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Abstract 

Background  The measurement of drug similarity has many potential applications for assessing drug therapy similar‑
ity, patient similarity, and the success of treatment modalities. To date, a family of computational methods has been 
employed to predict drug-drug similarity. Here, we announce a computational method for measuring drug-drug simi‑
larity based on drug indications and side effects.

Methods  The model was applied for 2997 drugs in the side effects category and 1437 drugs in the indications 
category. The corresponding binary vectors were built to determine the Drug-drug similarity for each drug. Various 
similarity measures were conducted to discover drug-drug similarity.

Results  Among the examined similarity methods, the Jaccard similarity measure was the best in overall performance 
results. In total, 5,521,272 potential drug pair’s similarities were studied in this research. The offered model was able to 
predict 3,948,378 potential similarities.

Conclusion  Based on these results, we propose the current method as a robust, simple, and quick approach to iden‑
tifying drug similarity.

Keywords  Drug similarity, Similarity prediction, Indication, Side effect

Background
The similarity of drugs in medicine has gained significant 
attention in recent years because of their use in medical 
information processing and clinical reasoning [1]. Drug 
similarity trials aim to find drugs with identical pharma-
cological properties to the drug of interest and are moti-
vated by the idea that similar drugs should be equivalent 
in the mechanism of action, have similar side effects as 
well as indications, and are effective in the treatment 

of a specific set of diseases [2, 3]. Drug-drug similarity 
has extensive application in various fields, such as drug 
repositioning, prediction of drug-drug interaction, rec-
ognition of drug target, prediction of drug side effects, 
and prediction of drug indications. Indications and side 
effects are key elements that can be used to investigate 
drug similarity [4, 5].

The indications based on which drugs are prescribed 
are valid reasons for using these drugs. One crucial 
problem in drug development is deducing possible new 
clinical targets for accepted drugs. A detailed correla-
tion between prescription and diagnosis is not accessed 
straight away, although there are some freely available 
tools for treatment that prescribe medicine based on 
given indications. Such drug labels are usually called 
manufacturers warnings, which are then licensed by the 
FDA (Food and Drug Administration). Nonetheless, the 
use of not FDA-approved medications is widespread in 
clinical practice. Predicting accurate indications could 
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significantly reduce the risk of attrition in clinical phases 
[6–8]. The patient’s experience of diagnosis and expected 
symptoms provide critical information for future medical 
evaluation, changes in the standard of clinical care, and 
better support for informed decision-making. The linking 
and standardization of medicine and its planned uses to 
formal terminologies assists in managing clinical knowl-
edge and plays an essential role in facilitating secondary 
use in clinical and translational research [9, 10].

Simultaneously, the drug side effect is a secondary 
effect of a pharmaceutical or medical treatment, which 
is usually unpleasant. Developing medications is a com-
plicated process because no two individuals are precisely 
the same, so for certain people, developing therapies with 
practically no side effects may be challenging. It is also 
difficult to manufacture a medication that affects one 
part of the body but does not impact other parts, which 
raises the risk of side effects in the untargeted parts [11]. 
One important aspect of drug development is preventing 
side effects, including dangerous drug reactions. Another 
approach to detecting latent side effects of toxic medica-
tions is in vitro preclinical health screening, which meas-
ures medicines through biochemical and cellular assays. 
This testing approach, however, is costly and labor-inten-
sive. Therefore, developing successful computational 
methods for accurately predicting medication side effects 
is vitally essential [12].

Measuring therapeutic drug-drug similarities quanti-
tatively will pave a path for similarity in the prescription 
treatment and further analysis of patient-likeness [13]. 
The relationship between drug-drug can be determined 
from different resources. Numerous statistical methods 
have been successfully applied in drug-drug similar-
ity analytics focused on product characteristics [14, 15]. 
Brown et  al. extend methods to determine significantly 
co-occurring Drug-Mesh term pairs in the literature 
database and cluster drugs based on their pair-wise simi-
larities [16].

