on a 2D or 3D model by maximising the selected 
model in the bottom panel.

A core concept and a common feature across the mod-
els in this viewer is the region of interest (ROI). The ROI 
is displayed over the 1D model slider as a red rectangle. 
It specifies the part of the model that is being displayed 
in the 1D zoom panel and the annotation panel. The 1D 
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zoom panel can potentially be used for adding annota-
tions to the abstract model. The annotation panel pro-
vides a textual representation of the 1D model artefacts 
around the current ROI. Additionally, the panel provides 
a link to external anatomy data sources including the EBI 
ontology search (OLS) facility. The ROI is highlighted 
along the centre line on all of the 2D and 3D models. The 
extent of the ROI can be changed in the 1D view, and its 
location can be set on any of the models. Any changes to 
the location or size of the ROI will be reflected on all the 
models that are displayed in the viewer.

Embedding of interfaces in applications
The Model Demonstrator software has been designed 
with reuse in mind. For example, we have prototyped 
a tool allowing data sets collected in the context of the 
Helmsley Trust Gut Cell Atlas program to be annotated 
with Regions of Interest (ROIs). For this a version of the 
1D viewer has been embedded in a web user interface. 
Subsequently, the 1D model viewer can be used to for-
mulate queries according to ROIs (see Fig. 7).

In addition to the 1D model viewer, the 2D and 3D 
viewers can similarly be integrated in annotation and 
query tools.

Discussion
Data resource integration
This conceptual gut model has been developed to ena-
ble spatial annotation of biomedical data from clini-
cal through to single-cell levels of detail. The CCF using 
this model allows annotation of data in terms of the gut 
natural coordinate of distance along the gut axis supple-
mented with anatomy, tissue and cell-type and biomarker 
ontologies. These allow annotation of data from single-
cell analyses through histopathology to macro level clini-
cal data including tissue resections and 3D radiological 
imaging. Here we present the model with a visualisa-
tion tool to allow exploration of the model and to allow 
the user to define a CCF location as a region-of-interest 
(ROI) to represent the sample location. We propose that 
the ROI will represent the spatial location range within 
which the sample was collected and detailed specification 
of the sample size will be part of the sample data. Any 

Fig. 6  Browser screenshot of Edinburgh Gut Cell Atlas viewer containing the linear model viewer in the upper panel and the 2D and 3D viewer in 
the lower panel. The browser can be accessed through the project web page [34]
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type of data can include a spatial location defined in this 
way and we envisage each data resource or archive will 
make available these locations to allow integration and 
query in spatial terms. In this way the user can discover 
relevant data such as single-cell UMAP/t-SNE analyses, 
histopathology and spatial transcriptomic data linked 
through to patient MRI data. We are developing a stand-
ardised protocol and data format for such spatial anno-
tation for which we coin the term “location card”. Any 
resource using these cards can be cross-queried for data 
relevant to a particular CCF location with well-defined 
measures of similarity, proximity and distance to provide 
data-hits sorted by relevance. In the context of the HCA 
resource terminology we will be able to implement a spa-
tial query and analysis data portal.

The model demonstrator (Fig. 7) shows how a user can 
specify a spatial query using the 1D model interface and 
be presented with an ordered list of entries matching that 
query. The software provides a simple API to return the 

detail of the defined ROI and to convert to any of the 
mapped 2D and 3D models. When the specification for 
a location card has been defined the API will deliver the 
card for inclusion as a sample spatial annotation thereby 
enabling the spatial query capability.

