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Abstract 

Background  Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease whose spreading and progression 
mechanisms are still unclear. The ability to predict ALS prognosis would improve the patients’ quality of life and sup-
port clinicians in planning treatments. In this paper, we investigate ALS evolution trajectories using Process Mining 
(PM) techniques enriched to both easily mine processes and automatically reveal how the pathways differentiate 
according to patients’ characteristics.

Methods  We consider data collected in two distinct data sources, namely the Pooled Resource Open-Access ALS 
Clinical Trials (PRO-ACT) dataset and a real-world clinical register (ALS–BS) including data of patients followed up in 
two tertiary clinical centers of Brescia (Italy). With a focus on the functional abilities progressively impaired as the dis-
ease progresses, we use two Process Discovery methods, namely the Directly-Follows Graph and the CareFlow Miner, 
to mine the population disease trajectories on the PRO-ACT dataset. We characterize the impairment trajectories in 
terms of patterns, timing, and probabilities, and investigate the effect of some patients’ characteristics at onset on 
the followed paths. Finally, we perform a comparative study of the impairment trajectories mined in PRO-ACT versus 
ALS–BS.

Results  We delineate the progression pathways on PRO-ACT, identifying the predominant disabilities at different 
stages of the disease: for instance, 85% of patients enter the trials without disabilities, and 48% of them experience 
the impairment of Walking/Self-care abilities first. We then test how a spinal onset increases the risk of experiencing 
the loss of Walking/Self-care ability as first impairment (52% vs. 27% of patients develop it as the first impairment 
in the spinal vs. the bulbar cohorts, respectively), as well as how an older age at onset corresponds to a more rapid 
progression to death. When compared, the PRO-ACT and the ALS–BS patient populations present some similarities in 
terms of natural progression of the disease, as well as some differences in terms of observed trajectories plausibly due 
to the trial scheduling and recruitment criteria.
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Conclusions  We exploited PM to provide an overview of the evolution scenarios of an ALS trial population and to 
preliminary compare it to the progression observed in a clinical cohort. Future work will focus on further improving 
the understanding of the disease progression mechanisms, by including additional real-world subjects as well as by 
extending the set of events considered in the impairment trajectories.

Keywords  Amyotrophic lateral sclerosis, Progression trajectories, Process mining, Process discovery, Patient 
stratification, Prognosis

Background
Amyotrophic Lateral Sclerosis (ALS) is a rare neurologi-
cal disease primarily affecting motor neurons, causing 
progressive paralysis of voluntary muscles and leading to 
death following respiratory insufficiency, usually within 
3–5 years from onset. Clinical picture is characterized by 
signs of both upper and lower motor neuron involvement 
combined in a variable manner in terms of severity and 
distribution, which results in a consistent clinical hetero-
geneity. Strong differences in rate of progression, age of 
onset, site of onset (bulbar vs. spinal), duration of the dis-
ease, and association with other conditions are frequently 
observed in clinical practice and contribute to the wide 
clinical heterogeneity, making diagnosis as well as prog-
nosis, clinical trial design, and development of therapies 
very challenging [1]. Genetic heterogeneity is also well 
known in ALS with more than 40 identified genes play-
ing a causal role or conferring susceptibility, thus further 
contributing to the biological heterogeneity of the disease 
[2].

In this context, there is a significant need for data-
driven tools capable of modeling the progression of ALS 
to describe the manifold nature of this disease, to identify 
risk factors, to group patients based on similar evolution 
patterns, and to support personalized prediction. For this 
reason, there is a growing interest in methods for min-
ing and analyzing the progression of ALS, particularly by 
considering longitudinal clinical data.

Related work
In the last decade, a number of predictive tools have been 
developed to forecast ALS clinical end-points such as the 
rate of future progression, the impairment of functional 
capabilities, and survival, the latter often coded as a com-
posite outcome including the administration of tracheos-
tomy. Moreover, several data-driven and clinical criteria 
aimed at stratifying patients into meaningful subgroups 
based on their clinical characteristics or prognosis simi-
larity have been proposed.

In 2012 and 2015, two distinct DREAM (Dialogue 
for Reverse Engineering Assessments and Methods) 
Challenges have been organized with the purpose of 
boosting research on ALS towards the development of 

computational tools for prediction and stratification 
purposes, respectively [3, 4]. Starting from the data of 
ALS patients included in both clinical trials and real-
world registries and collected over the 3 first months 
of visit, the participants were asked in a case to predict 
the progression of the disease and the survival in the 
subsequent months, in the other to identify and char-
acterize clinically relevant sub-populations of patients. 
Various solutions were proposed, with Bayesian Trees, 
Random Forests (RF), and non-parametric regression 
being predominant in the prediction challenge, and with 
RF, Gradient Boosting Regression Trees, Support Vec-
tor Machines, and Gaussian Process Regression largely 
used for stratification. As a result, these initiatives have 
successfully led to the identification of features with a sig-
nificant predictive potential and/or discriminative effect 
on the patient clusters, shedding a light on the pheno-
typic heterogeneity of ALS. It is interesting to observe 
how, in both challenges, participants were provided 
with data collected over a time window that could be 
used to model the progression trend and, consequently, 
to infer the subjects’ prognosis or their sub-population 
membership. Participants implemented different strate-
gies to effectively extract information from the supplied 
dynamic features and use it in their models: in the pre-
diction challenge, for instance, some teams converted the 
time-resolved data collected in the first 3 months of visit 
of each patient into a set of derived static features repre-
senting their evolution, such as the minimum, maximum, 
or slope of their values.

This embedding and, more in general, the use of lon-
gitudinal information is in contrast to the choice made 
in other state-of-the-art works, where the prediction/
stratification task is addressed starting from the patients’ 
information collected at a static point only, like for 
instance their first visit (e.g., [5–7] for stratification, [5, 8] 
for prediction).