Rapidly evolving techniques also allowed the process-
ing of multiple types of drug data and thus opened up 
new avenues for quantitative drug discovery and drug 
safety studies [17, 18]. The drug similarity analysis paves 
the groundwork for this work as identical structural, 
molecular, and biological properties frequently lead to 

specific indications of drugs or side effects [19]. This 
study hypothesizes that the similarity of clinical drugs 
can be created from the drug indications and the drug-
side effects data.

Based on the systematic design methods (as shown 
in Fig.  1), this study compiled drug indications and 
drug-side effects from Side Effect Resource (SIDER 4.1) 
database and vectorized them. Subsequently, the drug 
similarity was analyzed based on indications and side 
effects in various ways and compared as well.

Materials and methods
Data extraction
The primary data source was the Side Effect Resource 
(SIDER 4.1) database. SIDER contains information on 
marketed medicines, their recorded adverse drug reac-
tions, and their side effect frequency. In addition, SIDER 
includes a data set of drug indications. It provides 2997 
drugs and 6123 side effects (in the drug-side effects cat-
egory) as well as 1437 drugs and 2714 indications (in the 
drug-indications category). The information is extracted 
from public documents, package inserts, drug labels, 
off-label associations between drugs and side effects, 
and adverse event reporting systems that collect reports 
from doctors, patients, and drug companies using Natu-
ral Language Processing. The package contain informa-
tion about their described drugs common and/or brand 
names. Based on this information, labels were mapped to 
STITCH 4.0. This release utilizes the MedDRA diction-
ary (version 16.1) and accesses preferred and lower-level 
terms [20]. All drug indications and drug side effects lists 
were extracted from SIDER for each approved drug. To 
generate pairs of known drug-indications and drug-side 
effects, each list of drug indications and side effects was 
extracted separately. As a result, 14,631 drug indications 
and 334,603 drug side effects were obtained and sub-
jected to similarity analyses.

Data vectorization
After data extraction, the binary vector was constructed 
for every approved drug. The length of the drug-indica-
tions vector was 2714. The value of each vector index was 
set at 1 as a positive value. The corresponding drug was 
associated with the related indications unless it was set at 

Fig. 1  Vectors construction
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0 as a negative value. The same procedure was performed 
for drug-side effects data. The length of the binary vector 
for drug-side effects was 6123.

Similarity analysis
There are various methods for evaluating similarity, 
some of which consider only positive matches and oth-
ers only negative ones. Besides, both positive and nega-
tive matching are considered in several measures [21]. 
Inclusion or exclusion of negative matches for a measure 
appears to be one of the contentious disputes in the simi-
larity measures. Methods developed based on the inner 
product-based similarity measure consider only posi-
tive matches. However, for some measures, the absence 
of a feature in both positive and negative elements of the 
vector is a similarity that can be considered a negative 
match. Though, in other measures, the degree of vari-
able positive/negative effect was considered [22]. Since, 
in this study, we want to evaluate the similarity of drugs 
based on their side effects as well as their indications, 
after building binary vectors, we employed four similarity 
measures that consider only positive matches to investi-
gate the drug indications and the drug-side effects.

To evaluate measures, all the Jaccard, Dice, Tani-
moto, and Ochiai similarity measures were used to 
estimate the similarity for drug pairs. Table  1 describes 
four similarity measures and their mathematical equa-
tions for measuring drug pair similarity. For each drug 
pair, we utilized two built vectors (i.e., side effects and 
indications vectors). To determine which drugs, have an 
important association to each other in terms of similar-
ity of side effects and indications, similarity measures of 
two groups of vectors were compared to each other. We 
finally reached 4 similarity measures to select the best 
method for identifying drug similarity based on their side 
effects and indications. The benchmark for comparing 
the performance of similarity measures was the number 
of correct or incorrect detection and interpretation of 
drug indications and drug side effects for each measure-
ment. A minimum threshold (> 0) for the carefully cho-
sen similarity measure was set to have a discriminative 

