
Yu and Huang ﻿
BMC Medical Informatics and Decision Making           (2023) 23:43  
https://doi.org/10.1186/s12911-023-02126-2

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Medical Informatics and
Decision Making

Towards more efficient and robust 
evaluation of sepsis treatment with deep 
reinforcement learning
Chao Yu1*† and Qikai Huang2*† 

Abstract 

Background  In recent years, several studies have applied advanced AI methods, i.e., deep reinforcement learning, in 
discovering more efficient treatment policies for sepsis. However, due to a paucity of understanding of sepsis itself, 
the existing approaches still face a severe evaluation challenge, that is, how to properly evaluate the goodness of 
treatments during the learning process and the effectiveness of the final learned treatment policies.

Methods  We propose a deep inverse reinforcement learning with mini-tree model that integrates different aspects 
of factors into the reward formulation, including the critical factors in causing mortality and the key indicators in the 
existing sepsis treatment guidelines, in order to provide a more comprehensive evaluation of treatments during learn-
ing. A new off-policy evaluation method is then proposed to enable more robust evaluation of the learned policies by 
considering the weighted averaged value functions estimated until the current step.

Results  Results in the MIMIC-III dataset show that the proposed methods can achieve more efficient treatment poli-
cies with higher reliability compared to those used by the clinicians.

Conclusions  A more sound and comprehensive evaluation of treatments of sepsis should consider the most critical 
factors in infulencing the mortality during treatment as well as those key indicators in the existing sepsis diagnosis 
guidelines.

Keywords  Deep reinforcement learning, Inverse learning, Sepsis, Intensive care units

Background
Defined as severe infection causing life-threatening acute 
organ failure, sepsis is a leading cause of mortality and 
associated healthcare cost in critical care [1]. According 

to the latest report from the World Health Organization, 
in 2017 there were 48.9 million cases of sepsis and 11 
million sepsis-related deaths worldwide, accounting for 
almost 20% of all global deaths [2]. While a large number 
of international organizations have devoted significant 
efforts to provide general guidance over the past 20 years, 
physicians at practice still lack universally agreed-upon 
decision support for sepsis treatment. This dilemma has 
intrigued an increasing interest in applying advanced 
machine learning and data analysis methods to deduce 
more efficient treatment policies for sepsis patients. Par-
ticularly, Reinforcement Learning (RL) [3] has emerged 
as a promising solution due to its capability of address-
ing treatment problems characterized with a sequential 
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decision making process and evaluative delayed feed-
backs [4, 5].

There are a number of studies that have applied RL in 
deriving more efficient treatment policies for sepsis in 
the past years, utilizing algorithms such as model-based 
Policy Iterations (PI) [6, 7], Deep Deterministic Policy 
Gradient (DDPG) [8], Dueling Double Deep Q-Networks 
(DDDQN) [9, 10] and Proximal Policy Optimization 
(PPO) [11]. Usually, RL could discover treatment policies 
that resemble those by the clinicians most of the time, 
yet sometimes suggest novel policies that are more effi-
cient but rarely adopted by clinicians in practice. While 
comprehensive qualitative and quantitative evaluations 
have been conducted to verify the benefits of RL-driven 
policies, there is still an on-going debate on whether 
the evaluation is sound enough to support the claims of 
effectiveness and robustness of the derived treatment 
policies [12].

Evaluation in this type of medical decision making nor-
mally has two aspects of interpretations. First, to enable 
the functionality of RL algorithms, providing an accurate 
evaluation of the actions (i.e., treatments) during learning 
is of great importance. This issue stems from the reward 
formulation problem in general RL research, which is 
exaggerated in healthcare domains as there are normally 
numerous indexes that can potentially influence the ther-
apeutic decisions, and it is usually unclear which indexes 
are the most critical and what different roles of these 
indexes can play in consisting of a reward function that 
lead to the final treatment performance. The other crucial 
issue is the evaluation of the final learned treatment poli-
cies. Due to high cost of experiments and uncontrolled 
risks of treatments, it is infeasible to estimate the policy 
performance by running it directly on the patients. Thus, 
it is needed to estimate how the learned policies might 
perform on retrospective data before testing them in real 
clinical environments. The task of estimating the perfor-
mance of some evaluation policy given data generated by 
a different behavior policy is known as the challenging 
off-policy evaluation (OPE) problem that has been widely 
investigated in the RL community [13]. In medical set-
tings, the OPE problem becomes even more tricky, since 
many factors such as state representations, estimator 
variance and confounders would result in unreliable or 
even misleading evaluation of the quality of a treatment 
policy [14, 15]. As such, how to develop more robust OPE 
methods is the key issue to guarantee the success of RL 
methods in healthcare applications.