As another option to effectively use the dynamically 
collected patient information for describing the patient 
status and producing a prognostic prediction, Carreiro 
et al. proposed an approach based on patient snapshots 
and time windows [9]. In this work, the patient condition 
at a given time point is enriched by grouping together the 
clinical tests performed inside a considered time interval 
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using hierarchical clustering. These snapshots are then 
used to predict the probability of each patient to require 
assisted ventilation after a given time window from the 
clinical evaluation, using state-of-the-art classifiers. The 
authors showed how combining the use of patient snap-
shots and time windows significantly improved the per-
formance with respect to a baseline Cox proportional 
hazards regression model which supported only the use 
of temporal windows in the analysis. This snapshot-based 
approach has also recently been used by Müller et  al. 
[10]: using longitudinal data from a large cohort of ALS 
patients treated in a Portuguese ALS clinic in Lisbon, 
the authors employed recurrent neural networks to pre-
dict the decline in breathing capability, as measured by 
clinical administration of non-invasive ventilation (NIV). 
Noticeably, in this work a specific focus was also put on 
the explainability of the learned predictive models, using 
Deep Shapley Additive Explanations (Deep-SHAP) [11] 
and promoting the communication of the outcomes with 
clinical researchers to assess the approach practical util-
ity in aiding prognostic prediction and improving patient 
care.

The whole range of temporal information included in 
six real-world clinical registers has been recently used to 
build two distinct disease progression models based on 
Dynamic Bayesian Networks [12]. Such models are able 
to catch and explicitly represent the relationships occur-
ring among the variables constituting the datasets over 
time in terms of conditional probabilities, as well as the 
pathways along which they influence the disease progres-
sion. Therefore, the networks can be employed to both 
identify inter-dependencies of interest and to simulate 
the prognosis of new sets of patients starting from their 
information collected during the first visit. Moreover, the 
implemented tool allows to predict the time to loss of 
independence in four characteristic functional domains 
affected by ALS and survival, as well as to assess the 
effect of different biomarkers on the disease course.

With the aim of better explaining the progressive 
nature of ALS and exploiting it for improving personal-
ized prognostic forecasting, Carreiro et  al. employed a 
temporal mining-based approach, namely the Sequential 
Pattern Mining (SPM), for finding the frequent progres-
sion patterns within an ALS population [13]. A pattern 
consists of a series of transactions, each of them being an 
evaluation performed during the patient’s follow-up and 
constituted by items coded as a pair (exam, value). Pat-
terns allow to characterize the progression behaviors in 
the population, but, as a limitation, require the data vari-
ables to be prior categorized. The most frequent patterns 
were then extracted and included as features in a clas-
sification setting for forecasting the need of NIV by the 
patient, providing an enhancement in the classification 

performance. Similarly, Martins et  al. employed a com-
bination of Itemset Mining [14] and SPM to discover 
both disease presentation patterns and disease progres-
sion patterns, from static data collected at diagnosis and 
temporal data from patient follow-up, respectively [15]. 
These patterns were then used as features in prognostic 
models, allowing predictions to take disease development 
into account and improving model interpretability.

In other works, patient disease trajectories were mod-
eled in terms of variations of clinical indices collected 
in the clinical practice to assess and keep track of the 
patient status. For instance, Gomeni et al. modeled ALS 
progression in terms of individual patterns of decline of 
functional abilities [16], as measured through the revised 
Amyotrophic Lateral Sclerosis Functional Rating Scale 
(revised ALSFRS, or ALSFRS-R) [17]. Ackrivo et  al. 
employed Forced Vital Capacity (FVC) trajectories to 
identify three clinical phenotypes of ALS respiratory pro-
gression [18]; Thakore et al. gained insights into progres-
sion of ALS by applying Markov models to ALS stages 
coded by multiple functional scores, being able to ade-
quately describe transitions from a progression stage to 
the next, especially in the first phase of the disease [19].

The dynamic nature of ALS as recorded in the clini-
cal records can also be exploited for other than descrip-
tive or predictive purposes, such as for imputing missing 
data. Tavazzi et  al. recently proposed a strategy based 
on a mutual information-weighted k-nearest neighbors 
(k-NN) algorithm able to impute clinical datasets con-
stituted by mixed-type static and dynamic variables [20]. 
By employing as k-NN samples windowed sets of visits 
properly structured and an ad hoc-developed similarity 
metrics able to compare the disease evolution while han-
dling the simultaneous presence of missing information 
in different types of variables, the method was proved to 
effectively impute an ALS clinical register.

Aim of this work
Despite the growing interest in understanding and pre-
dicting the progressive nature of ALS, hardly any of the 
aforementioned works allows and the same time both to 
neatly represent the entire evolution of the disease and 
to effectively describe how the patients’ characteristics 
affect the progression’s trajectory. Moreover, the given 
models cannot provide an easy to understand and com-
prehensive overview of the most probable scenarios of 
evolution of the patient status, rather often limiting the 
forecasting to a single progression end-point or assigning 
the subject to a single, static progression phenotype.

In this work, we aim at modeling the progression tra-
jectories of ALS employing an alternative approach 
based on Process Mining (PM). PM is a relatively young 
discipline arose in the process management context, 
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that provides methodologies to support the analysis of 
operational processes starting from the Event Logs (ELs) 
recorded by an information system [21]. Specifically, an 
EL is a collection of relevant activities (or events), each 
referred to a case and labeled with its occurrence time, 
plus an optional set of features, defined attributes, that 
characterize the case or the activity. Namely, the list of 
events of each case constitutes a trace in the EL.

There are three categories of process mining 
techniques: 

1.	 Process discovery, which aims at mining the data to 
represent the process that produced them [22];

2.	 Conformance checking, which allows to assess the 
compliance of an EL with regards to a given process 
model or, vice versa, to what extent a given process 
model reflects an input EL [23];

3.	 Process enhancement, which enables to improve the 
efficiency of an existing process model using process 
data, by providing means for problem diagnosis or 
delay prediction, as well as recommending process 
redesigns and supporting decision making [24].

PM has recently gained momentum in a variety of 
domains, including healthcare. As more digitalized data 
become available, more processes can be mined, pro-
viding insights on patient care and resource allocation. 
Specifically, the processes in this context can be distin-
guished into clinical and administrative/organizational 
[25]. As reported in two recent surveys of PM in health-
care [26, 27], clinical processes are the object of most of 
the state-of-the-art works, with applications including 
Cardiology (see, for instance, [28, 29]), Oncology (e.g., 
[30–32]), Primary Care (e.g., [33, 34]), and Emergency 
Care (e.g., [35, 36]). On the other side, organizational 
processes applications comprehend billing [37, 38] and 
reimbursement [39] processes.