standard for identifying interactions with weak or strong 
possibilities. In the next step, drugs with zero vector val-
ues were eliminated. Then, the similarity measures for all 
unknown vectors were calculated. All pairs of drugs were 
sorted based on their similarity measures. Finally, a list of 
drug pairs with high similarities in terms of indications 
and side effects was extracted. For the categorization of 
similarity or dissimilarity (based on four performance 
metrics), three split points were used in four catego-
ries, including: (i) low: 0.0 < measure ≤ 0.1, (ii) moderate: 
0.1 < measure ≤ 0.42, (iii) high: 0.42 < measure ≤ 0.62, and 
(iv) very high: 0.62 < measure. Given that sharing a com-
mon indication or side effect element is more important 
in the occurrence of drug-drug similarity, we assumed 
that there is no information about the similarity of drugs 
when a value of a specific element at the vector was zero.

Analysis methods presented in this study could be 
developed using Windows or any other operating sys-
tem with no special hardware requirements. Herein, we 
used Visual Basic and python Programming language for 
all computational and data preparation purposes. Excel 
2016 and Pycharm software were utilized in our study to 
create different metrics, and data were interpreted using 
freely accessible Cytoscape 3.7.2 software. An overview 
of drug similarity analysis through side effects and indi-
cations is presented in Fig. 2.

Results
To determine which similarity measures fit best for 
detecting drug-drug similarity, all measurements were 
calculated, and different threshold points were consid-
ered for each step (Fig.  3A). To resolve the selection of 
similarity measure threshold, the lowest possible value 
for each measure was regarded as the minimum thresh-
old. This allowed us to detect all potential Drug pairs 
even with low similarity or one common indication or 
side effect element shared.

A Study of similarity measures on drug-drug simi-
larity vectors showed that Tanimoto and Ochiai meas-
ures failed to provide reliable similarity results because 
these methods consider similarity based on both 

Table 1  Binary vector similarity measures

Suppose that two objects or patterns, i and j are represented by the binary feature vector form. a is the number of features where the values of i and j are both 1 (or 
presence), meaning ’positive matches’, b is the number of attributes where the value of i and j is (0,1), meaning ’i absence mismatches’, c is the number of attributes 
where the value of i and j is (1,0), meaning ’j absence mismatches’

Measure Equations Description Range

Jaccard SJaccard = a

a+b+c
A normalization of inner product [23] [0,1]

Dice SDice−2 = a

2a+b+c
A normalization on inner product [24] [0,1]

Tanimoto STanimoto = a

(a+b)+(a+c)−a
A normalization on inner product [22] [0,1]

Ochiai SOchiai−1 =
a√

(a+b)+(a+c)
A normalization on inner product [25] [0,1]
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negative and positive indexes (Fig. 3B). The Jaccard and 
Dice methods were found to fit better than the other 
ones (Fig.  3B). Finally, the Jaccard similarity measure 
was selected largely because of its precision and is easy 
to interpret through normalization between 0 and 1.

After selecting the Jaccard similarity method, it was 
applied for all drug pairs (i.e., 1,031,765 all possible 
drug pairs based on indications similarity and 4,489,506 
all possible drug pairs based on side effects similarity).

Having considered this measure, a threshold of simi-
larity was set at zero. As can be seen in Figs. 4 and 5, 
the closer the result of the similarity measure is to one, 
the more similar the drugs are. That is, a large number 
of data elements related to indications or side effects 
are shared between similar drugs and the closer it is to 
zero, the greater the dissimilarity of the drugs.

