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Abstract 

Background  Colorectal cancer is a leading cause of cancer deaths. Several screening tests, such as colonoscopy, can 
be used to find polyps or colorectal cancer. Colonoscopy reports are often written in unstructured narrative text. The 
information embedded in the reports can be used for various purposes, including colorectal cancer risk prediction, 
follow-up recommendation, and quality measurement. However, the availability and accessibility of unstructured 
text data are still insufficient despite the large amounts of accumulated data. We aimed to develop and apply deep 
learning-based natural language processing (NLP) methods to detect colonoscopic information.

Methods  This study applied several deep learning-based NLP models to colonoscopy reports. Approximately 
280,668 colonoscopy reports were extracted from the clinical data warehouse of Samsung Medical Center. For 5,000 
reports, procedural information and colonoscopic findings were manually annotated with 17 labels. We compared 
the long short-term memory (LSTM) and BioBERT model to select the one with the best performance for colonoscopy 
reports, which was the bidirectional LSTM with conditional random fields. Then, we applied pre-trained word embed‑
ding using large unlabeled data (280,668 reports) to the selected model.

Results  The NLP model with pre-trained word embedding performed better for most labels than the model with 
one-hot encoding. The F1 scores for colonoscopic findings were: 0.9564 for lesions, 0.9722 for locations, 0.9809 for 
shapes, 0.9720 for colors, 0.9862 for sizes, and 0.9717 for numbers.

Conclusions  This study applied deep learning-based clinical NLP models to extract meaningful information from 
colonoscopy reports. The method in this study achieved promising results that demonstrate it can be applied to vari‑
ous practical purposes.
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Background
Colorectal cancer is a leading cause of cancer deaths 
[1–3]. Cancer screening helps in early cancer detection 
before the appearance of symptoms and reduces cancer 
mortality. Several screening tests, such as fecal occult 
blood test, fecal immunochemical test, and colonoscopy, 
can be used to find polyps or colorectal cancer. The US 
Preventive Services Task Force recommends colorec-
tal cancer screening in adults aged 50 to 75. [4]. In the 
United States, colonoscopy prevalence among adults 
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aged 50 years and above tripled from 20% in 2000 to 61% 
in 2018, primarily due to the Medicare expansion of colo-
noscopy screening coverage from high-risk individuals 
to all beneficiaries in 2011 [3]. Since 1999, the National 
Cancer Screening Program (NCSP) has been imple-
mented in Korea, which provides free screening services 
for the six most common cancers: stomach, breast, colo-
rectal, cervix, lung, and liver cancer [5]. According to 
the NCSP protocol, adults aged 50  years and above are 
eligible to take colorectal screening tests. The participa-
tion rates for colonoscopies increased from 25.0% in 2005 
to 64.4% in 2020 [6]. The prevalence of colonoscopy, the 
most reliable way to prevent and detect colorectal cancer, 
has been increasing.

With the rapid adoption of electronic health records 
(EHRs), hospitals have accumulated a large amount of 
unstructured text data in EHR systems, such as dis-
charge summaries, radiology reports, operation notes, 
and pathology reports. The unstructured text data in 
EHR systems contain clinically significant information, 
which is vital for comprehensive care. Regarding colo-
noscopies, the information embedded in the report can 
be used for various purposes, including colorectal cancer 
risk prediction, follow-up recommendations, and qual-
ity measurement [7–13]. The information embedded in 
colonoscopy reports can be used for various purposes, 
including colorectal cancer risk prediction, follow-up 
recommendations, and quality measurement. The loca-
tion, size, number, and appearance of target lesions such 
as polyps, ulcers, stenosis, and bleeding can determine 
the risk of colorectal cancer and the follow-up treatment. 
The colonoscopic findings and procedural information 
can be used for the assessment of quality indicators, such 
as adenoma detection rate [14]. However, the availability 
and accessibility of the unstructured data are still insuffi-
cient despite the large amounts of accumulated data.

Natural language processing (NLP) is a computer sci-
ence subfield that uses computational techniques to 
learn, understand, and produce human language con-
tent [15]. With the impressive advances of deep learning 
in computer vision and pattern recognition, the recent 
research in NLP is increasingly emphasizing the use of 
deep learning methods to overcome the drawbacks of 
traditional NLP systems, which depend heavily on the 
time-consuming and often incomplete hand-crafted 
features [16]. Although clinical NLP research has been 
actively performed since the 1960s, its progress was slow 
and lagged behind the progress of NLP in the general 
domain [17]. Similar to other areas, deep learning-based 
NLP research in the medical field has repeatedly demon-
strated its feasibility [18–20].