In this work, we address the above evaluation problems 
in sepsis treatment by first proposing a deep inverse RL 
with Mini-tree (DIRL-MT) model to infer the potentially 
best reward functions from retrospective real medical 
data. In the model, the MT component discovers the 

most critical factors in influencing the mortality dur-
ing treatment, while the DIRL component infers the 
complete reward function consisting of those critical 
factors and key indicators in the existing sepsis diagno-
sis guidelines. In this way, a more sound and compre-
hensive evaluation of treatments during learning can be 
made through mining the inherent treatment-mortality 
patterns from retrospective data and utilizing the prior 
domain knowledge from clinical practice. We empirically 
evaluate the proposed DIRL-MT model in the adminis-
tration of intravenous (IV) and maximum vasopressor 
(VP) for sepsis patients using in the MIMIC III dataset 
[16]. Results show that the learned policy can reduce 
mortality compared to those given by the clinicians by 
a large margin. As our second contribution, we propose 
a new estimator, the dueling weight (DW), to reduce the 
variance of general OPE estimators. Unlike the exist-
ing estimators that only consider the value estimation at 
current time step, DW uses the difference of estimation 
between the past average value function and the current 
value function to represent the model estimation, and 
thus can incorporate learning information in a longer 
horizon into the model estimation process in order to 
obtain a more accurate model for variance reduction. We 
theoretically prove the upper bound bias and lower vari-
ance of DW, and experimentally verify its effectiveness in 
the sepsis treatment problem.

Related works
RL has also been applied to solve the sepsis treat-
ment problem by a number of studies in recent years. 
Komorowski et al. [6] applied model-based policy itera-
tion in a discrete state and action space to learn the sepsis 
treatment strategy. Raghu et al. [9, 10] directly trained the 
policy in continuous state space using the Dueling Double 
DQN method. The authors [11] estimated the transition 
model in a continuous state space, and applied direct pol-
icy optimization methods to derive a treatment strategy. 
Li et al. [17] provided an online partially observable MDP 
method to take into account uncertainty and history 
information in sepsis treatment. Utomo et  al. [18] used 
Monte Carlo to generate a real-time treatment recom-
mendation and proposed a graphical model to show tran-
sitions of patient health conditions and treatments for 
better explainability. Peng et al. [19] applied the mixture-
of-experts framework [20] in sepsis treatment by auto-
matically switching between kernel learning and DRL 
depending on patients’ treatment history. More recently, 
Liu et al. [21] combined model-based and model-free RL 
policies for more efficient sepsis treatment by dynami-
cally switching between these two policies depending on 
the states of patients. However, all these studies relied on 
some numerical reward functions that must be explicitly 
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defined a priori to indicate the goal of treatments. On 
the contrary, our work applied IRL methods to infer the 
reward functions of clinicians during their treatment 
process. The benefits of IRL methods lie in the dynamic 
estimate of different factors that should be considered to 
evaluate the decision making performance. Moreover, 
unlike the existing works that directly used the normal 
OPE methods to evaluate the performance of the final 
learned policies, we proposed a new OPE estimator to 
reduce the variance of general OPE estimators.

Methods
Notations
The sepsis treatment problem can be modeled as a 
sequential decision making problems by episodic MDPs 
with a finite horizon, which can be defined by a tuple 
〈S,A,P,R, γ 〉 , where S and A are the state and action 
space, P : S × A× S → R is the transition function with 
P(st+1|st , at) defined as the probability of reaching state 
st+1 after taking action at in state st at time t, 
R : S × A → R is the mean reward function with R(st , at) 
defined as the immediate received reward after taking 
action at in state st , and γ ∈ [0, 1] is the discount factor. 
A (stationary) policy π : S × A → [0, 1] is a stochastic 
mapping from states to actions, with π(at |st) being the 
probability of taking action at in state st . Let µ be the ini-
tial state distribution. The distribution of a T-step trajec-
tory ξ = (s0, a0, r0 . . . , sT−1, aT−1, rT−1, sT ) is denoted as 
Pπ
ξ  , or simply as ξ ∼ (µ,π) . We use interchangeably 