Current clinical practice and specification of location
As discussed earlier, endoscope surface distance mark-
ings can be used to locate samples (for histology or 
molecular analyses) within the core linear model 
described here using distance along the gut centreline. 
However, there are some limitations that follow from 
current practice, as some endoscopists only provide 
the region of the intestines without distance data, and 
some endoscopists may only provide distance data from 
the anus, not allowing for individual variation amongst 
patients in the individual-specific lengths of the intesti-
nal regions. An alternative approach would be to provide 
sample distance data relative to the nearest landmark 

Fig. 7  Model-based Query Interface. The red rectangle is used to identify the Region of Interest. Where there is an overlap between the selected 
query region and the previously recorded image annotation results are returned (sorted by the Jaccard Index)
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(e.g. ileocaecal valve) including the part of the bowel to 
allow more accurate mapping of sample location within 
a gut region. This landmark-to-lesion/sample distance 
data could be provided either as an absolute distance (e.g. 
ascending colonic lesion located 110 mm distal from the 
ileocaecal valve) or a proportional distance (e.g. ascend-
ing colonic lesion located two-thirds of the distance 
between the ileocaecal valve and the hepatic flexure). 
This would add to the accuracy of the way the sample 
location is recorded in clinical records. Use of the 1D 
centreline and landmark model described here would be 
able to take advantage of this change, improving the loca-
tional accuracy of the data collected and recorded in an 
appropriate common coordinate framework.

The GCA CCF model viewing system is designed so 
that samples and numbers of samples can be visualized 
using all of the 1D, 2D and 3D models in a linked manner. 
This allows collation of scRNA-Seq, histology and radi-
ology data from both our own research and from other 
groups in the GCA Consortium, using current demon-
strator versions of the model viewer system and we are 
developing these systems further to allow visualization of 
sample locations, customised models for specific patients 
perhaps with resected parts of the intestine or with a 
stoma. The system permits linking of colonoscopy vid-
eos with locations shown in the models. It is important 
to note that the models are separate from the CCF model 
visualization software system and either part can be 
developed or changed independently. The models can be 
used by other research groups for different research pur-
poses as they wish, using different visualization software.

Related frameworks
Although the term Common Coordinate Framework 
(CCF) has only relatively recently (within the last 5 years) 
become popular, primarily to refer to the computational 
frameworks required by the emerging Human Cell Atlas 
(HCA), many of the features of CCFs have been studied 
and developed in the area of biomedical atlases for much 
longer. For example, our own work on the Edinburgh 
Mouse Atlas Project [35] and its coordinate framework 
was described as early as 1992 [36]. Other biomedical 
atlases for model organisms include Drosophila [37], 
chick [38] and zebrafish [39]. Human atlas examples 
include the HDBR resources [40] and the Allen Human 
Brain Atlas [41]. A detailed discussion of these atlases is 
beyond the scope of this paper, but it is noteworthy that 
just like the newly emerging CCFs, many make use of 
anatomical ontologies, or at least some form of controlled 
anatomy vocabulary, and 3D volume reconstructions of 
the organ or organism under consideration. Importantly, 
as with the gut common coordinate framework described 
here, mappings between the ontology concepts and the 

corresponding voxel sets in the 3D coordinate system are 
typically provided.

With the introduction of new biotechnology, in par-
ticular high-throughput scRNA-seq analysis, extended 
spatial indexing techniques, now broadly referred to as 
Common Coordinate Frameworks, have emerged. Rood 
et al. [42] summarise the new requirements and discuss 
various approaches to CCF development, including a 
hierarchy of four types of CCFs: macro (whole-organ 
scale), meso (intra-organ regional scale), micro (histo-
logical scale) and fine (cellular scale). Our current GCA 
models range from macro to micro level. Elmentaite et al. 
[13] describe use of single cell transcriptomics to map the 
changing gastrointestinal cellular landscape throughout 
life, from the embryo, through childhood to adult gut, 
including changes in gut lymphoid tissues in disease.