Research data integration is essential in cancer 
research, and there are many efforts to gather and utilize 

clinical data, such as OHDSI CDM [21]. Although the 
importance of data has been increasing, many portions 
of EHR remain unstructured. Clinical NLP is the key 
to unlocking the evidence buried in clinical narratives. 
Unfortunately, clinical NLP research still faces several 
challenges, such as insufficient datasets or the complex-
ity of clinical narratives [22–24]. Although certain pio-
neering efforts have made clinical text data available for 
sharing, the number of training datasets are relatively 
small for practical application. The representative clini-
cal text datasets are MIMIC-III [25] and NLP commu-
nity challenges, such as n2c2 NLP Research Data Sets 
[26], ShARe/CLEF eHealth [27], and CEGS N-GRID [19]. 
Besides, most of the shared datasets emphasize a single 
type of clinical narrative, like discharge summary [19], 
which does not reflect the characteristics of various med-
ical specialties, for example, the different types of ana-
tomical structures and their pathologies.

Prior work
Clinical NLP research has recently emphasized the use of 
deep learning methods, and the publications are increas-
ing yearly. Among deep learning models, recurrent neu-
ral network (RNN) has been widely employed in clinical 
NLP studies [18]. RNN [28] retains the memory of previ-
ous computations and uses it in current processing. Using 
this memory, RNN can capture the inherent sequential 
nature of language; therefore, it is suited for various NLP 
tasks such as named entity recognition (NER), machine 
translation, and speech recognition [16]. However, RNN 
suffers from the problem of vanishing and exploding gra-
dients, which makes it challenging to learn and tune the 
parameters of the earlier layers in the networks. Its vari-
ants, such as long short-term memory (LSTM) [29] and 
gated recurrent unit (GRU) [30], have been proposed to 
overcome the limitation of RNN.

Clinical NER is an essential NLP task for extract-
ing meaningful information from clinical narratives. 
Recently, numerous efforts have been made to combine 
RNN variants with other techniques, such as embedding 
techniques [31], attention mechanisms, and statistical 
modeling methods like CRFs [32, 33]. Among these tech-
niques, word embedding (or distributed representation), 
such as Word2Vec [34], GloVe [35], and BERT [36], is a 
set of language modeling and feature learning techniques 
in NLP where words or phrases are mapped to a continu-
ous vector space. Typically, word embedding is trained 
by optimizing an auxiliary objective in large unlabeled 
and semantic information [16]. Word embedding mod-
els trained by Word2Vec and GloVe assign the word to a 
certain vector, which means these models can only have 
context-independent representations [37]. BERT is one 
of the current state-of-the-art language models. Unlike 
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traditional word embeddings such as Word2Vec and 
GloVe, BERT assign the word to embedding depending 
on the context, which means the word could have dif-
ferent representations in different contexts by utilizing a 
transformer network.

In previous studies, clinical standard terminologies such 
as UMLS or SNOMED CT have enriched word embedding 
using the semantic relations between clinical concepts [38, 
39]. Although the embedding method using clinical stand-
ard terminologies is somewhat effective, it is unsuitable 
for dealing with various synonyms and abbreviated terms 
in colonoscopy reports. There are multiple expressions to 
describe colonoscopic findings; for example, "D-colon", "D 
colon", "Desc. colon", "DC", "mid-d-colon", and "proximal-
d-colon" for descending colon; "T-ileum", "T ileum", "TI", 
and "T.I." for terminal ileum; and "H-flexure", "H flexure", 
"H-Fx", and "HF" for hepatic flexure. As mentioned in the 
result section, adding the pre-trained contextual informa-
tion from the large unlabeled data to the embedding layer 
demonstrates a slightly better performance than merely 
learning with annotated data.

Several studies have been published on clinical NLP 
for colonoscopy, as shown in Table  1. The list of previ-
ous studies on clinical NLP for colonoscopies has been 
excerpted from Table  4 of Fevrier et  al. [40], modified, 
and summarized in Table  1. Most studies have used 
statistical or rule-based NLP methods. Since there are 
no publicly available colonoscopy text data, all studies 
used data from each institution. Most of them focused 
on extracting information about polyps, such as pres-
ence, size, number, and type. Our study covered compre-
hensive endoscopic findings, such as stenosis, erosion, 
edema, ulcer, erythema, hyperemia, hemorrhage, and 
polyp. It isn’t easy to directly compare the performance 
between this study and previous studies due to the differ-
ence in data sources and sizes.

Objective
This study aimed to extract meaningful information from 
colonoscopy reports using deep learning approach. We 
applied pre-trained word embedding to a deep learning-
based NER model using large unlabeled colonoscopy 
reports. We compared variants of the long short-term 
memory (LSTM) and BioBERT [53] model to select the one 
with the best performance for colonoscopy reports, which 
was the bidirectional LSTM with conditional random fields 
(CRF). Then we applied pre-trained word embedding using 
large unlabeled data to the selected model.