Eξ∼(µ,π) , EPπ
ξ
 , or Eπ

ξ  to denote the expectation over tra-
jectory distributions. Meanwhile, the T-step discounted 
value of π is defined as: υπ

T = Eξ∼(µ,π)[
∑T

t=1 γ
t−1rt ] , 

where s0 ∼ µ and rt has mean value of R(st , at)  
conditioned on (st , at) . When the value of π is condi-
tioned on s0 = s (or a0 = a ), the future expected value of 
a state (and an action) is expressed as V π

T (s) (and 
Qπ
T (s, a) ). If T is of order O(1/(1− γ )) , then υπ

T  approxi-
mates the infinite-horizon performance υπ

∞ [22]. When 
the true parameters of the MDPs are known,  
the value of the target policy can be computed by the 
Bellman equations: Vt(st) = Eat∼π(.|st )[Q(st , at)] and 
Qt(st , at) = Est+1∼π(.|st ,at )[R(st , at)+ γVt(st+1)].

There are a set of T-step trajectories M = ξ(i)ni=1  
generated by a fixed stochastic policy πb , known as the 
behavior policy. The goal of OPE is to find an estima-
tor υπe

T  that makes use of the data generated from run-
ning πb to estimate the performance of another 
evaluation policy πe . The estimator will have good per-
formance if it has low mean square error (MSE), i.e., 
MSE = E

P
πb
ξ
[(υ̂

πe
T − υ

πe
T )2] , where υ̂πe

T  and υπe
T  denote an 

estimated value and the real value of πe , respectively.

One major type of approaches is Importance Sampling 
(IS) that uses a cumulative importance ratio term to cor-
rect the mismatch between the distributions under the 
behavior policy and the target policy [23]. In the IS esti-
mator, the performance of πe can be expressed as the 
mean of n trajectories: V πe

IS
=

1
n

∑
n

k=1 V
πe(k)
IS

=
1
n

∑
n

k=1∑
T

t=1 ω
(k)
0:t γ

t r
(k)
t  , where ω(k)

0:t =
∏T

t=0
πe(at |st )
πb(at |st )

 is cumula-
tive importance ratio of the kth trajectory, and r(k)t  is the 
expected reward function at time t of the kth trajectory. 
Since IS corrects the difference between πb and πe based 
on the accumulated reward along the whole trajectory, it 
can provide unbiased estimate of the value of πe . How-
ever, IS methods are notorious for its high variance, espe-
cially when there is a big difference between the 
distributions of the evaluation and behavior policies, and 
the horizon of the RL problem goes long [24]. Doubly 
Robust (DR) methods are then proposed by adding esti-
mated value functions into the IS estimator in order to 
achieve low variance of IS and low bias of model-based 
methods [22]. In the DR estimator V πe

DR = 1
n

∑n
k=1 V

πe(k)
DR  , 

where V πe(k)
DR

= V̂ (s)+
πe(a|s)
πb(a|s)

(r − R̂(s, a)) . Here, V̂ (s) = Ea∼πb 

[

πe(a|s)
πb(a|s)

R̂(s, a)] , and R̂(s, a) is an estimate of the observed 
stochastic return r, and can be estimated possibly by per-
forming regression over the n T-step trajectories. Pro-
vided R̂(s, a) is a good estimate of r, the magnitude of 
r − R̂(s, a) can be much smaller than r, which can lead to 
lower variance of the DR estimator compared to IS. Omit-
ting the notation of trajectory k hereafter, the single-step 
updated formula of DR can be extended to sequential set-
tings as VT−t+1

DR := V̂ (st)+ ω0:t(rt + γVT−t
DR − Q̂(st , at)) 

[22]. While several extensions to DR have been proposed 
in recent years [25], the DR estimators still face the prob-
lem in general model-based estimators regarding how 
well the value functions can be estimated.