As a limitation, most of the PM-based analyses per-
formed in the healthcare domain focus on the application 
of classical Process Discovery methods (such as the Heu-
ristic Miner [40] and the Inductive Miner [41]), missing 
the opportunity to support the discovered processes with 
the adoption of statistical inference. With specific refer-
ence to Process Discovery, this is reflected in two main 
drawbacks: (i) the evidence of the PM results is not sys-
tematically supported by statistical inference, and (ii) PM 
does not exploit the approaches that are most familiar to 
medical doctors, hence reducing the trust in the results 
and analysis.

To address the above-mentioned drawbacks of tra-
ditional PM-based analysis, in this work we imple-
ment a novel process-oriented analysis for mining and 
describing the progression of ALS, gaining insights on 

its mechanisms and performing inferential studies. Spe-
cifically, we focus on the progressive impairment of the 
patients’ functional abilities as the disease progresses, 
employing the ALS Milano–Torino staging system [42] 
to quantitatively characterize the health worsening over 
time, together with the survival outcome.

Starting from two distinct ALS datasets, namely, a 
clinical trial and a real-world one, we first structure the 
patients’ longitudinal information collected during their 
follow-up as an EL. Then, by employing Process Discov-
ery techniques such as the Directly-Follows Graph and 
the CareFlow Miner [31], we discover the underlying 
processes that generated the patients’ ELs. We are then in 
the position to analyze the patterns of evolution over the 
populations, and to investigate the inferential potential 
of the mined processes in terms of capability to describe 
and differentiate the prognosis—for instance, in terms of 
timing or sequence of events—based on the value of spe-
cific covariates at baseline. Finally, we compare the pro-
cess built on the clinical trial data with the one obtained 
on the real-world setting data, to assess the differences 
and similarities among the pathways followed by two 
populations, that have been recruited and followed-up 
according to different criteria and scheduling. To the best 
of our knowledge, this is the first time that such a princi-
pled PM-based analysis has been performed on ALS: it is 
a step that can foster and support a better understand-
ing of the hidden processes behind the progression of this 
disease.

Methods
The proposed methodology includes the following three 
main phases: 

1.	 Data structuring: the data are processed and shaped 
in the form of an EL, with attributes and events for-
matted according to the aims of the analyses. More 
ELs can be produced, at this point, to highlight dif-
ferent aspects of the data. The ELs can be itera-
tively refined by removing irrelevant, incomplete or 
wrong information to enable the next analysis stage. 
Specifically, here we derive for each patient a trace 
consisting of tuples < patient ID, Event, Timestamp, 
Attributes>, with the Events being the functional 
impairments and the survival status (death/censor-
ing), and the Attributes being a small set of features 
characterizing the patient baseline condition.

2.	 Process discovery: this phase aims at discovering the 
processes that generated the data, starting from the 
provided EL. However, noisy data may compromise 
the reliability and the accuracy of the mined pro-
cesses. A number of techniques, like the Alpha algo-
rithm [22], the Heuristic Miner [40], the Fuzzy Miner 
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[43], or the Inductive Miner [41] can be employed 
in this phase. As a positive feature, many PM algo-
rithms provide a graphical output of the mined pro-
cesses which facilitates both their interpretation and 
communication. In this work, we exploit two state-
of-the-art Process Discovery techniques, namely the 
Directly-Follows Graph and the CareFlow Miner 
[31].

3.	 Process analysis: both descriptive and inferential 
analyses can be performed on the mined processes, 
allowing the implementation of the classical steps of 
statistical analysis, here in a process-oriented setting 
[32].

	 From a descriptive point of view, processes can be 
investigated to identify volumes, general data distri-
bution and reveal statistical biases or the presence 
of bottlenecks. Events can be inspected in terms of 
cross-relationships, causality, or position in the path-
ways. Moreover, an analysis of the mined trajectories 
can help in identifying the most recurrent patterns 
as well as in first outlining how the data may deviate 
from the expected behaviors.

	 From an inferential perspective, processes can be 
analyzed to highlight the events or attributes that 
characterize specific behaviors in the sample popu-
lation. For instance, cases can be stratified according 
to their features and compared in terms of pathways 
or outcomes, thus estimating the impact of different 
data characteristics and possibly revealing markers of 
evolution. This kind of analysis allows to reveal sta-
tistical dependencies and correlations, with indica-
tors such as p-values or confidence intervals, among 
data. This is a pivotal step of the pipeline, that allows 
to either confirm or reject formulated hypotheses, 
and to support the formulation of further theses as 
well. Similarly, a process built on a reference EL can 
be compared with the one resulting on an independ-
ent EL—here used as a kind of external testing set—
to confirm or highlight differences in terms of trajec-
tories, event frequency, or timing. If the descriptive 
and/or inferential evidences are support, domain 
experts can help to generate communicative reports, 
also integrating the graphical representation of the 
processes often provided as algorithms’ output. This 
can be used as the basis for the implementation of 
Decision Support Systems (DSSs), that can improve 
the decision process for subsequent patients.

We performed the analysis using pMineR [44], a software 
library in R specifically born to support PM analysis in 
healthcare and recently improved in the direction of 
exploring differences among the mined pathways.

Data and preprocessing
In this work, we employed data of ALS patients sourced 
from two distinct datasets, that is, a clinical trial data 
collection and a real-world clinical register. This choice 
allows to assess differences and similarities between the 
processes happening in two distinct settings.

The PRO‑ACT dataset
As a first data source, we considered the Pooled Resource 
Open-Access ALS Clinical Trials (PRO-ACT) dataset 
[45], that is the largest publicly available repository of 
merged ALS clinical trials data. This dataset includes 
demographic and longitudinal clinical information col-
lected over 10 million data points for more than 10,000 
fully de-identified patients who participated in indus-
try, foundation, and academia sponsored clinical trials. 
PRO-ACT includes data from both placebo and pharma-
cologically treated patients. According to the provided 
documentation, the medications tested in the trials were 
found to be no better than placebo with respect to their 
effects on ALS progression. For each patient, PRO-ACT 
collects a number of static features tracking the patients’ 
personal information, family and medical history, and 
data characterizing the first phase of the patient disease 
(e.g., the site of onset). Then, for each dynamic feature 
collected during the trial follow up —like vital signs, 
results of lab test, or the assessment of functional scores 
tracking the patient status—the value of the specific 
examination together with the temporal distance from 
the onset is reported.

On the one hand, PRO-ACT represents a precious 
resource for research studies, thanks to its large sample 
size and the high frequency of its visits that allow a pre-
cise characterization of how ALS progresses in the study 
population. On the other side, it consists of data from a 
selected pool of patients monitored over a limited period, 
thus not fully representing the general ALS population 
and possibly limiting the generalizability of the findings 
[46].