Methods
Data collection and text annotation
This study used colonoscopies performed at Samsung 
Medical Center from 2000 to 2015. Data for this study 

were extracted from DARWIN-C, the clinical data ware-
house of Samsung Medical Center, launched in 2016. As 
shown in Table  2, the total number of extracted colo-
noscopy reports was 280,668, of which 5,000 reports 
from 2011 to 2015 were manually annotated using an 
open-source web-based text annotation tool named 
DOCCANO [54]. It provides annotation features for 
text classification, sequence labeling, and sequence-to-
sequence tasks. We made the annotation based on the 
results of the DARWIN-C project. In the project, we per-
formed text analysis to extract meaningful information 
from various clinical documents such as pathology, colo-
noscopy, gastro endoscopy, and radiology reports using a 
rule-based commercial software named SAS Enterprise 
Contents Categorization. The extracted results through 
the text analysis were reviewed and evaluated by clini-
cians of each department. In this study, two annotators 
performed the annotation using the tool DOCCANO, 
and then we manually reviewed all the annotations based 
on the results of the DARWIN-C project. All colonos-
copy reports (280,668) were used for the pre-trained 
word annotation tool. All colonoscopy reports (280,668) 
were used for pre-trained word embedding, and the 
annotated reports (5,000) were used for training the NER 
model. Table 3 shows the statistics of data used for pre-
trained word embedding and training and test.

In general, a colonoscopy report includes various infor-
mation, such as patient information (indication/reason), 
procedural information, colonoscopic findings, and 
assessment (interpretation, conclusion, and recommen-
dation) [55, 56]. Among the several items that describe 
the result of colonoscopy, the items for colonoscopic 
findings are an essential part of the colonoscopy report. 
Table  4 lists the generally used items in a colonoscopy 
report; labels were assigned to the items to be extracted. 
A total of 17 labels were used in this study. As shown in 
Table  4, our study covered comprehensive endoscopic 
findings. For the lesion of the colonoscopic findings in 
Table  4, there are two labels; Lesion and Negation. The 
label "Lesion" presents the presence of lesions and abnor-
malities. The negation scope of this study is the absence 
of any lesions, abnormalities, or tumor recurrence. Find-
ing the absence of lesions or tumor recurrence is cru-
cial for determining cancer diagnosis. There are several 
patterns for negation clues to describe the absence in 
colonoscopy reports [57]. For example, "There was no 
evidence of tumor recurrence.", "There was no mucosal 
lesion.", "There was no other mucosal abnormality." 
and "There was no definite mass lesion.". But this study 
excluded a few items like family history, indication, 
and withdrawal time because most of our colonoscopy 
reports did not fully describe the information.
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Table 1  Previous studies on clinical NLP for colonoscopy reports

Year Author NLP method (tool) NLP category
Setting Dataset Performance

Current study Seong et al Bi-LSTM-CRF, BioBERT Deep learning-based NLP

Samsung Medical Center 280,668 colonoscopy reports
 Training and Test: 1,000–5,000
 Embedding: 280,668

F1 score: 0.9564–0.9862

2022 Bae et al.[13] SmartTA Rule-based NLP
(Commercial software)

Seoul National University Hospital 54,562 colonoscopy reports and pathology reports
 Training: 2,000
 Test: 1,000

Accuracy: 0.99–1.0

2021 Vadyala et al. [41] Bio-Bi-LSTM-CRF Deep learning-based NLP

Veterans Affair Medical Centers (VA) 4,000 colonoscopy reports and pathology reports
 Training: 3,200
 Test: 400
 Validation: 400

F1 score: 0.85–0.964

2020 Fevrier et al. [40] SAS PERL regular expression Rule-based NLP
(Commercial software)

Kaiser Permanente Northern California (KPNC) 401,566 colonoscopy reports and pathology reports
 Training: 1,000
 Validation: 3,000
 Test: 397,566

Cohen’s κ: 0.93–0.99

2020 Karwa et al. [12] Prolog Rule-based NLP
(Logic program language)

Cleveland Clinic 2,439 colonoscopy reports
 Validation: 263

Accuracy: 1.0

2019 Lee et al. [11] Linguamatics I2E [42] Rule-based NLP
(Commercial software)

Kaiser Permanente Northern California (KPNC) 500 colonoscopy reports
 Validation: 300

Accuracy: 0.893–1.0

2017 Hong et al. [10] SAS ECC [43] Rule-based NLP
(Commercial software)

Samsung Medical Center (SMC) 49,450 colonoscopy reports and pathology reports Precision: 0.9927
Recall: 0.9983

2017 Carrell et al. [44] HITEX [45] Statistical NLP
(Clinical NLP framework)

University of Pittsburgh Medical Center (UPMC) 3,178 colonoscopy reports and 1,799 pathology 
reports
 Training: 1,051
 Validation: 2,127

F-measure: 0.57–0.99

2015 Raju et al. [46] CAADRR Rule-based NLP

MD Anderson 12,748 colonoscopy reports and pathology reports
 Validation: 343

Positive predictive value: 0.913

2014 Gawron et al. [47] UIMA [48] Statistical NLP
(NLP framework)

Northwestern University 34,998 colonoscopy reports and 10,186 pathology 
reports
 Validation: 200