To lower the variance of IS, a biased but consistent esti-
mator Weighted Importance Sampling (WIS) [26] is pro-
posed. For each trajectory, the estimates given by the 

step-wise WIS are V πe
step−WIS =

∑T
t=0

ω
(k)
0:t

ωWIS
t

γ t r
(k)
t  , where 

ωWIS
t =

∑n
k=1 ω

(k)
0:t /n denotes the average cumulative 

important ratio at horizon t. Similarly, the DR can also be 
improved by defining ωWDR so as to obtain the step-wise 
Weighted Doubly Robust (WDR) estimator as 
VT−t+1
WDR = V̂ (st)+

∑T
t=1 ω

WDR(rt + γVT−t
DR − Q̂(st , at)).

Data acquisition and preprocessing
Historical data of 14012 patients were obtained from the 
multi-parameter intelligent monitoring in intelligent care 
(MIMIC-III v1.4) database [16], excluding those admis-
sions who were under the age of 18, or obtained the failed 
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treatment process. The summary information about the 
patients is shown in Table 1.

We use seven different machine learning methods to fit 
the physiological measured values at different measure-
ment times, including support vector machine (SVM), 
k-nearest neighbor (KNN), decision tree regressor 
(DTR), logistic regression (LR), gradient boosting tree 
(GBDT), extra trees regressor (ETR), and random forest 
regressor (RFR). The results of the corresponding loss 
values are shown in Table 2. We finally use ETR to fit his-
torical data of every patient.

After preprocessing, we can obtain complete data for 
each patient and take 1 hours as a timestep interpola-
tion on a patient’s historic trajectory, from admission to 
discharge.

The DIRL‑MT model
We focus on RL solutions to derive more efficient poli-
cies for intravenous (IV) fluids and maximum Vasopres-
sor (VP) management through inferring the possibly 
optimal reward functions during learning. To this end, 
we define a 5× 5 action space for the medical treat-
ments covering the space of IV fluids and maximum VP 
in a given one hour window. This action space ranges 
from zero to the maximum allowed IV fluids and VP. A 
patient’s state is composed of 30 features from the items 
of Demographics, Lab Values and Vital Signs in the 
MIMIC-III database. To define a clinically guided reward 
function, a possible way is to use the existing criteria for 
diagnosing sepsis to indicate how the patient’s condi-
tions have improved after a certain treatment has been 

conducted. Positive rewards should be given at interme-
diate timesteps for improvements in a patient’s wellbeing, 
and negative rewards for deterioration. Previous studies, 
e.g. [9, 11], defined the rewards on severity scores, such 
as SOFA and lactate levels, by penalizing high SOFA 
scores and lactate as well as increases in SOFA score 
and lactate. Considering the indicators for diagnosing 
septic shock in the third international consensus defini-
tions for sepsis and septic shock (Sepsis-3) [27], we simi-
larly define several different reward functions in Table 3, 
where the parameters Wi are the weights of different 
indicators. In specific, reward3.0 =

∑1
i=0Witanh(Si) , 

where S0 = S
QSOFA
t − S

QSOFA
t+1  denotes the variation of 

Quick Sequential Organ Failure Assessment (SOFA), 
and S1 = SSOFAt − SSOFAt+1  is the variation of SOFA, while 
reward3.0+ =

∑3
i=2Witanh(Si) indicates the indicators 

for diagnosing septic shock, where S2 = SMAP
t+1 − SMAP

t  
and S3 = SLactatet+1 − SLactatet  . However, all these indicators 
only reflect the best known clinical practice that might be 
far from being optimal, and represent short-term treat-
ment effect that is not necessarily correlated with the 
final mortality outcome.

In order to provide a more comprehensive evaluation 
of the treatments during learning, we propose the DIRL-
MT model in Fig.  1, where the MT component discov-
ers the most critical indicators in affecting the long-term 
outcome of mortality, and the DIRL component infers 

Table 1  Basic information statistics for patients that fulfilled the 
sepsis criteria

%Male Mean age Total persons Mortality ratio

Survivors 56.92 61.17 11980 14.5%

Non-survivors 55.70 67.95 2032

Total-patients 56.77 62.01 14012

Table 2  Comparison of loss values of seven different machine learning methods in different physiological characteristics