For example, using this method, among known 
drug-drug similarities based on indication, rizatriptan 

benzoate (a medication used for the treatment of 
migraine headaches) and Benzoic acid (a drug used 
for the treatment of fungal skin diseases) were found 
to have about 28 common elements with the highest 
similarity level (1.0) (p-value = 0.015). Additionally, 
diflorasone (is used as an anti-inflammatory and anti-
itching agent, like other topical corticosteroids) and 
miglustat (is a medication used to treat type I Gaucher 
disease.) were found to have about 0 common elements 
with the lowest similarity level (0.0) (p-value = 0.201) 
(Fig. 4(. Besides known drug-drug similarity based on 
side effects, Biguanide (a drugs group used for diabe-
tes mellitus or prediabetes treatment) and gamma-
aminobutyric acid (a drug used for reducing neuronal 
excitability throughout the nervous system) were 
found to have about 39 common elements with the 
highest similarity level (1.0) (p-value = 0.005). Also, 
carnitine (a drugs group that play a critical role in 

Fig. 2  Overview of drug similarity analysis through side effects and indications
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energy production) and 5-methyltetrahydrofolate (is 
the primary biologically active form of folate used at 
the cellular level for DNA reproduction, the cysteine 

cycle and the regulation of homocysteine) were found 
to have about 0 common elements with the lowest 
similarity level (0.0) (p-value = 0.105) (Fig. 5(.

Fig. 3  A Three split points are used as the threshold to categorize discovered drug pairs based on their level of similarity. Pairs with similarities lower 
than 0 are the pairs whose interaction possibility is low or unknown. B: Performance of the measures (the X-axis shows the similarity measures, and 
the Y-axis shows the performance of measures)

Fig. 4  Ranked list of drug pairs based on their indications and similarity
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After calculation of the similarity of all drug pairs and 
exclusion of empty vectors (vectors that all the elements’ 
values are zero), 15% of the known drug-drug similarity 
were identified based on indication similarity, and 89% 
of the known drug-drug similarity were identified based 
on side effect similarity, in which there exist some shared 
indication and side effect between drug pairs. Accord-
ingly, we assumed that side effect plays a central role in 
the occurrence of drug-drug similarity (Fig. 6 and Fig. 7).

To categorize the discovered drug-drug similarity 
based on their level of similarity, drug pairs were classi-
fied based on split points (Fig. 3A). Briefly, in drug pairs 
similarity based on their indications, 97% of discovered 
drug-drug similarity showed low level (103,088 pairs), 
2.5% (2584 pairs) moderate level, about 0.2% (295 pairs) 
high level, and around 0.3% (307pairs) very high level of 
similarities. Moreover, in drug pairs similarity based on 
their side effects, 42.5% of discovered drug-drug simi-
larity showed low level (1,635,233 pairs), 25% (959,957 
pairs) moderate level, about 19% (729,856 pairs) high 
level, and around 13.5% (517,058 pairs) very high level of 
similarities (Table. 2).

Fig. 5  Ranked list of drug pairs based on their side effects and similarity

Fig. 6  Observed Indications of similarity in drug pairs
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As illustrated in Table  3, Hypertensive Disease, Myo-
cardial Infarction, Angina Pectoris, Hyperlipidemia, 
Heart failure, Diabetic Nephropathy, and Diabetes Mel-
litus were found to be the shared indications elements 
between Felodipine and Aliskiren. Additionally, Table  4 
shows that Anaphylactic shock, Angioedema, Urticaria, 

Injection site tenderness, Injection site pain, and Pain 
were found to be the shared side effect elements between 
gamma-aminobutyric acid and HBIG. Tables 3 and 4 rep-
resents eight more cases from identified drug-drug simi-
larity, showing shared indication elements and side effect 
elements between drug pairs. Drug pairs with higher 
similarity scores share more indications or side effects.

Linear regression was used to inspect the association 
between drug similarity based on indications and drug 
similarity based on side effects. Linear regression results 
have revealed a significant relationship between drug 
similarity based on indications and drug similarity based 
on side effects (p-value = 0.03). This means that the simi-
lar drugs, based on indications, are similar (based on the 
side effects).