F1 score: 0.81–0.95

2013–2015 Imler et al. [8, 9, 49] cTAKES [50] Statistical NLP
(Clinical NLP framework)

Veterans Administration medical center 42,569 colonoscopy reports and pathology reports
 Training: 250
 Test: 500

Accuracy: 0.87–0.998

2011 Harkema et al. [51] GATE [52] Statistical NLP
(NLP framework)

University of Pittsburgh Medical Center (UPMC) 453 colonoscopy reports and 226 pathology reports Accuracy: 0.89 (0.62–1.0)
F-measure: 0.74 (0.49–0.89)
Cohen’s κ: 0.62 (0.09–0.86)
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As shown in Textbox  1, the colonoscopy report can 
be divided into two parts: procedures and colonoscopic 
findings. Procedural information is written in semi-
structured text (e.g., Level of sedation: Moderate). On 
the other hand, colonoscopic findings are often written 
in free text (e.g., On the distal descending colon, about 
0.5  cm sized Is polyp was noticed.). Colonoscopic find-
ings include lesions and their attributes to describe the 
lesions, such as their anatomical site, size, number, shape, 
and color. Colonoscopic findings are more complex than 
procedures, and the terms used for colonoscopic findings 
are often written using various expressions. For example, 
one of the anatomical sites, the ascending colon, is writ-
ten in an unexpected form such as "a-colon", "a colon", 
"a. colon", "ac", "a. c.", and "a-c". As will be shown later, 
the accuracy of the extraction of procedural informa-
tion was much better than that of colonoscopic find-
ings. Our corpus contains a few discontinuous entities, 
though not many. We assigned the labels two ways for the 

discontinuous entities: grouping them together or sepa-
rating them. For example, "on the ascending colon and 
descending colon" is divided into two entities: "ascend-
ing colon" and "descending colon". On the other hand, 
"on the ascending and descending colon" is assigned to an 
entity: "ascending and descending colon".

An open-source web-based text annotation tool was 
used to create training and test datasets. As shown in 
Table  5, we made five different sizes of annotated data-
sets which were increased by 1,000, to compare the 
performance according to the amount of data. The data-
sets D1, D2, D3, and D4 were randomly generated from 
5,000 annotated data. Table  6 shows the distribution of 
the assigned labels of the datasets. Most of the experi-
ments were performed with dataset D1, except for the 
performance comparison according to the amount of 
data. We applied fivefold cross-validation to evaluate 

Table 2  The number of extracted colonoscopy reports and 
annotated reports by year

Year Colonoscopy reports Annotated 
reports

2000 2,620 –

2001 3,521 –

2002 4,196 –

2003 4,890 –

2004 5,299 –

2005 7,780 –

2006 9,525 –

2007 10,926 –

2008 17,108 –

2009 26,617 –

2010 30,387 –

2011 34,446 1,000

2012 32,441 1,000

2013 32,103 1,000

2014 34,156 1,000

2015 24,653 1,000

Total 280,668 5,000

Table 3  Data statistics

Data For pre-trained 
word embedding

For training and test

Year 2000–2015 2011–2015

Number of documents 280,668 5,000

Number of sentences 4,193,814 81,666

Number of types of words 41,563 4,478

Table 4  Items of the colonoscopy report and assigned labels for 
annotation

a A total of 17 labels are used in this study
b "NEGATION" is used to detect negated concepts

Items Labels a

1. Patient information

1.1 Brief history (disease, family, etc.)

1.2 Indication/reason for endoscopy

2. Procedures

2.1 Sedation and other drugs

2.1.1 Sedation SEDATION

2.1.1.1 Level of sedation SEDATIONLEVEL

2.1.1.2 Medication MEDICATION

2.1.1.3 Dosage DOSAGE

2.1.2 Antispasmodics ANTISPASMODICS

2.2 Equipment (endoscope) used DEVICE

2.2.1 Extent of examination EXTENT

2.3 Quality of cleansing/visualization PREPARATION

2.4 Procedural time

2.4.1 Time-to-cecum

2.4.2 Withdrawal time

2.5 Digital rectal examination DRE

3. Colonoscopic findings

3.1 Lesions and their attributes

3.1.1 Lesion LESION, NEGATION b

3.1.2 Anatomical site LOCATION

3.1.3 Shape SHAPE

3.1.4 Color COLOR

3.1.5 Size SIZE

3.1.6 Number NUMBER

3.2 Sampling (type of sample) BIOPSY

3.3 Adverse intraprocedural events

4. Conclusion
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the model using all parts of the data. The output file of 
the text annotation tool was JSON formatted file. It was 
converted to IOB2 formatted data, where B refers to the 
beginning of the phrase, I the elements within the phrase, 
and O the elements outside the phrase [58]. Each token 
is classified using an IOB label. For example, "on the 
ascending colon" with the "LOCATION" label was tagged 
as "O O B-LOC I-LOC". We used partial matches to cal-
culate the performance for the entity consisting of several 
tokens.