Features SBP RR GCS MAP HeartRate DBP MBP

SVM(C = 30.0) 80.38 6.15 0.32 173.24 14.07 31.39 173.24

KNN 112.48 11.40 1.29 187.28 23.61 40.13 187.28

DTR 133.19 7.01 0.13 211.81 14.61 46.93 211.81

LR(C = 30.0) 309.59 34.29 3.01 334.19 40.31 102.86 334.19

GBDT 107.67 7.50 0.16 187.07 17.40 38.77 187.07

ETR 89.09 5.36 0.17 154.38 13.95 30.99 157.57

RFR 92.52 6.57 0.40 146.31 14.00 31.39 139.06

Table 3  Definition of different reward functions

Indicator criterion Rewards

Sepsis3.0 Reward3.0 =
∑

1

i=0
Witanh(Si)

Sepsis3.0+ Reward3.0+ =
∑

3

i=2
Witanh(Si)

Sepsis4.0 Reward4.0 =
∑

5

i=4
Witanh(Si)

Sepsis(3.0+ 3.0
+) Reward3.0+3.0+ = reward3.0 + reward3.0+

Sepsis(3.0+ 4.0) Reward3.0+4.0 = reward3.0 + reward4.0

Sepsis(3.0+ + 4.0) Reward3.0++4.0 = reward3.0+ + reward4.0

Sepsis(all) Rewardall = reward3.0 + reward3.0+ + reward4.0
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the correlation among different indicators and learns the 
treatment policies by dynamically adapting the weights 
of the indicators in the reward function. The MT com-
ponent in the experiments discovers that the Partial 
Pressure of Oxygen (PaO2) and Prothrombin Time (PT) 
are the most important indicators in influencing sep-
sis mortality. As such, we define a new reward func-
tion reward4.0 as weighted sum of S4 = SPaO2

t+1 − SPaO2
t  

and S5 = SPTt+1 − SPTt  that represent the variation of 

PaO2 and PT, respectively. Then, several combination 
of reward functions can be defined by combing the cor-
responding indicators as shown in Table  3. Particularly, 
combining the critical indicators from MT with some 
key indicators in the existing sepsis diagnosis guidelines 
(e.g., reward3.0+4.0 ) can thus strike a balance of treatment 
evaluation between short-term effect and long-term 
mortality.

Fig. 1  Overview of the DIRL-MT model
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Algorithm  1 gives a detailed process of the DIRL 
component, using the Dueling Double Deep Q Network 
(DDDQN) [28, 29] for policy learning and the Bayes-
ian Inverse RL (BIRL) to infer the optimal reward func-
tion (i.e., updating the weights of reward indicators). 
More specifically, DIRL continuously minimizes the 
loss ( Qest_tar

loss  ) between estimated Q_value ( Qest ) and the 
target oriented Q_value ( Qtar ) over time horizon T by 
Eq. (1),

where

and

represent the Q values updated using Double DQN and 
the Dueling DQN network, respectively.

The DW estimator
We propose a new OPE estimator, the Dueling Weight 
(DW), in order to provide a more robust evaluation of 
the learned policies. Unlike all the existing OPE esti-
mators, e.g., the DR, which only consider the estima-
tion in the value function at current single time step, 
thus neglecting the average performance of a policy for 
a longer horizon, DW enables integration of rich pre-
vious information into the model estimation process 
in order to further reduce the variance. Formally, let 
Q̂means(st , at) =

1
t+1

∑t
i=0 γ

iQ̂(si, ai) denote the weighted 
averaged value functions estimated until step t. The DW 
estimator adopts the difference between the current esti-
mated value Q̂(st , at) and Q̂means(st , at) to indicate how 
well the value functions at current step are estimated 
against the averaged value functions in the previous 
steps:

The benefit of the DW estimator is that there is no recur-
sive backup as in the DR estimator proposed in [22], 
and thus is easier to interpret and implement. We then 
provide the explicit form of expected value and variance 
of DW estimator for stochastic behavior policy πe and 
deterministic evaluation policy πb , and analyze its upper 
bound bias and lower variance compared to the existing 
DR estimator.

(1)Q
est_tar
loss = argmin

θ;β ,α

1

T

T∑

t=1

(
Qest − Qtar

)2
.