Boerner et  al. [43] introduce a CCF for the National 
Institutes of Health’s (NIH) Human BioMolecular Atlas 
Program (HuBMAP). HuBMAP is directly relevant to 
our own work on a Gut Cell Atlas, since it aims to pro-
duce CCF-support for the entire human body, including 
the small and large intestines. In HuBMAP, expert groups 
for each organ system are collating and extending the 
required anatomy, tissue and cellular level ontologies and 
a series of 3D atlas models are being created to capture 
the 3D location of tissue samples collected for single-cell 
analysis in addition to histological imaging. The goal is to 
deliver a standard “base-level” capability for all parts of 
the adult female and male human body. For many organ 
systems including the large and small intestines, this 
capability has been delivered and some data has already 
been mapped. The registration tool provides an online 
3D interface in which a user can manipulate a small 
cuboid representing the extent of the sample to a spe-
cific location within the 3D model. This is then recorded 
and can be viewed by all using a similar exploration tool. 
These interfaces are now available and provide an impor-
tant base-level mechanism, but have a number of prob-
lems for a Gut Cell Atlas (GCA). The current HuBMAP 
SOP to register a tissue sample [44] provides a mecha-
nism to define the tissue sample as a rectangular block 
enclosing the sample which is then registered with a 3D 
location using the registration interface. By this means 
the block acquires a precise location but with no meas-
ure of the spatial uncertainty of that placement. Given 
the way in which tissue is collected the precise location 
may not be known and comparison with other data could 
give rise to inconsistency for example in the interpreta-
tion of a gene-expression gradient. A second issue is 
the usability of the tool which requires practice and is 
unlikely to be used directly by the expert who collects the 
tissue—the surgeons, endoscopists and clinical patholo-
gists who have the best knowledge of the positioning and 
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the uncertainties of that sample. A third issue is that the 
gut atlas system does not seem to have a mechanism to 
measure functionally relevant proximity from one sample 
to another, as all coordinates are in a 3D space and the 
looping of the gut renders 3D proximity much less useful 
than functional proximity within the “natural coordinate” 
of the gut specifically distance along the centreline.

In contrast, our own models aim to provide a practi-
cal GCA CCF that represents the coordinates within the 
gut itself along its centreline, relative to nearby land-
marks, and provides a mechanism for the clinicians and 
scientists collecting the data to be able to record a precise 
location if available, or the uncertainty in location as a 
range or ROI, in a way that matches the clinical acqui-
sition process. Ultimately, we anticipate that data will be 
collected and mapped using both approaches, and we 
are therefore actively collaborating with the HuBMAP 
team to provide suitable interoperability solutions. At 
this stage we have used our algorithms to map from our 
models to the HuBMAP models for small and large intes-
tines for both female and male examples [https://​hubma​
pcons​ortium.​github.​io/​ccf/​pages/​ccf-​3d-​refer​ence-​libra​
ry.​html]. Hence, we have established spatial interoper-
ability between all models, a location identified in any of 
the CCF model spaces can be located in any other. These 
model mappings are part of the web-based demonstrator 
application discussed earlier.

We note that using the algorithm described earlier, data 
can be mapped between the 1D, 2D and 3D models and 
between these models and others such as the HuBMAP 
CCF. These simply computed mappings are currently 
limited to range along a path through the colon or ileum, 
with no consideration of either radial distance from the 
midline or angle, although in principle our models and 
mappings could be extended to include these additional 
parameters.

Our GCA CCF models were designed specifically 
for more precise mapping of single cell RNA-sequence 
(scRNA-Seq) data to location along the central intestinal 
axis. With accumulation of sufficient scRNA-Seq data, 
this will allow spatial gradient analysis for investigation of 
how gut cell gene expression patterns change along the 
linear axis of the small and large intestines, which may 
reveal new anatomical or physiological features. This 
development of data integration involving correlation of 
scRNA-Seq from multiple sources, is one of the strengths 
of the HCA approach with use of multi-group consortia. 
Our approach is complementary to the HuBMAP version 
which provides only an approximate gut region location, 
but does not provide a distance-based more accurate 
sample location, as the HuBMAP mechanism for map-
ping the position of the sample taken from the gut does 
not have the capability to precisely locate position in 

terms of distance from key landmarks or the degree of 
uncertainty associated with this location. This GCA CCF 
model enhances and extends the current HCA models 
for the insights that can be gained from single cell RNA 
expression data. Furthermore, integration of scRNA-Seq 
data with associated histology data for any one group is 
straightforward, whereas integration of data from the 
same or very similar gut locations from several differ-
ent research groups requires an accurate location-based 
approach as set out using this model. Hence, this paper 
focuses on presenting the new GCA CCF model with a 
discussion about those novel capabilities that are possible 
using this model, rather than a demonstration of full use 
of all of these possible functions.