Model
Figure  1 presents the overall architecture of the model. 
We selected the Bi-LSTM with a CRF layer (Bi-LSTM-
CRF) and BioBERT as the model for the current study. 
It largely contained three layers: input and embedding 
layer, bidirectional LSTM layer or BioBERT layer, and 

CRF layer. Annotated data was composed of a set of 
words and labels used as input and output of the model. 
A pre-trained word embedding using unannotated data 
was applied to the embedding layer.

Textbox 1  An example of the colonoscopy report with annotations. Italicized text indicates the target of annotation, and the terms in 
square brackets are labels for annotation

Clinical information
Past (medical) Hx: AGC s/p STG B-II
Antithrombotics: No
Indication: Checkup
Procedure Note
Sedation: Yes [SEDATION]: midazolam [MEDICATION] 3 mg [DOSAGE] pethidine [MEDICATION] 50 mg [DOSAGE]
Level of sedation: moderate [SEDATIONLEVEL] (paradoxical response: no)
Antispasmodics (cimetropium 5 mg): Yes [ANTISPASMODICS]
Digital rectal examination was normal [DRE]
Bowel preparation was fair [PREPARATION]
The CF 260AI [DEVICE] was inserted up to the terminal ileum [EXTENT]
Colonoscopic finding
On the terminal ileum [LOCATION], several [NUMBER] erosions [LESION] and shallow [SHAPE] ulcer [LESION] were noticed
There were several [NUMBER] outpouching lesions [LESION] on the ascending colon [LOCATION]. On the distal descending colon [LOCATION], about 
0.5 cm [SIZE] sized Is [SHAPE] polyp [LESION] was noticed. It was removed by cold biopsy. On the rectum [LOCATION], AV 10 cm [LOCATION] about 
0.3 cm [SIZE] sized Is [SHAPE] polyp [LESION] was noticed. It was removed by cold biopsy
biopsy + [BIOPSY]
Conclusion
1. Colon polyp, removed
2. Rectal polyp, removed
3. A-colon diverticulum
Comment
No immediate complication

Table 5  Training and test datasets

a The dataset sizes were increased by 1,000 to compare the performance 
according to the amount of data. For evaluation, fivefold cross-validation was 
applied

Dataset a D1 D2 D3 D4 D5

Number of documents 1,000 2,000 3,000 4,000 5,000

Number of sentences 16,417 32,821 49,048 65,279 81,668

Number of words 92,315 184,928 277,266 369,063 461,713

Number of types of 
words

2,001 2,771 3,410 3,922 4,478

Table 6  Training and test datasets

Labels D1 D2 D3 D4 D5

PROCEDURE NOTE

SEDATION 860 1,735 2,586 3,443 4,312

SEDATIONLEVEL 679 1,361 2,027 2,706 3,404

MEDICATION 871 1,778 2,659 3,566 4,500

DOSAGE 872 1,781 2,663 3,576 4,515

ANTISPASMODICS 799 1,620 2,408 3,215 4,032

DRE 995 1,990 2,986 3,982 4,979

PREPARATION 996 1,993 2,985 3,977 4,971

DEVICE 999 2,000 2,997 3,994 4,992

EXTENT 1,000 2,000 2,998 3,995 4,992

COLONOSCOPIC FINDINGS

LESION 1,043 2,053 3,201 4,237 5,336

LOCATION 1,118 2,269 3,481 4,599 5,757

SHAPE 719 1,513 2,296 3,024 3,795

COLOR 197 373 589 789 983

SIZE 726 1,530 2,318 3,037 3,831

NUMBER 219 416 639 853 1,052

BIOPSY 995 1,993 2,991 3,987 4,984

NEGATION 651 1,300 1,929 2,609 3,240

Total 13,739 27,705 41,753 55,589 69,675
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Input and embedding layer
To prepare a sequence of tokens for the input layer, doc-
uments were split into sentences, and sentences were 
zero-padded to make the input equal in length. Spe-
cial characters were removed within the criteria that 
do not alter the number and position of the words and 
sentences. For the input representation, we assigned 
each word with an integer value and then converted the 
unique integer value to a binary vector.

The weight matrix of the input word representation 
was created using Word2Vec [59], which uses a neural 
network model to learn word association from a large 
unlabeled corpus of text. Word2Vec utilizes continu-
ous bag-of-words (CBOW) and skip-gram models. We 
applied the CBOW model, which learns the conditional 
probability of a target word given the context words 
surrounding it across a window. As shown in Table  3, 
41,563 words (280,668 colonoscopy reports) were used 
for training the weight matrix. The embedding layer was 
seeded with the weight matrix, and the input words were 
mapped to word vectors.