Starting from the comma-separated values (CSV) files 
downloadable on the PRO-ACT website,1 we preproc-
essed the data as follows. First, we removed the patients 
with an unrecorded onset date or reporting an onset 
following the trial start. Then, to better characterize the 
progression of the disease, we filtered out the subjects 
without functional assessment in any of their visits or 
without at least one visit within 6 months of the study 
begin. Then, we removed the visits without a functional 
assessment or performed before the trial start. This pre-
processing reduced the number of subjects from 10,723 

1  https://​nctu.​partn​ers.​org/​proact (download time: March, 2021)

https://nctu.partners.org/proact
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to 5,389, for a total of 68,654 visits performed during the 
trials. Table 1 reports a characterization of the preproc-
essed PRO-ACT dataset.

Then, for each visit we converted the functional scor-
ing system available in the data, that is, the ALSFRS score 
[47], into the Milano–Torino staging (MiToS) system 
[42]. While the ALSFRS evaluates the patient functional 
status through a 10-item questionnaire referred to dif-
ferent daily and vital abilities, each rated on a 0–4 point 
scale, the MiToS system defines 4 functional domains 
(namely Walking/Self-care, Swallowing, Communicat-
ing, and Breathing), each coded as a binary variable 
that switches from 0 to 1 when the specific domain is 
impaired. By effectively characterizing the evolution of 
the disease over time, the use of the MiToS also allows to 
overcome the limitations of the ALSFRS, mainly consist-
ing in a reduced ability of catching the worsening in the 
advanced phase of the disease [48, 49] and the absence of 
agreement on a threshold at which changes in the ALS-
FRS scores are viewed as an important transition point in 
functional status [42].

After obtaining the MiToS scores, we aggregated them 
into a new feature that encodes the overall status of the 
impairment. Specifically, we coded for each visit a string 
M_abcd consisting of four elements {a, b, c, d} , each cor-
responding to a functional domain in the following order: 
(a) Walking/Self-care, (b) Swallowing, (c) Communicat-
ing, and (d) Breathing, and assuming a value equal to 1 if 
the domain was impaired and 0 otherwise. For instance, 

M_0000 corresponds to no recorded impairments at that 
visit, while M_0011 to a recorded impairment in both 
Communicating and Breathing.

Finally, we converted the dataset into an EL, consid-
ering as activities: the disease onset, the trial start, the 
status of the MiToS impairments coded as above, and 
the death or the censoring event. We made the choice of 
coding the survival information in this way in order to 
be able to represent the censoring event in a dedicated 
region of the PM graphs (precisely, the “Censored” sta-
tus itself ) and be thus able to discern the contribution of 
complete versus truncated observations on the trajecto-
ries. This resulted in an EL of 26,426 logs referred to the 
5,389 included subjects. For each subject trace, we coded 
as attributes some static information, namely, the age at 
onset and the site of onset, to perform stratification anal-
yses for assessing their effect on the disease trajectories.

The ALS–BS dataset
In order to extend the investigation of the ALS patterns 
of evolution on real-world patients, we included in this 
work also a second data collection (hereinafter ALS–
BS) consisting of patients followed up in a tertiary clini-
cal context. Specifically, we employed the data collected 
during routine clinical assessment at the NeMO - NEu-
roMuscolar Omnicenter of Brescia and at the Neurol-
ogy Department of the Spedali Civili of Brescia (Italy), 
two interconnected highly specialized clinical centers 
dedicated to diagnosis, treatment and research in the 

Table 1  Demographic and clinical characteristics of the ALS populations included in the study

Numerical features are described using mean ± standard deviation, categorical features are described using cardinality (percentage). Kruskal-Wallis and χ2 tests at .01 
significance level were used for assessing the equality of the distributions of the continuous and categorical variables, respectively, in the two datasets. * indicates a 
non-complete fulfillment of the statistical test’s assumptions. FVC = Forced Vital Capacity, ALSFRS = ALS Functional Rating Scale

Features PRO-ACT​ ALS–BS p-value

n 5389 43 –

Sex Female 2018 (37.4) 21 (48.8) 0.123

Male 3371 (62.6) 22 (51.2)

Onset site Bulbar 1122 (20.8) 11 (25.6) <0.01 *

Spinal 3875 (71.9) 31 (72.1)

Spinal and bulbar 59 (1.1) 1 (2.3)

Other 333 (6.2) 0 (0.0)

Age at onset [years] 55.26 ± 11.68 59.14 ± 10.84 0.034

FVC at baseline % 82.24 ± 17.94 96.47 ± 15.35 <0.01

Weight at baseline [kg] 75.86 ± 15.79 68.85 ± 9.20 0.019

Total ALSFRS at baseline [score/40] 30.12 ± 5.47 36.12 ± 9.20 <0.01

Disease duration [days] 1063.03 ± 456.22 1241.67 ± 722.13 0.201

Follow-up duration [days] 407.06 ± 175.27 931.49 ± 627.49 <0.01

Follow-up visits 12.74 ± 6.23 7.44 ± 2.80 <0.01

Survival Censored 3967 (73.6) 23 (53.5) <0.01

Dead/Tracheostomized 1442 (26.4) 20 (46.5)



Page 7 of 16Tavazzi et al. BMC Medical Informatics and Decision Making  2023, 22(Suppl 6):346	

field of neuromuscular diseases. This dataset collects in 
an anonymized way the salient clinical data of 43 ALS 
patients classified on the basis of El Escorial-Awaji cri-
teria [50] and diagnosed between between January 15th, 
2014 and December 1st, 2020, including age and site of 
onset, vital signs, distribution of muscle weakness and 
atrophy, neurophysiological studies, functional scores, 
and genetic results. Table  1 reports the characteriza-
tion of the patients included in the ALS–BS, together 
with a comparison of the distribution of the features in 
the PRO-ACT versus the ALS–BS dataset performed 
in terms of Kruskal-Wallis and χ2 tests at .01 signifi-
cance level for the continuous and categorical variables, 
respectively.

We preprocessed the ALS–BS data in the same way of 
PRO-ACT (with the exception, given the different nature 
of the dataset, of the trial start event), obtaining an EL of 
43 traces for a total of 236 events.