The GCA is not the only example of a CCF focusing 
on a single organ. Other organ-specific cell atlas work 
includes brain [45], lung [46], liver [47], and eye [48].1 An 
interesting exploration of a cross-organ CCF solution is 
based on the vasculature [49]. Similar to the address of 
a house in terms of its position on a road, the location 
of cells is described in terms of the nearest blood vessel. 
A key advantage here is the vasculature’s natural scaling 
from arteries to arterioles to capillaries (and similarly for 
veins). The work is in its early stages and its application 
as a CCF is yet to be tested.

Multi resolution issues
The HGCA and the encompassing HCA will collect 
and archive data at a huge range of spatial resolutions: 
resected material 10–1000 mm, tissue blocks 5–20 mm, 
biopsies 3–5  mm, tissue samples for SCA 0.5–3  mm, 
functional tissue units [50] and cellular assemblies 
20–100 μm, histological Sects. 5–20 μm thickness, single 
cell data, 10–20  μm, and potentially sub-cellular tran-
script data 0.01–1  μm. Image-based data will be at mm 
resolution (radiology) through to sub-micron resolution 
microscopy. Current spatial-transcriptomics systems 
routinely capture the full transcriptome at 20–50  μm 
between sampling locations (dots) and the methodol-
ogy is improving. The challenge to the CCF is to capture 
and enable comparison of spatial information across all 
scales from clinical sample locations through histological 
section positioning and within image alignment of tis-
sues and multicellular structures. Rood et  al. describe a 
diverse range of approaches for different tissues and dis-
cuss a CCF for macro- though to micro-scale data. Here 
we provide a coordinate-based CCF to capture sample 
location across the range of 1D to 3D gut representations 
(also providing interoperability) coupled with semantic 

1  Please note that these are just examples and do not constitute a comprehen-
sive list of all existing cell atlases and CCFs.

https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html
https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html
https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html
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refinement for positioning within gut substructures and 
layers. The 1D conceptual model emphasises the “natu-
ral coordinate” of the gut defining the proximal–distal 
axis and therefore provides a mechanism for linking to 
natural language descriptions of gut location provided 
by clinical and pathological reports and also as described 
in the literature. Semantic descriptions of higher resolu-
tion spatial locations such as the relative ordering and 
sequencing of tissue block and histological sections can 
also be supported using spatial ontologies such as the 
BSPO [51], but high-resolution mapping between histo-
logical section images is not yet supported.

Model organisms and their mappings
The principle of the 1D model framework for small and 
large intestines set out here for humans may also be used 
for linear representation of the intestines of other species, 
including a range of model organisms such as mouse, rat, 
pig, sheep, etc. Co-linear mapping of the small intestine 
from gastro-duodenal junction to ileocaecal valve, and 
similarly the large intestine from ileocaecal valve to anus, 
across different species allows approximate translation of 
samples or lesions between similar regions of mamma-
lian gut. This would allow biomedically meaningful spa-
tial mappings between these different species in order to 
facilitate cross-species data comparison, including sup-
port for search and query functionality across many dif-
ferent species. This may form the basis of a Cross-Species 
Intestinal Cell Atlas for development of standards and 
comparisons around intestinal data.

A detailed discussion and evaluation of this cross-spe-
cies work is beyond the scope of this paper. However, we 
note the potential utility of the linear model approach 
in this context. Figure  8 shows the use of an abstract 
model as an intermediate, not unlike UBERON [26] as a 
cross-species anatomy ontology. Although we could map 

directly between mouse and human, the abstract model 
simplifies the addition of other species. It only requires 
mapping each species onto the abstract model instead of 
all possible pairwise combinations of species.