Bidirectional LSTM layer
NER is a task for identifying meaningful words or phrases 
in a given text and classifying them into predefined 
semantic categories. Therefore, we focused on the prin-
ciple of LSTM [29] to capture the context of the sentence 
and extract the meaning of each word from the sentence. 
LSTM is a variant of RNN composed of a cell, and three 

gates: input, forget, and output. The cell captures the 
long-term dependencies over any time interval, and the 
three gates regulate the flow of information into and 
out of the cell. This unique mechanism can effectively 
memorize the context of the entire input sentence and 
overcome vanilla RNN’s vanishing and exploding gradi-
ent problem. Based on this principle, we constructed 
a bidirectional LSTM (Bi-LSTM) [60] layer to jointly 
capture past and future features to obtain a better text 
representation.

BioBERT layer
BERT utilizes a transformer network to pre-train a lan-
guage model by jointly conditioning on both the left and 
right context in all layers. The transformer model intro-
duces a multi-layer, multi-head self-attention mecha-
nism that has demonstrated superiority over RNNs and 
LSTMs in exploiting GPU-based parallel computation 
and modeling long-range dependencies in a text [61]. The 
original BERT model was trained from general domain 
knowledge, such as Wikipedia and BookCorpus. Accord-
ing to the need for models that can perform better for 
each domain, domain-specific models such as BioBERT 
and ClinicalBERT have been developed [53, 62]. This 
study used an existing pre-trained contextualized word 
embedding, BiomedNLP-PubMedBERT, which was pre-
trained using abstracts from PubMed and full-text arti-
cles from PubMedCentral.

Fig. 1  The architecture of bidirectional LSTM-CRF and BioBERT with pre-trained word embedding using unannotated data
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CRF layer
The output of the Bi-LSTM was used as input to the 
CRF layer. CRFs [63], one of the often used statisti-
cal modeling methods in the field of NLP [64], are used 
for structured prediction. CRFs learn the dependencies 
between labels (i.e., IOB constraints) from training data. 
For example, I-tag does not appear in the first word of the 
phrase, and the O-I pattern does not exist in the IOB for-
mat. As will be shown later, the model with a CRF layer 
performs much better than learning without the layer.

Experiment
This study conducted three experiments, as shown in 
Fig.  2. First, we compared variants of the LSTM and 
BioBERT model to the one with the best performance 
for colonoscopy reports. Then, we applied pre-trained 
word embedding using unannotated data to the selected 
model. Additionally, we compared the effect on perfor-
mance as the training data increased.

Comparison of LSTM and BioBERT variants
We compared LSTM, Bi-LSTM, Bi-LSTM-CRF, 
BioBERT, and BioBERT-CRF models with different 

loss functions and optimizers to select the appropriate 
model and parameters. For the loss function, Categori-
cal Cross-Entropy (CCE), Kullback–Leibler (KL) diver-
gence [65], and Poisson distribution were used. The 
CRF layer uses its loss function to learn a set of transi-
tion probabilities. For the optimizer, Adaptive Moment 
Estimation (ADAM) [66], Nesterov-accelerated Adap-
tive Moment Estimation (NADAM) [67], and Root Mean 
Square Propagation (RMSProp) [68] were used. For the 
BioBERT model, we used an existing pre-trained contex-
tualized word embedding, BiomedNLP-PubMedBERT, 
which was pre-trained using abstracts from PubMed 
and full-text articles from PubMedCentral [61, 69]. The 
dataset D1 presented in Table 5 was used in this experi-
ment, and one-hot encoding was used for the input word 
representation. The experimental parameters were 128 as 
the dimension of embedding, 256 as the dimension of the 
LSTM hidden layer, and ten as the epoch.

Applying pre‑trained word embedding
As shown in Table 3, about 280,668 colonoscopy reports 
were trained using Word2Vec to demonstrate the effect 
of pre-trained word embedding. The CBOW training 
algorithm was used. For comparison, one-hot encoding 

Fig. 2  Three experiments performed in this study
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and pre-trained word embedding were applied to the 
Bi-LSTM-CRF model with RMSProp in Table 7, respec-
tively. The dataset D1 presented in Table  5 was used in 
this experiment. The experimental parameters were 128 
as the dimension of word embedding, five as the size of 
the window, and three as the minimum count of words.

Comparison by the amount of data
The datasets D1, D2, D3, D4, and D5 in Table 5 were used 
to compare the effect on performance as the amount of 
training data increased. The Bi-LSTM-CRF model with 
pre-trained word embedding in Table 8 was used in this 
experiment.

Results
Comparison of LSTM and BioBERT variants
In Table  7, the experimental result shows the perfor-
mance of LSTM variants with the combinations of loss 

functions and optimizers. As shown in Table  7, the Bi-
LSTM-CRF model with RMSProp achieved the best per-
formance with a precision of 0.9844, a recall of 0.9853, 
and an F1-score of 0.9848. The model with a CRF layer 
performed much better than the others. The CRF layer 
was a vital component in the NER problem. There was 
little difference in the performance depending on the 
loss functions and optimizers. We also compared GRU 
variants; there was no significant difference in the perfor-
mance between LSTM and GRU models. All measures in 
Table 7 were micro-averaged to capture each label imbal-
ance adequately.