(2)

Qtar
t+1 = rt+1+γQ

(
st+1, argmax

a∈A

(
Qest
t+1

)
,
(
θ−t ;β−

t ,α
−
t

))
,

(3)Qest
t+1 = V (st+1; θt ,βt)+ A(st+1, a; θt ,αt)

(4)V
πe
DW = ω0:tγ

t
(
rt + Q̂(st , at)− Q̂means(st , at)

)

Conclusion 1. The expected value and variance of the 
DW estimator for πe can be written as:

where υπe
T−1 = E

πb
ξ [

∑T−1
t=1 ω0:tγ

t rt ] and can be replaced  
by E

πe
ξ [

∑T−1
t=1 γ t rt ] under evaluation policy πe ,  

Vback
t = rt + γ rt−1 + · · · + γ t r0 , φt+2 = γ t −

γ t+···+γ 0

t  ,  
�(st , at) = Q̂(st , at)− Q(st , at) , �1(st , at) = Q(st , at) 
−Qmeans(st , at) , and �2(st , at) = �(st , at)−�means

(st , at) , where �means =
1

t+1

∑t
i=0 γ

i�(si, ai).

Proof  See the Additional file 1: Appendix for a complete 
proof. �

Bias. Once E(V πe
DW ) has been computed, we can have 

Bias(V
πe
DW

) = E(V
πe
DW

)− υ
πe
T−1 = E

πb
ξ [

∑
T−1
t=1 ω0:tV

back
t

+
∑

T−1
t=1 φt+2ω0:t�(st , at)] . In general, γ ≈ 1 , then 

φt+2 ≈ 0 and Vback
t ≈ rt + rt−1 + · · · + r0 . As such, 

Bias(V
πe
DW ) can be approximated by Eπb

ξ [
∑T−1

t=1 ω0:tV
back
t ] , 

which is upper-bounded by Bias(V πe
DW ) ≤ Trmax

t  , where 
rmax
t  is the maximum positive feedback from the envi-

ronment. It is clear that the upper bound bias of the DW 
estimator is related to the length of trajectory T and the 
maximum reward value function rmax

t  . As the trajectory 
length T increases, the bias of the DW estimator increases 
linearly, indicating a complexity of O(T).

Variance. When πb is known, γ = 1 for all st and at , 
nVar(V

πe
DW ) can be written as the form of Conclusion 1. 

For DR estimator, its variance can be given as 
nVar(V

πe
DR

) =
∑

T

t=1 ω
2
0:t [r

2
t − 2Q(st , at)rt + Q(st , at)

2

+Var(Q(st , at)+ δ�(st , at))] , where δ = 1−
πb(at |st )
π̂b(at |st )

= 0 
[30]. As �(st , at) → 0 when the learning converges, we can get  
nVar(V

πe
DR

) =
∑

T

t=1 ω
2
0:t [r

2
t − 2Q(st , at)rt + 2Q(st , at)

2] . From 
the Additional file  1: Appendix, the other form of DW  
variance can be written as nVar(V

πe
DW

) =
∑

T

t=1 ω
2
0:t

[(Qmeans(st , at)+�(st , at))
2 − 2 ∗ (Qmeans(st , at)

(5)

E(V
πe
DW ) = υ

πe
T−1 + E

πb
ξ

[
T−1∑

t=1

ω0:tV
back
t +

T−1∑

t=1

φt+2ω0:t�(st , at)

]

(6)

nVar(V
πe
DW

) =E
πb
ξ

T∑

t=1

ω2
0:t

[(
2(�2(st , at)− Q(st , at)

)

(
Q(st , at)+�(st , at)+ rt

)

+

(
�1(st , at)+ rt

)2

−

(
�(st , at)+ r

2
t − Q(st , at)

2
)]
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+�means(st , at)) ∗�(st , at)− 2 ∗ (Qmeans(st , at)

+�means(st , at)) ∗ (Q(st , at)+ rt)] . The difference D(ξ) 
between the variances of DR and DW thus can be given as 
follows after some derivation:

Since �(st , at) → 0 and �means(st , at) =
1

t+1

∑
t

i=0

γ i�(si, ai) → 0 . D(ξ) can be reduced as:

It is clear that D(ξ) depends on variables including 
the accumulated reward, the accumulated Q and  
Qmean . With the convergence of RL algorithms,  
there are two scenarios: (1) 