Conclusions
Here, we conclude that the small and large intestines have 
a natural “gut coordinate” system that is best represented 
as a 1D centreline through the gut tube. This reflects the 
functional differences that arise in different regions along 
the small and large intestines, whilst deliberately ignor-
ing the three-dimensional looping of the intestines which 
may generate transient and spurious proximity between 
widely spaced and very different regions of gut. We have 
constructed a 1D model, based on the centreline of small 
and large intestines, with accompanying viewer software 
that allows visualisation of this 1D representation, along 
with interoperable translation to both a 2D anatomogram 
model and multiple 3D radiological scan-based models 
of the intestines. This permits users to locate samples 
(taken for histology, single cell transcriptomics, or other 
research purposes) or clinically identified lesions from 
endoscopy or radiological investigations or surgical inter-
vention, to be accurately located using either absolute 
distance or proportional distance along the centreline 
from one or more known landmarks. Importantly, this 
mechanism for more specific anatomical location of sam-
ples allows data comparison between different patients 
and different studies in a functionally relevant manner.
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Fig. 8  Linear Model-based Mapping of Gut Location across mouse and human using an abstract intermediate



Page 16 of 17Burger et al. BMC Medical Informatics and Decision Making           (2023) 23:36 

FMA	� Foundational model of anatomy
HCA	� Human cell atlas
HDBR	� Human developmental biology resource
HGCA​	� Human gut cell atlas
HuBMAP	� Human biomolecular atlas program
IBD	� Inflammatory bowel disease
ICV	� Ileocaecal valve
JSON	� JavaScript object notation
MAST	� Model-based analysis of single-cell transcriptomics
MRI	� Magnetic resonance imaging
MVC	� Model-view-controller
OLS	� Ontology lookup service
PCA	� Principal component analysis
RNA	� Ribonucleic acid
ROI	� Region of interest
SCA	� Single cell analysis
SCEA	� Single cell expression atlas
t-SNE	� T-distributed stochastic neighbour embedding
UMAP	� Uniform manifold approximation and projection
UMI	� Unique molecular identifier

Acknowledgements
The authors wish to acknowledge constructive discussions with Kenneth 
McLeod, previously at Heriot-Watt University, regarding the 1D framework and 
model organisms; regular discussions about development of the common 
coordinate framework with both Jessica Langer and Stephanie LeValley of The 
Leona M. and Harry B. Helmsley Charitable Trust; and early funding for related 
work by the Chan-Zuckerberg Initiative during which the 1D linear gut model 
emerged. Dr Stephen Glancy provided the anonymised radiological images. 
SD acknowledges the support of NHS Research Scotland via NHS Lothian.

Author contributions
MA is lead-PI of the project, AB, RAB, DA, SD and IP are co-PIs. All authors have 
contributed to the conceptual model work. BH developed the imaging soft-
ware. DH, MS and MW developed the web-based user interfaces and backend 
databases. MG carried out the medical informatics analysis. All authors have 
contributed to the manuscript. AB coordinated the authoring efforts. All 
authors have read and approved the manuscript.

Funding
This work has been supported by The Leona M. and Harry B. Helmsley Chari-
table Trust.

Availability of data and materials
All the model configuration data, image data and software is fully open-source 
and freely available from the Edinburgh HGCA web-site (https://​www.​ed.​ac.​
uk/​compa​rative-​patho​logy/​the-​gut-​cell-​atlas-​proje​ct/​proje​ct-​resou​rces) as a 
compressed archive file as well as from a GitHub repository (https://​github.​
com/​orgs/​Compa​rative-​Patho​logy/​repos​itori​es) referenced from that site.

Declarations

Ethics approval and consent to participate
Image data used for the radiological scan-based 3D models of small and large 
intestines were fully anonymised datasets that were made available in accord-
ance with the appropriate UK ethical and legal framework.

Consent for publication
Not applicable.

Competing interest
The authors declare that they have no competing interests.

Received: 30 June 2022   Accepted: 13 January 2023

References
	1.	 Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The 

human cell atlas. Elife. 2017;6:e27041.
	2.	 Human Cell Atlas Home Page. https://​www.​human​cella​tlas.​org/. 

Accessed 18 Nov 2022.
	3.	 Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The 

global, regional, and national burden of inflammatory bowel disease in 
195 countries and territories, 1990–2017: a systematic analysis for the 
Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 
2020;5:17–30.

	4.	 Narula N, Wong ECL, Dehghan M, Mente A, Rangarajan S, Lanas F, et al. 
Association of ultra-processed food intake with risk of inflammatory 
bowel disease: prospective cohort study. BMJ. 2021;374:n1554.