Applying word embedding
About 280,668 colonoscopy reports were trained using 
Word2Vec to demonstrate the effect of pre-trained word 
embedding. Table 8 shows the performance of each label; 
the model with pre-trained word embedding performed 
better for most labels than the model with one-hot 
encoding. In the case of the labels for procedure notes, 
both one-hot encoding and pre-trained word embedding 
had F1 scores of more than 0.99 because the procedure 
note was written in semi-structured text. In the case of 
the labels for colonoscopic findings, adding pre-trained 
word embedding improved the performance at a cer-
tain rate. Figure  3 shows the effect of pre-trained word 
embedding for colonoscopic findings.

Comparison by the amount of data
As shown in Table 9, the performance slightly improved 
as data increased. As previously mentioned, F1 scores of 
the labels for procedure notes were more than 0.99 due 
to semi-structured patterns. As shown in Fig. 4, F1 scores 
of LESION, LOCATION, and SHAPE improved as the 
amount of data increased. COLOR and NUMBER had 
the best F1 scores in D3. SIZE had a similar performance 
for all data.

As an analysis of errors of this model, the errors came 
from various reasons, such as vocabulary: synonyms, 
acronyms, and typos (i.e., easy touch bleeingd), gram-
matical mistakes (i.e., from cecum ~ t colon), and incor-
rect extraction of size and location (i.e., on the 80  cm 
from anal verge).

Discussion
This study has shown the feasibility of deep learning-
based NLP methods to extract meaningful information 
from colonoscopy reports. Since there are no publicly 
available colonoscopy text data, 5,000 out of 280,668 
colonoscopy reports were manually annotated using 
an open-source web-based text annotation tool. In the 

Table 7  Comparison of LSTM and BioBERT variations

a Loss functions; CCE = categorical cross-entropy, KL = Kullback–Leibler 
divergence, POISSON = Poisson distribution
b Optimizers; ADAM = Adaptive Moment Estimation, NADAM = Nesterov-
accelerated Adaptive Moment Estimation, RMSProp = Root Mean Square 
Propagation 
c The best results are marked in bold

Model Loss function a & 
optimizer b

Precision c Recall c F1 
score c

LSTM CCE + ADAM 0.5267 0.5297 0.5282

LSTM CCE + NADAM 0.5258 0.5285 0.5271

LSTM CCE + RMS 0.5266 0.5297 0.5281

LSTM KL + ADAM 0.5255 0.5286 0.5270

LSTM KL + NADAM 0.5258 0.5287 0.5273

LSTM KL + RMS 0.5260 0.5278 0.5269

LSTM POISSON + ADAM 0.5255 0.5274 0.5264

LSTM POISSON + NADAM 0.5245 0.5267 0.5256

LSTM POISSON + RMSProp 0.5229 0.5258 0.5244

Bi-LSTM CCE + ADAM 0.5880 0.6761 0.6290

Bi-LSTM CCE + NADAM 0.5971 0.7056 0.6460

Bi-LSTM CCE + RMSProp 0.5884 0.6763 0.6293

Bi-LSTM KL + ADAM 0.5881 0.6768 0.6294

Bi-LSTM KL + NADAM 0.5957 0.7039 0.6445

Bi-LSTM KL + RMSProp 0.5884 0.6767 0.6295

Bi-LSTM POISSON + ADAM 0.5873 0.6756 0.6284

Bi-LSTM POISSON + NADAM 0.5949 0.7021 0.6433

Bi-LSTM POISSON + RMSProp 0.5869 0.6758 0.6282

Bi-LSTM-CRF CRF + ADAM 0.9828 0.9842 0.9835

Bi-LSTM-CRF CRF + NADAM 0.9825 0.9851 0.9838

Bi-LSTM-CRF CRF + RMSProp 0.9844 0.9853 0.9848
BioBERT CCE + ADAM 0.9824 0.9821 0.9822

BioBERT-CRF CRF + ADAM 0.9810 0.9815 0.9812
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Table 8  Comparison between one-hot encoding and pre-trained word embedding

a Procedure note was written in semi-structured text. The best results are marked in bold
b Colonoscopic findings were written in free text. The best results are marked in bold

Labels Bi-LSTM-CRF + one-hot encoding Bi-LSTM-CRF + pre-trained word embedding

Precision Recall F1 score Precision Recall F1 score

PROCEDURE NOTE a

SEDATION 0.9881 0.9953 0.9916 0.9888 0.9950 0.9918
SEDATIONLEVEL 0.9987 0.9938 0.9962 0.9985 0.9958 0.9971
MEDICATION 0.9991 0.9954 0.9972 1 0.9959 0.9980
DOSAGE 0.9929 0.9897 0.9913 0.9959 0.9920 0.9939
ANTISPASMODICS 0.9962 1 0.9981 0.9978 1 0.9989
DRE 0.9967 0.9990 0.9978 0.9958 0.9989 0.9973