∑T
t=1 rt ≥ 0 and (2) ∑T

t=1 rt < 0 . In the former case, we can have 
∑T

t=1Q(st , at) ≥ 0 and 
∑T

t=1Qmeans(st , at) ≥ 0 . When 
γ ≈ 1 , then Q(st , at)− rt ≈ Q(st+1, at+1) ≥ 0 . Mean‑ 
while, 

∑
T

t=1�1(st , at) =
∑

T

t=1[Q(st , at)− Qmeans(st , at)]

D(ξ) =

T∑

t=1

ω2
0:t

[
2Q(st , at)

2 + r2t + 2�means(st , at)
(
Q(st , at)

+�(st , at)+ rt

)
− 2Q(st , at)rt + 2Qmeans(st , at)

(
Q(st , at)+ rt

)
− Qmeans(st , at)

2 −�(st , at)
2
]
.

D(ξ) =

T∑

t=1

ω2
0:t

[
2Q(st , at)

(
Q(st , at)− rt

)
+ r2t

+ Qmeans(st , at)
(
�1(st , at)+ Q(st , at)+ 2rt

)]

∑
T

t=1[(Q(st , at)−
1
t
(tQ(st , at)))] = 0 . Then, we can safely 

get D(ξ) > 0 . We can also derive that 
∑T

t=1Q(st , at) < 0 , 
∑T

t=1Qmeans(st , at) < 0 , and 
∑T

t=1�1(st , at) < 0 hold 
for 

∑T
t=1 rt < 0 using the same calculation, and get 

D(ξ) > 0 . Based on this analysis, we can conclude that 
D(ξ) theoretically is greater than zero, which implies that 
the DW estimator performs better than the DR estimator 
in terms of variance. We also propose the Dueling Weight 
Doubly Robust (DWDR) estimator V πe

DWDR by balancing the 
above two aspects. Following the DR definition in [25], 
which is equivalent to the recursive version in [22], we have:

The mortality estimation process
In order to evaluate the performance (i.e., mortality) of 
different treatment policies, a relationship function of 
mortality versus expected return using the historical 
data should be empirically derived. Figure  2 shows the 
overall construction process, where 80% data set is used 
for updating Q values using the SARSA algorithm and 
the remaining 20% data set for estimating the mortality 

(7)

V
πe
DWDR = ω0:tγ

t rt − ω0:tγ
t Q̂(st , at)− ω0:t−1γ

t V̂ (st)

+ ω0:tγ
t
(
rt + Q̂(st , at)− Q̂means(st , at)

)

= ω0:tγ
t
(
2rt − Q̂means(st , at)

)
− ω0:t−1γ

t V̂ (st)

Fig. 2  The calculation process of mortality versus Q values
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versus return relationship. During the update process, 
patient’s historical trajectories are randomly sampled 
to break the correlation between every tuple. To com-
pute the Q values, the states are first clustered using 
k-means++ algorithm. Different values for K (number 
of clusters) were tested using the Sum of Squared Errors 
(SSE) and finally we chose K = 300 due to a trade-
off between fast descending speed and lower SSE. We 
further label the state of the patient as 1 if it is part of 
a trajectory where a patient died, and as 0 if the patient 
survived. The values Q(st , at) are separated into discrete 
buckets according to different labels after state cluster-
ing. The average mortality and average Q(st , at) in each 
bucket are then used to generate a functional relationship 
between the mortality and the Q values, which presents 
an inverse relationship, i.e., a higher expected return 
indicates a better policy and thus a lower mortality.

Results
In Algorithm 1, we use two hidden layers of size 20, with 
small batch normalization for each layer. Learning rate α 
is 0.1, memory size M is set to 200 and batch size B is 
32. RMSProp optimizer is applied to maximize the value 
functions, while SGD to optimize the weight vectors. The 
training process of DIRL lasts for 100 episodes, with 2000 
transitions for each episode. As shown in the left subfig-
ure in Fig. 3, as Q(st , at) value increases, the average mor-
tality of patients decreases gradually. The zero Q(st , at) 
value of clinician strategy on the test data set corresponds 
to 14.6% ± 0.5% mortality, which is consistent with 14.5% 
mortality from the 14012 patients. The right subfigure 
in Fig. 3 shows the training loss of the DIRL component. 
It is clear that the DIRL method can infer the poten-
tially optimal reward functions by searching the best 
weights among different indicators. We then compute the 

expected return of the final learned policy using the DR 
estimator and then map the result to the mortality ver-
sus return curve in order to get the estimated mortality, 
which is given by Table 4.