	5.	 Racine A, Carbonnel F, Chan SSM, Hart AR, Bueno-de-Mesquita HB, Old-
enburg B, et al. Dietary patterns and risk of inflammatory bowel disease in 
Europe: results from the EPIC study. Inflamm Bowel Dis. 2016;22:345–54.

	6.	 Xia B, Yang M, Nguyen LH, He Q, Zhen J, Yu Y, et al. Regular use of proton 
pump inhibitor and the risk of inflammatory bowel disease: pooled 
analysis of 3 prospective cohorts. Gastroenterology. 2021;161:1842-1852.
e10.

	7.	 Jones G-R, Lyons M, Plevris N, Jenkinson PW, Bisset C, Burgess C, et al. IBD 
prevalence in Lothian, Scotland, derived by capture-recapture methodol-
ogy. Gut. 2019;68:1953–60.

	8.	 Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al. British 
Society of Gastroenterology consensus guidelines on the management 
of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1-106.

	9.	 Lennard-Jones JE, Shivananda S. Clinical uniformity of inflammatory 
bowel disease a presentation and during the first year of disease in the 
north and south of Europe. EC-IBD Study Group. Eur J Gastroenterol 
Hepatol. 1997;9:353–9.

	10.	 Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive 
review and update on Crohn’s disease. Dis-Mon DM. 2018;64:20–57.

	11.	 Alfredsson J, Wick MJ. Mechanism of fibrosis and stricture formation in 
Crohn’s disease. Scand J Immunol. 2020;92:e12990.

	12.	 Moreno P, Fexova S, George N, Manning J, Miao Z, Mohammed S, et al. 
Expression atlas update: gene and protein expression in multiple species. 
Nucleic Acids Res. 2021;50:D129.

	13.	 Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E, King HW, 
et al. Cells of the human intestinal tract mapped across space and time. 
Nature. 2021;597:250–5.

	14.	 Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequenc-
ing technologies and applications: a brief overview. Clin Transl Med. 
2022;12:e694.

	15.	 Common Coordinate Framework (CCF) Meeting. 2017.
	16.	 Goldacre B, Morley J. Better, broader, safer: using health data for research 

and analysis. Department of Health and Social Care; 2022.
	17.	 Moreno P, Fexova S, George N, Manning JR, Miao Z, Mohammed S, et al. 

Expression atlas update: gene and protein expression in multiple species. 
Nucleic Acids Res. 2022;50:D129.

	18.	 ma-tech. ma-tech/Woolz. 2021.
	19.	 ITK-SNAP Home. http://​www.​itksn​ap.​org/​pmwiki/​pmwiki.​php. Accessed 

16 Jan 2022.
	20.	 Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic 

segmentation. In: 2015 IEEE conference on computer vision and pattern 
recognition (CVPR). 2015. p. 3431–40.

	21.	 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for bio-
medical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi 
AF, editors. Medical image computing and computer-assisted interven-
tion – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 
234–41.

	22.	 ma-tech. ma-tech/MAPaint. 2020.
	23.	 PyTorch. https://​www.​pytor​ch.​org. Accessed 16 Jan 2022.
	24.	 Herr BW, Hardi J, Quardokus EM, Bueckle A, Chen L, Wang F, et al. Speci-

men, biological structure, and spatial ontologies in support of a human 
reference atlas. 2022.

	25.	 Börner K, Teichmann SA, Quardokus EM, Gee J, Browne K, Osumi-Suther-
land D, et al. Anatomical structures, cell types, and biomarkers tables plus 
3D reference organs in support of a human reference atlas. 2021.