PREPARATION 0.9892 0.9914 0.9903 0.9879 0.9928 0.9904
DEVICE 0.9991 0.9991 0.9991 0.9980 0.9979 0.9979

EXTENT 0.9883 0.9951 0.9916 0.9960 0.9967 0.9963
COLONOSCOPIC FINDINGS b

LESION 0.9881 0.9953 0.9916 0.9888 0.9950 0.9918
LOCATION 0.9987 0.9938 0.9962 0.9985 0.9958 0.9971
SHAPE 0.9991 0.9954 0.9972 1 0.9959 0.9980
COLOR 0.9929 0.9897 0.9913 0.9959 0.9920 0.9939
SIZE 0.9962 1 0.9981 0.9978 1 0.9989
NUMBER 0.9967 0.9990 0.9978 0.9958 0.9989 0.9973
BIOPSY 0.9892 0.9914 0.9903 0.9879 0.9928 0.9904
NEGATION 0.9991 0.9991 0.9991 0.9980 0.9979 0.9979
MICROAVG 0.9883 0.9951 0.9916 0.9960 0.9967 0.9963

Fig. 3  Performance of pre-trained word embedding
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initial planning phase of this study, we assumed that 
275,668 unannotated data could improve performance 
because it contained real-world synonyms and acronyms 
used in our institution. We compared LSTM, Bi-LSTM, 
Bi-LSTM-CRF, BioBERT, and BioBERT-CRF models to 
select the one with the best performance for colonoscopy 
reports. Although BioBERT performed much better than 
Bi-LSTM without a CRF layer, the performance of Bi-
LSTM with a CRF layer was slightly higher than others. 
We applied pre-trained word embedding using large unla-
beled data to the Bi-LSTM-CRF model. Therefore, the 
NER model with pre-trained word embedding performed 
better for most labels than the model without pre-trained 
word embedding. Although the deep learning-based NLP 

method performs much better than the traditional NLP 
method, the currently available public data is insufficient 
to cover the characteristics of various medical specialties. 
The method in this study could be effective in the absence 
of a shared colonoscopy dataset.

This study has the following limitations. First, the study 
was conducted in a single institution, so it is possible that 
the model could not handle colonoscopy reports from 
other institutions. They can differ in many aspects, such 
as writing patterns, templates, and vocabulary. Although 
our model may not apply to other colonoscopy reports 
directly, our approach can be used in others. Second, 
there are no available colonoscopy datasets to compare 
the performance of our model. Evaluating the perfor-
mance of the model is not possible, but we believe that 
the performance level of our model is sufficient for clini-
cal applications. Third, we need to consider synonyms, 
acronyms, and typos and be able to process them. There 
are various synonyms and acronyms to describe colo-
noscopic findings and anatomical sites; for example, 
"D-colon", "D colon", "Desc. colon", "DC", "mid-d-colon", 
and "proximal-d-colon" for descending colon; "T-ileum", 
"T ileum", "TI", and "T.I." for terminal ileum; and "H-flex-
ure", "H flexure", "H-Fx", and "HF" for hepatic flexure.

Conclusions
Realizing the full potential of precision medicine 
begins with identifying better ways to collect, share, 
and make decisions based on data [70]. Although the 

Table 9  Comparison by the amount of data (F1 score)

a The best results are marked in bold

Labels D1 D2 D3 D4 D5

COLONOSCOPIC FINDINGS a

LESION 0.9366 0.9453 0.9530 0.9530 0.9564
LOCATION 0.9545 0.9627 0.9681 0.9711 0.9722
SHAPE 0.9739 0.9782 0.9772 0.9797 0.9809
COLOR 0.9653 0.9736 0.9749 0.9636 0.9720

SIZE 0.9879 0.9874 0.9867 0.9875 0.9862

NUMBER 0.9480 0.9653 0.9791 0.9713 0.9717

BIOPSY 0.9975 0.9985 0.9988 0.9989 0.9992
NEGATION 0.9772 0.9784 0.9845 0.9815 0.9858
MICROAVG 0.9892 0.9912 0.9921 0.9921 0.9924

Fig. 4  Comparison by the amount of data
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importance of data has been increasing, clinical data 
is still challenging to use as many portions of EHR 
remain unstructured. Clinical NLP is the key to unlock-
ing the evidence buried in clinical narratives. With 
the advancements in deep learning techniques, NLP 
research has achieved remarkable performance in the 
clinical domain. However, obtaining sufficient pub-
lic data for training is difficult. The currently available 
public data is insufficient to cover the characteristics of 
various medical specialties.

This study addresses the first deep learning-based 
NLP method for NER in colonoscopy reports. It is an 
important problem for clinical utility, such as cancer 
risk prediction, follow-up recommendation, and quality 
measurement. We applied a deep learning-based clinical 
NER with pre-trained word embedding. The method in 
this study achieves promising results that demonstrate it 
can be helpful for various practical purposes, including 
clinical document summarization and automated struc-
tured report generation.
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