Figure 4 plots the comparison between the final learned 
RL strategies and the clinician strategy. Every sub-figure 
shows the statistical sum of every discrete action on the 
test data set. The dosage of a drug corresponds to the 
frequency the corresponding action is selected by the 
strategy. The result in Fig. 5 shows the effectiveness of the 
proposed DW estimator in evaluating the performance of 
the learned policies.

Discussion
From the results, we can see that the treatment policy 
derived from reward3.0++4.0 has the highest excepted 
return value, with a mortality that is about 3.2% lower 
than that of the clinician policy. This result confirms that 
the two indicators (PaO2 and PT) discovered by the MT 
component can play an important role during the treat-
ment of sepsis patients. When these two indicators are 

Fig. 3  Left: The negative relationship between cumulative average Q(st , at) value and mean of patients mortality; Right: The training loss using 
different reward functions

Table 4  Expected return and mortality under different polices

The bold indicates the best performance, while the italics indicate the 95% 
confidence interval

Policies VDR Mortality

Reward3.0 −0.0284 14.5% ± 0.6%

Reward3.0+ −0.1800 17.2% ± 0.5%

Reward4.0 −0.0253 14.7% ± 0.6%

Reward3.0+3.0+ 0.0291 14.1% ± 0.6%

Reward3.0+4.0 0.0365 13.9% ± 0.5%

Reward3.0++4.0 0.2307 11.3% ± 0.4%

Rewardall 0.1546 12.2% ± 0.4%

Clinician −0.0294 14.5% ± 0.5%
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excluded from reward3.0++4.0 or the rewardall strategy, 
the mortality will increase by 1.9–5.9%. On the other 
hand, however, considering these two indicator only 
would also incur a mortality of 14.7% , which suggests that 
the benefits of making a balance of treatment evaluation 
between short-term effect and long-term mortality.

From the action distribution map in Fig.  4, we can 
observe that the clinician applies a higher amount of 
drugs in order to save the patients and action (4, 3) (cor-
responding to a high dosage of IV and VP) appears in the 
highest frequency. However, strategies of other seven 
reward value functions consider that the (2, 2) (corre-
sponding to a medium dosage of IV and VP) action is 
more appropriate. Generally, RL recommends 40% less 
amount of IV fluids and 35% less amount of VP than that 
by the clinician, which indicates that RL will take more 
comprehensive consideration of the patient’s state to take 
drug only when it is necessary.

In terms of evaluation robustness, the results show that 
the IS estimator has highest variance than other estima-
tors, which is mainly caused by the excessive cumulative 
importance ratio between πb and πe for a long-horizon 
trajectory of sepsis patient. The variance using the pro-
posed DW estimator is superior to all alternative esti-
mators. The significant noise introduced in the data 
processing process and the RL process cause a bias of IS 
and significant variance of DR. While DWDR has raised 
the variance a bit compared to DW, its bias can be fur-
ther reduced, which shows the benefits of blending DW 
and DR to sacrifice minor variance for a better perfor-
mance in bias.

Conclusion
RL has been considered to be a promising solution to the 
discovery of novel treatment strategies that can poten-
tially reduce the mortality of sepsis patients. To meet this 
commitment, however, more efficient and robust evalu-
ation of the learning process as well as the final learned 
strategies must be properly addressed. Our work provides 
a critical insight that the combination of both inherent 
patterns in retrospective treatment data as well as the 
prior domain knowledge in clinical practice might be a 
promising way to achieve sound evaluation of treatments 
during learning. We also show that incorporating learning 
information in a longer horizon into the model estimation 
process helps improving the evaluation of final learned 
policies. Our methods have suggested some novel treat-
ment strategies that are believed to be helpful in reducing 
the mortality. In our following step of work, we will con-
duct more comprehensive validation of our approach and 
seek its potential clinical applications in hospitals.

Fig. 4  Comparison of learned strategies and the clinician strategy

Fig. 5  The performance of different OPE estimators
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