	26.	 Haendel MA, Balhoff JP, Bastian FB, Blackburn DC, Blake JA, Bradford Y, 
et al. Unification of multi-species vertebrate anatomy ontologies for 
comparative biology in Uberon. J Biomed Semant. 2014;5:21.

https://www.ed.ac.uk/comparative-pathology/the-gut-cell-atlas-project/project-resources
https://www.ed.ac.uk/comparative-pathology/the-gut-cell-atlas-project/project-resources
https://github.com/orgs/Comparative-Pathology/repositories
https://github.com/orgs/Comparative-Pathology/repositories
https://www.humancellatlas.org/
http://www.itksnap.org/pmwiki/pmwiki.php
https://www.pytorch.org


Page 17 of 17Burger et al. BMC Medical Informatics and Decision Making           (2023) 23:36 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	27.	 Rosse C, Mejino JLV. A reference ontology for biomedical informatics: the 
foundational model of anatomy. J Biomed Inform. 2003;36:478–500.

	28.	 Diehl AD, Meehan TF, Bradford YM, Brush MH, Dahdul WM, Dougall DS, 
et al. The cell ontology 2016: enhanced content, modularization, and 
ontology interoperability. J Biomed Semant. 2016;7:44.

	29.	 Treuting PM, Arends MJ, Dintzis SM. 11 - upper gastrointestinal tract. In: 
Treuting PM, Dintzis SM, Montine KS, editors. Comparative anatomy and 
histology. 2nd ed. San Diego: Academic Press; 2018. p. 191–211.

	30.	 Treuting PM, Arends MJ, Dintzis SM. 12 - lower gastrointestinal tract. In: 
Treuting PM, Dintzis SM, Montine KS, editors. Comparative anatomy and 
histology. 2nd ed. San Diego: Academic Press; 2018. p. 213–28.

	31.	 Tortora GJ. Principles of anatomy and physiology. 10th ed. New York: J. 
Wiley & Sons; 2003.

	32.	 The Helmsley Gut Cell Atlas Project. The University of Edinburgh. https://​
www.​ed.​ac.​uk/​compa​rative-​patho​logy/​the-​gut-​cell-​atlas-​proje​ct. 
Accessed 26 Jun 2022.

	33.	 Snyder MP, Lin S, Posgai A, Atkinson M, Regev A, Rood J, et al. The human 
body at cellular resolution: the NIH human biomolecular atlas program. 
Nature. 2019;574:187–92.

	34.	 Gut Atlas Models. The University of Edinburgh. https://​www.​ed.​ac.​uk/​
compa​rative-​patho​logy/​the-​gut-​cell-​atlas-​proje​ct/​proje​ct-​resou​rces/​gut-​
atlas-​models. Accessed 26 Jun 2022.

	35.	 Armit C, Richardson L, Hill B, Yang Y, Baldock RA. eMouseAtlas informat-
ics: embryo atlas and gene expression database. Mamm Genome. 
2015;26:431–40.

	36.	 Baldock R, Bard J, Kaufman M, Davidson D. A real mouse for your com-
puter. BioEssays News Rev Mol Cell Dev Biol. 1992;14:501–2.

	37.	 Gramates LS, Agapite J, Attrill H, Calvi BR, Crosby MA, dos Santos G, et al. 
FlyBase: a guided tour of highlighted features. 2022. Genetics. https://​doi.​
org/​10.​1093/​genet​ics/​iyac0​35.

	38.	 Wong F, Welten MCM, Anderson C, Bain AA, Liu J, Wicks MN, et al. eChick-
Atlas: an introduction to the database. Genesis. 2013;51:365–71.

	39.	 Bradford YM, Van Slyke CE, Ruzicka L, Singer A, Eagle A, Fashena D, et al. 
Zebrafish information network, the knowledgebase for Danio rerio 
research. Genetics. 2022;220:iyac016.

	40.	 Kerwin J, Yang Y, Merchan P, Sarma S, Thompson J, Wang X, et al. 
The HUDSEN atlas: a three-dimensional (3D) spatial framework for 
studying gene expression in the developing human brain. J Anat. 
2010;217:289–99.

	41.	 Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, 
et al. An anatomically comprehensive atlas of the adult human brain 
transcriptome. Nature. 2012;489:391–9.

	42.	 Rood JE, Stuart T, Ghazanfar S, Biancalani T, Fisher E, Butler A, et al. 
Toward a common coordinate framework for the human body. Cell. 
2019;179:1455–67.