Finally, a network was formed based on the similarities 
found between drug pairs for understanding drugs rela-
tionships. As Figs. 8 and 9 represents in this network, the 
most similar drugs were closely linked and central to the 
network. Furthermore, as the similarity between the drug 
pairs declines gradually, the connections become farther 
and more peripheral. Because the weight of connections 
between drug nodes in the network is determined based 
on the number of common indication or side effects 
data elements between drug nodes. As a result, the more 
drugs are similar to each other, the weight of the connec-
tions will be stronger, and as a result, the nodes will be 
closer to each other and will build a centralized network.
It also exhibits that drugs’ similarity based on side effects 
is much more than the similarity of indications-based 
drugs.

Discussion
The detection of drug-drug similarity is one of the most 
vital matters in pharmacotherapy performance. Effec-
tive pharmacotherapy and administration are essentially 
dependent upon the identification of potential drug-drug 
similarity [4]. Recently, there has been growing inter-
est in predicting drug-drug similarities, which can have 

Fig. 7  Observed Side effects similarity in drug pairs

Table 2  The number of identified pairs for each similarity level

Drug pairs similarity based on 
their indications

Drug pairs’ similarity based on 
their side effects

Level of similarity Drug pairs Level of similarity Drug pairs

Low 103,088 Low 1,635,233

Moderate 2584 Moderate 959,957

High 295 High 729,856

Very high 307 Very high 517,058

Table 3  Examples of drug-drug similarity based on shared indication elements found by the Jaccard similarity method

Drug pairs Shared indication elements Similarity P-value

Fluoxymesterone Testosterone Wounds and Injuries, Malignant neoplasm of the breast, Hypogonadism, Neoplasms, Cryp‑
torchidism, Orchitis, Puberty, Delayed Puberty, Testicular hypogonadism, Hypogonadotropic 
hypogonadism, Primary hypogonadism, and Testosterone deficiency

0.9166 0.016

Benazepril Benazeprilat Hypertensive disease, Kidney Diseases, Renal Insufficient, Angioedema, and Renal Artery 
Stenosis

0.8544 0.021

Felodipine Aliskiren Hypertensive disease, Myocardial Infarction, Angina Pectoris, Hyperlipidemia, Heart failure, 
Diabetic Nephropathy, and Diabetes Mellitus

0.75 0.028

Cortisol Methylprednisolone Malignant Neoplasms, Edema, Pneumonia, Wounds and Injuries, Dermatologic disorders, 
Allergic conditions, Arthritis, Rheumatoid Arthritis, Dermatitis, Inflammation, Degenerative 
polyarthritis, Asthma, Diuresis, Hematological Disease, Tuberculosis, Hay fever, and so on

0.6950 0.032



Page 8 of 12Torab‑Miandoab et al. BMC Medical Informatics and Decision Making           (2023) 23:35 

multiple potential applications, such as the prediction of 
novel drug-drug interactions. The main idea of the sim-
ilarity-based approach is to predict it by comparing the 
presence of similarity between a pair of subjects. How-
ever, present similarity-based methodologies are difficult 
to distinguish between low similarity values. Moreover, 
these existing drug similarity measurement techniques 
rely on a limited number of data sources that can merely 
provide partial information about a subset of drugs 
of interest, leading to varying levels of incompetency 
[26–30].

Diverse methods of estimating drug similarity have 
various scenarios and advantages for use. Chemical simi-
larity, for example, plays an imperative role in predicting 
the properties of chemical compounds, identifying the 
underlying drug interaction, and performing drug design 
studies especially. Nevertheless, only a few clinical drugs 
are single chemical substances, many of which are bio-
pharmaceutical or compound medicine, lacking chemical 
structure data [31].

In the current study, we have developed binary vectors 
for predicting drug-drug similarity based on indications 
and side effects elements. Besides, identifying potential 
drug-drug similarity for all drugs requires rationalized 
computational analysis (e.g., similarity measures as listed 
in Table 1). We used four different similarity measures to 
select a reliable universal drug-drug similarity prediction 
method. We picked up the Jaccard method as an acces-
sible, straightforward, precise, consistent, interpretable, 
and scalable method.