Process discovery methods
In this work, we employed two distinct Process Discov-
ery methods, namely the Directly-Follows Graph (DFG) 
and the CareFlow Miner (CFM), to model the evolution 
of ALS in terms of progressive impairment of the MiToS 
functional domains and survival. As per their implemen-
tation in pMineR, both the DFG and CFM return the 
mined processes under a graphical form, directly provid-
ing the user with descriptive statistics such as the cardi-
nality of the subjects following the different paths or the 
probability of transition between events. Moreover, they 
allow the comparison of processes built on different data-
sets, highlighting differences and similarities.

First, we performed a set of analyses using the DFG on 
the PRO-ACT dataset only, considering the entire pop-
ulation or sub-cohorts stratified by their site of onset. 
Then, CFM is discovered on the PRO-ACT dataset to 
reveal the most frequent path, time and statistical differ-
ences in sub-cohorts split on the base of the age of the 
patients and the onset site. Finally, we compared the DFG 
process obtained on PRO-ACT with the one built on the 
ALS–BS dataset, focusing on the variations in the transi-
tion probabilities between consecutive events and further 
inspecting the functional worsening transition times in 
the two datasets.

In the remaining part of this section, we detail the two 
above-mentioned techniques.

Directly‑Follows Graph
The DFG is probably one of the most intuitive graphical 
languages which simply connects two nodes representing 
two events with an edge when they are subsequent in at 
least one trace. Despite its simplicity, it can provide use-
ful insights into the actual processes. To prune the graph, 

in order to make it easier to analyze, different thresholds 
can be applied (e.g., based on the absolute/relative num-
ber of transitions, timing, etc). In pMineR, the DFG is 
available by the class firstOrderMarkovModel implement-
ing a number of features to allow the exploration of:

•	 time to fly: Given a pair of consecutive or non-con-
secutive events, the time to fly corresponds to a ker-
nel density estimation function of the times needed 
to move from the starting to the destination node 
computed over all the population;

•	 survival functions: Kaplan–Meier (KM) curves can 
be built, including possible constraints to select the 
cohort(s) of interest (e.g., passing or not through spe-
cific nodes, nodes playing the role of censoring), and 
then compared with a log-rank test to check statisti-
cally significant differences;

•	 deltaGraphs: Two DFG graphs, built for instance on 
two cohorts with different baseline characteristics or 
followed up in distinct clinical centers, can be over-
laid to measure the differences in terms of transac-
tion probabilities between nodes. Thresholds can be 
applied to reduce the noise and focus only on the 
most relevant differences.

CareFlow Miner
The CFM algorithm implemented in pMineR is an exten-
sion of the original version presented in [31]. Starting 
from a root node, each trace in the EL contributes to cre-
ate a branch of a tree where the top level (i.e., the first 
after the root) represents the first event of each trace, and 
the next levels sequentially correspond to further events 
of each trace. In the resulting CFM graph, each node is 
labeled with the name of the corresponding event and 
additional information such as the number of patients 
passing through that node or statistics about the time 
needed to reach it.

On the one hand, on complex ELs the tree tends to 
explode in terms of nodes and edges. To avoid the so-
called Spaghetti Effect, a CFM tree is normally pruned 
on the base of a threshold, to exclude highly infrequent 
paths and reduce its complexity. On the other hand, the 
meaning of the language is easy to understand and the 
algorithm is clear. This feature, differently from existing 
PM algorithms such as Alpha Algorithm or Fuzzy Miner, 
helps in reducing the psychological barrier the clinician 
may have with respect to what they can feel as black box 
solutions [24].

By itself, CFM is an algorithm able to show the most 
frequent paths, thus revealing outliers and suggest fur-
ther investigations, but it is not able to provide confi-
dence intervals on their occurrence or p-values on the 
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effect of specific data features on the followed trajecto-
ries. pMineR overcomes this limitation by offering the 
opportunity to compare two CFM graphs corresponding, 
for instance, to two different cohorts of patients, such 
as male versus female, with versus without a morbidity 
at baseline, as so on. The two obtained CFMs are meas-
ured node by node with a Fisher’s exact test or a χ2 test 
(depending on the cardinality of patients passing through 
the node) for dichotomic categorical variables, or with a 
Wilcoxon–Mann–Whitney test for the continuous one, 
to compare the time needed to move from the root to the 
node or to move from the node to a given possible event 
(e.g., death).

Patient trajectories comparison between datasets
To measure the difference between the trajectories of 
progression in PRO-ACT versus ALS–BS, we leveraged 
on the simplicity and intuitiveness of DFG, and com-
pared the processes mined on the two datasets by build-
ing a deltaGraphs on the two ELs. Then, we computed 
the kernel density estimation of the time-to-fly between 
each couple of consecutive and non-consecutive events 
for both the datasets. Finally, for each common transi-
tion, we compared the different time of transitions with 
a Mann-Whitney test for that cases where the cardi-
nality of transitioning subjects was high enough; when 
the number of available samples was lower than 5, we 
employed a qualitative visual inspection of the densities 
instead. Where the cardinality was high enough, we also 
inspected the difference in terms of median transition 
times.

Results and discussion
This section presents the results of the performed anal-
ysis focusing on the data characteristics and the dis-
covered processes. Based on the number of available 
patients and events, we focused our main analyses on the 
PRO-ACT dataset. We then considered the ALS–BS for 
comparison purposes, with the aim of identifying the dif-
ferences in terms of impairment trajectories in a, albeit 
limited, real-world dataset.

Data characterization
Table  1 reports a characterization of the two cohorts 
of patients included in this work. Although reduced in 
dimensionality, the ALS–BS dataset (sample size n = 
43) shows significant similarities to PRO-ACT in terms 
of patients’ sex (p=0.123), age at onset (p=0.034), weight 
at baseline (p=0.019), and disease duration (p=0.201). In 
contrast, FVC and total ALSFRS as measured at the first 
visit significantly differ between the two datasets, possi-
bly as a consequence of the recruitment criteria for the 
trials. For what concerns the site of onset, we can notice 

that PRO-ACT presents a further level with respect to 
ALS–BS, namely “Other”. It was however not possible 
to better investigate its meaning starting from the data-
set documentation. We can notice how in PRO-ACT 
the observed follow-up is shorter (mean ± SD equal to 
407.06 ± 175.27 days in PRO-ACT vs. 931.49 ± 627.49 
days in ALS–BS), and the number of censored patients 
is higher (73.6% vs. 53.5% in PRO-ACT and ALS–BS 
respectively), coherently with a limited duration of tri-
als. Although the almost halved follow-up, it is worth 
noticing how the average number of visits in PRO-ACT 
is approximately doubled with respect to ALS–BS. The 
improved visit frequency characterizing the trial follow-
up has a direct repercussion on the granularity at which 
the MiToS impairments are collected and, correspond-
ingly, at which a possible worsening is tracked. In line 
with expectations [46], these numbers actually reflect 
the presence of meaningful differences between trial and 
real-world populations, especially in terms of recruit-
ment criteria and observational scheduling.