	43.	 Börner K, Quardokus EM, Herr II BW, Cross LE, Record EG, Ju Y, et al. Con-
struction and usage of a human body common coordinate framework 
comprising clinical, semantic, and spatial ontologies. 2020.

	44.	 Bueckle ASOP. Using the CCF registration user. 2022. Interface. https://​doi.​
org/​10.​5281/​zenodo.​66283​66.

	45.	 Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-
cell atlas of early human brain development highlights heterogene-
ity of human neuroepithelial cells and early radial glia. Nat Neurosci. 
2021;24:584–94.

	46.	 Ardini-Poleske ME, Clark RF, Ansong C, Carson JP, Corley RA, Deutsch GH, 
et al. LungMAP: the molecular atlas of lung development program. Am 
J Physiol - Lung Cell Mol Physiol. 2017. https://​doi.​org/​10.​1152/​ajplu​ng.​
00139.​2017.

	47.	 Aizarani N, Saviano A, Sagar ML, Durand S, Pessaux P, et al. A human liver 
cell atlas: revealing cell type heterogeneity and adult liver progenitors 
by single-cell RNA-Sequencing. bioRxiv. 2019. https://​doi.​org/​10.​1101/​
649194.

	48.	 Gautam P, Hamashima K, Chen Y, Zeng Y, Makovoz B, Parikh BH, et al. 
Multi-species single-cell transcriptomic analysis of ocular compartment 
regulons. Nat Commun. 2021;12:5675.

	49.	 Weber GM, Ju Y, Börner K. Considerations for using the vasculature as a 
coordinate system to map all the cells in the human body. Front Cardio-
vasc Med. 2020. https://​doi.​org/​10.​3389/​fcvm.​2020.​00029.

	50.	 de Bono B, Grenon P, Baldock R, Hunter P. Functional tissue units and 
their primary tissue motifs in multi-scale physiology. J Biomed Semant. 
2013;4:22.

	51.	 Dahdul WM, Cui H, Mabee PM, Mungall CJ, Osumi-Sutherland D, Walls 
RL, et al. Nose to tail, roots to shoots: spatial descriptors for phenotypic 
diversity in the biological spatial ontology. J Biomed Semant. 2014;5:34.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.ed.ac.uk/comparative-pathology/the-gut-cell-atlas-project
https://www.ed.ac.uk/comparative-pathology/the-gut-cell-atlas-project
https://www.ed.ac.uk/comparative-pathology/the-gut-cell-atlas-project/project-resources/gut-atlas-models
https://www.ed.ac.uk/comparative-pathology/the-gut-cell-atlas-project/project-resources/gut-atlas-models
https://www.ed.ac.uk/comparative-pathology/the-gut-cell-atlas-project/project-resources/gut-atlas-models
https://doi.org/10.1093/genetics/iyac035
https://doi.org/10.1093/genetics/iyac035
https://doi.org/10.5281/zenodo.6628366
https://doi.org/10.5281/zenodo.6628366
https://doi.org/10.1152/ajplung.00139.2017
https://doi.org/10.1152/ajplung.00139.2017
https://doi.org/10.1101/649194
https://doi.org/10.1101/649194
https://doi.org/10.3389/fcvm.2020.00029

	Towards a clinically-based common coordinate framework for the human gut cell atlas: the gut models
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Introduction to human cell atlas
	Human gut anatomy
	Inflammatory bowel disease
	Clinical investigations
	Single cell RNA sequence data analysis
	Towards a human gut cell atlas common coordinate framework
	Objectives

	Methods
	Edinburgh–Cambridge Helmsley trust project HGCA CCF use-case
	1D—core model
	2D—anatomograms
	3D—radiological-image based models
	Model–model mapping transforms
	Semantic extension

	Results
	1D—core model
	2D—anatomograms
	3D—radiological-image based models
	Primary database and model Json files and image files
	Model demonstrator web application
	Embedding of interfaces in applications

	Discussion
	Data resource integration
	Current clinical practice and specification of location
	Related frameworks
	Multi resolution issues
	Model organisms and their mappings

	Conclusions
	Acknowledgements
	References