The Jaccard method provides an interpretable and sim-
ple similarity measure between 0 and 1 (Fig. 3B). It should 
be emphasized that this method is sensitive to positive 
matches and only differ in range. The similarity trends 
of drug pairs were evaluated to determine the potential 
similarity of drugs based on indications and side effects. 
To be much more precise in drug-drug similarity predic-
tion, the performance of all measures (Table 2) was com-
pared to each other based on the similarity values. In the 
case of drug-drug similarity, the negative indexes do not 

unavoidably reflect the similarity. In a vector, the num-
ber of elements with an index value of 0, as compared 
to those with the index value of 1, is considerably high 
in most cases. Thus, if a similarity measure considers the 
negative matches that are substantially huge, the indica-
tion or side effect elements-oriented vectors for predic-
tion of drug-drug similarity may result in significantly 
high similarity that could reflect false similarities.

To the best of our knowledge, this current study is the 
first investigation that utilizes the potential of the Jaccard 
for the prediction of drug-drug similarity. For the validity 
of the current investigation, three split points were used 
to categorize the detected drug-drug similarity based 
on their level of similarity. The pairs with similarities 
lower than 0 were considered to have a low value or an 
unknown phenomenon (Fig. 3A). In this study, 5,521,272 
drug pairs were analyzed, which resulted in detecting 
over 3,948,378 new possible drug-drug similarities. The 
discovered drug-drug similarity was categorized based 
on their similarity. This information can have used for 
providing medical recommendations and rational drug 
design and development. Similarity measures are the 
foundation of all modern pattern classification and clus-
tering algorithms. Similarity has massively been utilized 
in different fields such as image retrieval, information 
retrieval, chemistry, ecology, psychology, and biology [4].

The methods currently used to discover drug-drug 
similarity focus on gathering sufficient clinical evidence. 
Nonetheless, in this technique, drug-drug similarity can 
be identified through computational procedures. These 
cost-effective solutions are critical not only for the phar-
maceutical industry but also for health care providers. 
Pharmaceutical corporations can forecast potential drug-
drug similarity and use such information to advance new 
drugs, refine product formulations, and provide custom-
ers with the necessary information [32, 33]. We just used 
the Side Effect Resource (SIDER 4.1) database as the fun-
damental resource, largely because of the large size of 
data existing in SIDER 4.1. In fact, we used this source for 
the compatibility and consistency of information. SIDER 

Table 4  Examples of drug-drug similarity based on shared side effect elements found by the Jaccard similarity method

Drug pairs Shared side effect elements Similarity P-value

Gamma-aminobutyric- acid HBIG Anaphylactic shock, Angioedema, Urticaria, Injection site tenderness, Injection site 
pain and Pain

1.0 0.012

Estrone Estradiol-cyclopentylpropionate Abdominal cramps, Depression, Dizziness, Anaphylactic shock, Rash, Dermatitis, Head‑
ache, Cramps of lower extremities, Muscle spasms, Nausea, Pruritus, Musculoskeletal 
discomfort, Anaphylactic shock, Urticaria, etc

0.9733 0.019

Flumethasone Alclometasone Secondary infection, Dermatitis, Pruritus, Leukoderma, Folliculitis, Allergic contact 
dermatitis, Skin atrophy, Acneiform eruption, and Dermatitis perioral

0.8235 0.025

Alclometasone Clocortolon Rash, Dermatitis, Leukoderma, Folliculitis, Allergic contact dermatitis, Skin striae, 
Pruritus, and Eruption

0.7222 0.041



Page 9 of 12Torab‑Miandoab et al. BMC Medical Informatics and Decision Making           (2023) 23:35 	

is a comprehensive resource for adverse drug reactions 
and indications extracted from drug labels and other 
resources. However, it has not been updated since 2015. 
It is suggested that future studies utilize information from 

multiple sources that are regularly updated to ensure that 
up-to-date data and new drugs are considered.