Process discovery on PRO‑ACT​
Here we report and comment the processes built on the 
PRO-ACT dataset and the investigation of the effect 
of baseline covariates in discriminating the patients’ 
trajectories.

Process discovery based on DFG
Figure  1 shows the process obtained mining the whole 
PRO-ACT population with DFG. For the sake of reada-
bility, we report only the edges with a transition probabil-
ity > 0.03 with respect to the cardinality of the patients in 
the node where the edge origins. Notably, the topological 
organization of the obtained DFG reflects the increasing 
trend of functional domains affected as ALS progresses: 
none at the top (corresponding to the first visit right 
after the trial start for 85% of the patients), one domain 
thereafter, and so on until a final state among M_1111 (all 
domains affected), censored, or death is reached.

We then employed DFG to shed some light into the 
kinetics of different clinical sub-types of ALS patients. 
After dividing the PRO-ACT population into two dis-
tinct groups based on their main sites of onset (spinal 
vs. bulbar), we compared their trajectories by mean of a 
DFG deltaGraph, under the hypothesis that their impair-
ment patterns would differ. Specifically, we expected 
the spinal patients to manifest an early impairment in 
the Walking/Self-care ability, and the bulbar to have an 
early deterioration of the Communication and/or Swal-
lowing functionalities. A zoomed section of the resulting 
DFG deltaGraphs is reported in Fig. 2a. In order to high-
light the main differences of the two cohorts, we thresh-
olded the graph for displaying only transition differences 
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> 0.2. We can confirm our hypothesis by observing, for 
instance, that the transition probability from M_0000   
(first visit without an impairment) to M_1000 (impair-
ment in Walking/Self-care) results enhanced for patients 

with spinal onset, namely with 52% of them losing mobil-
ity as first domain versus 27% of the bulbar ones. The 
corresponding difference in terms of transition times 
can be inspected by analyzing the KM curves reported 

Fig. 1  DFG graph representing the paths followed by the study population, delineating the increase in disability experienced by the subjects. Only 
the arcs with a transition probability > 0.03 are shown

Fig. 2  a Zoom on the DFG deltaGraph obtained stratifying the population by onset site (spinal vs. bulbar). The highlighted edges represent an 
increased transition probability for the spinal (red) or bulbar (green) cohort, thresholded for displaying only differences between the probabilities 
greater than 0.2. b KM curves of the time passing from M_0000 (no impaired domains) to M_1000 (Walking/Self-care domain impaired) for the two 
cohorts. The log-rank test shows statistically significant differences between the cohorts. + indicates censored subjects
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in Fig. 2b, which proves to be statistically different (log-
rank test p < 0.0001). When computing the KM curves, 
we included the possibility that some patients were cen-
sored before reaching the ending state of interest (here 
M_1000). These cases are represented in the plot with a + 
symbol. It is worth noticing how, in this kind of analysis, 
it is of course pivotal to take into account the cardinal-
ity of the subjects following the considered edges in order 
to avoid a misinterpretation of the results due to possible 
overfitting of a very specific class of cases.

Process discovery based on CFM
Figure 3 shows the most frequent patterns mined through 
the CFM, here built starting from the node M_0000. The 
graph has been thresholded for displaying only the path-
ways transitioned by at least 10 subjects. For each node, 
the total number of patients passing through is reported 
in brackets, while the minimum, median, and maximum 
time (in days) needed to reach that node from the root 
is shown on the second line. The edges report the per-
centage of patients passing through the child node with 
respect to the previous node (above) and the entire popu-
lation (below). It is worth noting that these percentages 
may not sum to 1 in the graph as a result of the out-fil-
tered infrequent patterns.

We can observe how, in the process mined using CFM, 
we can rediscover the DFG transitions with higher car-
dinality. It is the case, for instance, of the edge from 
M_0000 to M_1000, that emerges as predominant in both 
processes. It is worth reminding that by design the CFM 
potentially multiplies the number of times that a same 
node appears in the graph. This happens when the same 
event happens in distinct paths and is due to the fact that 

while the DFG only represents the transition between an 
Event and the next one (with no memory of the past), the 
CFM keeps the memory of all the steps happened before. 
For this reason, the former can be a cyclic graph while 
the latter is necessarily acyclic.

As the DFG, the CFM tree can also be stratified by a 
variable of interest in order to assess any significant dif-
ferences in the paths’ occurrence according to the sub-
jects characteristics. Guided by clinical hypotheses, we 
explored the distribution of the subjects in the nodes 
with respect to their baseline or static covariates, focus-
ing in detail on:

•	 age at onset (quantized into two levels according to 
its mean value = 55 years, see Table 1) on the death, 
testing that older age at onset corresponds to a worse 
outcome, as reported in [51];

•	 onset site (spinal vs. bulbar) on the occurrence of the 
impairments, further checking that a spinal onset 
early affects motor skills while a bulbar one causes 
early dyspnea, dysphagia, or dysphonia.

Figure  4 shows the obtained graphs. Each node reports 
the number of subjects passing through it for each cohort 
(young/aged onset or spinal/bulbar subjects, respec-
tively), with the ratio in brackets, and the p-value of the 
Fisher’s exact/χ2 test, depending on the cardinalities 
involved in each node, on their distribution.

Figure  4a reports the graph obtained by stratifying 
the population by the age at onset. We can observe how 
the aged patients actually experience an early death, 
even if only on specific trajectories, namely: (i) M_0000 
→ M_0100 → M_1100 → Dead, with ratio young/aged 

Fig. 3  CFM graph built starting from M_0000. Each node reports the total number of patients passing through it (round brackets) and the 
min-median-max time, in days, needed to reach it from the root. Colors are graded on the median times, with intervals: <100, 101-200, 201-400, and 
>401 days. The edges report the percentage of patients passing through the child node with respect to the previous node (above) and the entire 
population (below). The graph has been thresholded for displaying only the pathways transitioned by at least 10 subjects
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equal to 0.5, and (ii) M_0000 → M_1100 → Dead, with 
ratio young/aged equal to 0.33. Figure  4b refers to the 
stratification based on the onset site. Here, it emerges a 
significant predominance of a first impairment in the 
Walking/Self-care domain for the subjects with spinal 
onset (M_1000, ratio spinal/bulbar equal to 1.3), and a 
significant predominance of first impairment in the Swal-
lowing domain for the bulbar onset subjects (M_0100 
with a ratio spinal/bulbar equal to 0.46).