There are several resources for drug-drug similarity 
in the literature. Jin et al. presented a summarization of 

Fig. 8  Drug similarity network based on the indications similarity (panel A), a sub network of drug similarity network based on the indications 
similarity (panel B)
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Fig. 9  Drug similarity network based on the side effects similarity (panel A), a sub network of drug similarity network based on the side effects 
similarity (panel B)
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accessible drug-drug similarity using molecular struc-
ture data [34]. Cheng and Zhao computed drug similarity 
using side-effect information [35]. Besides, Fokoue et al. 
provided drug similarity based on the interaction profile 
data [19].

Several studies denoted good performance in which the 
drug-drug similarity prediction used machine learning 
algorithms. Nevertheless, it is almost impossible or diffi-
cult to interpret the origin of the resemblance incidence. 
For instance, despite the reliable performance of the sup-
port vector machine technique, casualty interpretation 
and reasoning of the occurrence of drug-drug similar-
ity appear to be challenging problems. Another problem 
regarding such algorithms is the preparation process of 
the negative set [36]. The current study provides clear 
evidence for the known similarity (shared indication and 
side effect elements) and presents the reasons for the 
expected drug-drug similarity. Additionally, the drug-
drug similarity pairs described in this study have at least 
one specific indication or side-effect element between 
two drugs.

The drug similarity can be adopted to quantitatively 
measure the similarity of medical therapy and further 
patient similarity, which is an evolving notion in systems 
and precision medicine. Patient similarity investigates 
distances between varieties of components of patient 
data and determines methods of clustering patients based 
on short distances between some of their characteris-
tics [37]. Among the similarity, which means a group of 
similar patients, index patients can be evaluated through 
further stratification driven by individual diagnosis, risk 
factors, medication, etc. So far, several algorithms have 
been advanced to estimate the different types of clinical 
data, such as diagnosis and the laboratory test outcome. 
However, it isn’t well known how to measure the similar-
ity in drug therapy [31].

The limitation of the methodology in this paper is that, 
unlike other computational methods that utilize molec-
ular structure, for example, to measure drug-drug simi-
larity, this method cannot be applied to investigational 
drugs and drugs with unknown drug safety profiles side 
effects and indications.

Conclusion
This study was conducted to focus on high-through-
put statistical exploratory approaches to drug-drug 
similarity prediction based on the indications and side 
effects. We employed four different similarity measures 
for selecting a reliable universal drug-drug similarity 
prediction method. We opted for the Jaccard method, 
largely due to its simplicity and applicability. We envis-
age that this method, which is a standardization of 

the approach to the inner product, can serve as a reli-
able method for drug-drug similarity prediction. We 
recommend this approach to large volumes of data as 
an accessible, precise, consistent, interpretable, and 
scalable method. Our findings revealed similarity of 
106,274 drug pairs based on indications and similar-
ity of 3,842,104 drug pairs based on side effects as new 
possible drug-drug similarity, which is a good sign for 
the validity of this approach, yet each pair of drugs with 
latent similarity detected in this study may need to be 
validated through in vitro and/or in vivo experiments.

We assume that categorizing the observed drug-drug 
similarity dependent on their similarity values can be 
in favor of patient clinical trials and hence safer phar-
macotherapy. The results of this study can also provide 
a forum for further in  vitro and in  vivo exploratory 
and confirmatory testing-important for patient care. 
Additionally, we assume that molecular structure or 
disease-related data may be applied the evidence to 
make more comprehensive and precise interpretations 
of drug-drug similarity phenomena. This method could 
be a contributing factor in the success of care modali-
ties. The approach provided for recognizing drug-drug 
similarity is flexible and could apply to broad volumes 
of data based on the indication or side effect elements 
between drugs. Moreover, considering personalized 
information on the functional expression of indication 
or side effect elements for each individual, the com-
putational application can be built soon for healthcare 
providers and patients to track drug-drug similarity.
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