These results partially match with the expectation, with 
the effect of the stratifying variables being investigated 
not emerging over all the trajectories due to a limited 
subject cardinality along some branches.

Trajectories comparison of PRO‑ACT and ALS–BS based 
on DFG
A comparison of the two datasets through the DFG 
is shown in Fig.  5, where the differences in terms of 
transition probability from an event to a consecu-
tive one are shown with different colors (red or green 
edges) if differing for more than 0.2 between the two 
datasets. In contrast, gray edges indicate transitions 
with similar probability. Even if this analysis is lim-
ited to adjacent events, and can thus not be exploited 

to evaluate long-time transitions (which might have 
additional events in between), it turns out to be par-
ticularly effective in revealing errors in the data (e.g., an 
improbable regression of the disease consisting of the 
recovery of a previously impaired domain). In our case, 
the large number of observable differences between 
the two datasets is probably mainly due to the different 
recruitment/dropping criteria between PRO-ACT and 
ALS–BS: in the former, the protocols were more stand-
ardized and the recruitment more homogeneous (even 
if with a higher percentage of early-censored patients), 
in the latter the patients might on one side have had the 
first contact with the clinical centers at various stages 
of the disease and, on the other, have been more fre-
quently assisted until the final phases of the disease. It 
also has to be mentioned that the reduced cardinality of 
the ALS–BS dataset might constitute a limitation to the 
observed behaviours. The bottom part of Fig.  5 shows 
an example of comparison between the two datasets of 
the kernel density estimation for the common transi-
tions: (a) from M_1000 to M_1010, (b) from M_1000 to 
M_1110, and (c) from M_1001 to M_1111. Notably, (b) 
and (c) do not correspond to specific edges in the DFG, 
representing instead the time needed to move from the 

Fig. 4  CFM graphs built starting from M_0000 and stratified for a quantized age at onset or b onset site. Each node reports the number of patients 
passing trough it for each cohort (young/aged onset and spinal/bulbar onset, respectively). Moreover, the ratio of the two cardinalities with respect 
to the initial populations is reported in the round brackets, followed by the p-value for the Fisher’s exact/χ2 test. The node box is colored in yellow if 
the p-value is lower than a given threshold (here 0.05). Both the graphs have been thresholded for displaying only the pathways transitioned by at 
least 10 subjects
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source state to the target state in an arbitrary number 
of steps.

By comparing the median times of the distributions, 
we can observe how, in our examples, the ALS–BS red 
dotted line is always situated on the right side of the 
PRO-ACT dotted blue line. In other words, the ALS–BS 
population has in all these cases a longer median time to 

event. It is worth noticing how for the consequent events, 
whose representation is included in the DFG, the analy-
ses of the transition probabilities and of the density dis-
tributions can be paired. For the case reported in Fig. 5a, 
for instance, we can conclude that the transition from 
the only Walking/Self-care impairment (M_1000) to the 
condition where also the Communication is damaged 

Fig. 5  On the top, a portion of the DFG showing the differences between PRO-ACT and ALS–BS in terms of probability to move from a state to the 
next one is shown. The gray edges represents the transitions whose probabilities differ for less than 0.2 in the two datasets. When this gap is larger, 
the edge is green if ALS–BS has a probability higher than PRO-ACT, red otherwise. On the bottom, the kernel density estimation of the probability 
to move (a) from M_1000 to M_0101; (b) from M_1000 to M_1110, and (c) from M_1001 to M_1111 are reported, with PRO-ACT in blue and ALS–BS 
in red, and with the vertical dotted line indicating the median of the distributions
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(M_1010) is similar in the two datasets both in terms 
of transition probability (gray edge in the DFG) and of 
median time of transition (dotted lines in plot (a)), while 
the corresponding time distribution slightly differ in 
terms of kurtosis.

Conclusions
In this work, we implemented a process-oriented inves-
tigation of the disease trajectories of ALS modeled as a 
succession of impaired functional domains. Starting from 
two distinct ALS datasets, namely a clinical trial and a 
real-world one, and after a preprocessing phase aimed at 
cleaning data and extracting the events of interest in the 
form of an EL, we mined the processes that generated the 
observations by considering two Process Discovery algo-
rithms, namely DFG and CFM. Enriched in their original 
formulation, we employed these algorithms to also reveal 
how the pathways may differ based on patient static 
attributes. We studied the processes in terms of trajecto-
ries, probabilities, and times of transition between both 
consecutive and non-consecutive events, and tested clin-
ical hypotheses to better explore the process characteris-
tics linked to nature of the datasets and the impact of the 
patients’ characteristics at baseline on their progression.

To the best of our knowledge, this work represents the 
first attempt of modeling ALS trajectories using a PM-
based approach, and one of the few applications of these 
techniques in the domain of neurodegenerative diseases. 
With respect to existing methodologies that focus on 
the dynamics of ALS for modeling its prognosis, we are 
able to provide an overview of the evolution scenarios of 
the study populations, while at the same time maintain-
ing a detail on the characteristics of each trajectory, also 
referring to the features of the patients that followed each 
path.

From a methodological point of view, the analysis we 
performed integrates statistical inference in the Process 
Discovery algorithms, allowing a better characteriza-
tion of the patients’ trajectories and a statistical signifi-
cance based on standard inferential tests for the observed 
differences.

A major benefit of the proposed PM-based approach 
is the graphical representation, that allows to establish a 
common ground to communicate with experts from dif-
ferent disciplines, and that has been leveraged to analyze 
the results of this study. As recently stated by Munoz-
Gama et  al. in a sort of Process Mining for Healthcare 
Manifesto, two of the pillars of analytics in healthcare 
actually consist in the understandability of what is being 
done, and the involvement of a heterogeneous team of 
experts to gather and exploit as much knowledge as pos-
sible [52]. Related to this, the attempt to integrate the 

inferential analysis in our study helps to bridge the gap 
between what is needed and what is offered.

The use we did of data coming from two distinct 
sources deserves some considerations: on the one hand, 
we used PRO-ACT that consists of 23 aggregated clinical 
trial datasets, on the other we employed for a compari-
son of the trajectories the ALS–BS dataset that compre-
hends data of patients followed up in two tertiary clinical 
centers. As previously reported in literature [46], patients 
enrolled in clinical trials may differ from epidemiologic 
cohorts, with the former being mainly characterized by a 
younger age, a larger diagnostic delay, a longer tracheos-
tomy-free survival, and being more likely men and with 
a spinal onset. For this reason, differences between the 
two included cohorts were expected and their possible 
impact in term of bias on the performed analyses merits 
an appropriate examination.

A first consideration concerns the difference between 
the cardinalities of the two datasets. Being ALS a rare 
disease, with an incidence in Europe estimated around 
2.2 per 100,000 person-years [53], the reduced number 
of subjects included in the ALS–BS dataset is justified 
by the limited recruiting period of the cohort included in 
this study. This may impact in terms of generalizability on 
the considerations made on this dataset both in terms of 
patients’ characterization at baseline and comparison of 
the trajectories with PRO-ACT. Nevertheless, we believe 
that an - although limited - comparison of the process 
models obtained on PRO-ACT with the behaviours 
observed in a real-world cohort constitutes a first step in 
the direction of validating the results, as well as a proof 
that such analysis can allow inspecting the differences 
that can emerge between cohorts with different origins.

Moreover, by analyzing the baseline characterization of 
the PRO-ACT and ALS–BS subjects reported in Table 1 
we can observe that some differences actually emerge 
between the two cohorts, especially in terms of recruit-
ment criteria and observational scheduling, as already 
briefly mentioned. Specifically, we can observe a signifi-
cant difference in the baseline FVC value and ALSFRS 
total score variables, which are both higher in the ALS–
BS patients. This is possibly due to the fact that in the 
tertiary centers the patients are more likely to be taken 
in charge from the time of diagnosis directly, when they 
might present a weaker symptomatology.

We can also detect that a possible different codification 
of the onset site variable has been used in the two data-
sets, with a further level (“Other”) being used in PRO-
ACT. This could impact in the performed stratification 
study, with two slightly differently defined populations 
being considered when subsetting the population in bul-
bar versus spinal subjects.
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A discrepancy for what concerns the follow-up dura-
tion and number of visits also emerges, in line with 
the expectations. In fact, clinical trials patients are 
generally observed over a shorter time window, but 
more frequently. This might also be reflected in the 
higher percentage of censored subjects in PRO-ACT. 
With respect to the disease progression trajectories 
derived in our study, this may have a dual effect: first, 
the paths of the PRO-ACT subjects might be shorter 
in terms of length of the traces (or, in other words, in 
the number of observed events per patient). This fact 
finds correspondence in the data, with the PRO-ACT 
traces reporting a mean number of recorded MiToS 
impairments per patient equal to 0.91 (median 1, IQR 
0–1) versus the 1.48 (median 1, IQR 1–2) of the ALS–
BS. This can impact the analysis by limiting the num-
ber and the length of common trajectories between 
the two datasets. In terms of DFG, this can be one of 
the reasons (together with the limited cardinality of 
the ALS–BS dataset) why not all the transitions might 
be observed in both the datasets; in terms of CFM, we 
would observe a different length of the most common 
paths. Second, the time of each event could be expected 
to be more precise in the PRO-ACT cohort due to the 
higher resolution of the visits. It is interesting observ-
ing how the analysis of the kernel density estimations 
of the (both direct and indirect) transitions exam-
ined in Fig.  5 actually reports median times that are 
longer for the ALS–BS subjects. This might be due to 
a small delay in the recording of the change of status 
for the ALS–BS patients indeed, as well as to a slightly 
increased quality of survival for the real-world sub-
jects due to an improvement in the treatments in the 
last years or in case some of the trials included in PRO-
ACT had required the recruitment of more aggressive 
ALS forms.

It should be emphasized how a process-oriented 
analysis (here focused on the impairment trajecto-
ries), coupled with the comparison of more traditional 
descriptive statistics (see Table  1), allows for a more 
extensive comparison of the cohorts. Indeed, this 
matched approach allowed us not only to investigate 
the static characteristics (e.g., at the time of enroll-
ment) of the subjects, but also to assess similarities 
and differences related to the progression of their clini-
cal condition. By selecting as an analytic technique the 
DFG, moreover, where the comparison of cohorts is 
supported by the generation of communicative graphi-
cal outputs, we experienced a facilitated discussion of 
the obtained results with a heterogeneous, multidisci-
plinary team. In general, this ease of communication 
can lead to faster identification of differences and more 
rapid formulation of hypotheses about their origins, 

possibly enabling the implementation of a proactive 
approach to ensure a better quality of care.

Besides the considerations on the data characteristics, 
another possible limitation of our approach might consist 
in the focus of the analyses limited to one main aspect of 
ALS evolution only, that is, the progressive impairment 
of the patients’ functional abilities, and the use of just a 
couple of baseline patient characteristics.

As potential developments of our study, we envis-
age two main directions: the former pursues the inten-
tion of enhancing the clinical knowledge on ALS and 
targets the creation of a multicentric study involving a 
higher number of ALS-specialized centers. This would 
allow the inclusion of more real-world patients and of 
additional variables, such as vital signs or lab tests, and 
new events, such as the administration of nutritional or 
respiratory support, to define new or enriched patient 
trajectories and to gain a better understanding of the 
disease progression mechanisms in real-world cohorts. 
In the practice, this implies reaching a consensus about 
the data ontology, the pathways we want to focus on and, 
last but not least, to develop an infrastructure to support 
a Rapid Learning paradigm to face the challenges of the 
data ownership and the patient’s privacy in PM [54]. The 
second direction concerns a further improvement of the 
Process Discovery tools, for example by exploring the 
predictive potential of other clinical variables investi-
gating how they contribute to the evolution of the clini-
cal pathways. Such application through PM is currently 
mainly unexplored.

We believe this work can provide an original perspec-
tive for analyzing how ALS evolves. The mined processes 
can be exploited as DDSs, indicating the probability of a 
patient to follow a given path based on his/her character-
istics; further, they can allow to simulate the likely evolu-
tion of the disease and, in the future, to assess the impact 
of treatments.
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