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Abstract 

Objective We aimed to develop a robust framework to model the complex association between clinical features and 
traumatic brain injury (TBI) risk in children under age two, and identify significant features to derive clinical decision 
rules for triage decisions.

Methods In this retrospective study, four frequently used machine learning models, i.e., support vector machine 
(SVM), random forest (RF), deep neural network (DNN), and XGBoost (XGB), were compared to identify significant clini-
cal features from 24 input features associated with the TBI risk in children under age two under the permutation fea-
ture importance test (PermFIT) framework by using the publicly available data set from the Pediatric Emergency Care 
Applied Research Network (PECARN) study. The prediction accuracy was determined by comparing the predicted TBI 
status with the computed tomography (CT) scan results since CT scan is the gold standard for diagnosing TBI.

Results At a significance level of p = 0.05 , DNN, RF, XGB, and SVM identified 9, 1, 2,  and 4 significant features, respec-
tively. In a comparison of accuracy (Accuracy), the area under the curve (AUC), and the precision-recall area under the 
curve (PR-AUC), the permutation feature importance test for DNN model was the most powerful framework for identi-
fying significant features and outperformed other methods, i.e., RF, XGB, and SVM, with Accuracy, AUC, and PR-AUC as 
0.915, 0.794, and 0.974, respectively.

Conclusion These results indicate that the PermFIT-DNN framework robustly identifies significant clinical features 
associated with TBI status and improves prediction performance. The findings could be used to inform the develop-
ment of clinical decision tools designed to inform triage decisions.
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Introduction
Head trauma often occurs in very young children, 
accounting for 1.62% of emergency department (ED) vis-
its annually in the United States [1–3]. Children under 
age 2 represent approximately 25% of ED visits for head 
trauma in the United States [4]. Compared to older chil-
dren, these age group children are more susceptible to 
skull fracture and intracranial injury (traumatic brain 
injury [TBI]) due to several anatomical and physiological 
differences [5, 6]. When undetected, these injuries may 
lead to complications including cognitive impairment 
or even death and disabilities in the future [7]. The tri-
age nurse is typically the first healthcare professional to 
assess children who present to an ED for evaluation and 
is tasked with an acuity decision that guides the initial 
prioritization of patient care. A major concern of the tri-
age nurse is: in head-injured children under age 2 who 
appear to have age-appropriate or near age-appropriate 
mental status on exam, which ones are at a high risk of 
TBI so that they should be assigned a high acuity level 
to expedite an evaluation by a medical provider who 
will determine the need for computed tomography (CT) 
imaging to verify TBI status [8]? Effective clinical deci-
sion rules based on clinical features (i.e., significant clini-
cal features that can be used to appropriately determine 
TBI risk) to aid the ED triage nurse are therefore critical, 
however, challenging to determine. A particular obstacle 
is that among many clinical features which are signifi-
cant features that can be used to distinguish TBI status in 
children under age two, who are not only often the most 
difficult to assess but are also at the highest risk of TBI? 
Correctly identifying significant features is useful in the 
ED setting since it can help nurses to focus on examin-
ing these features and make appropriate triage deci-
sions promptly. Another difficulty is that several features 
including age, location of the injury, mechanism of injury, 
etc., jointly impact the TBI status for these children in 
complex fashions [6, 8–10]. Furthermore, children in this 
age group are particularly difficult to assess since they 
have limited verbal ability to explain what happened and 
usually demonstrate developmental anxiety [8]. Though 
great efforts have been made to assess clinical features 
that can reliably predict the need for CT imaging in pedi-
atric head trauma to verify TBI status, the conclusions 
are inconsistent[11, 12] or even conflicting, e.g., a poor 
correlation between the clinical symptoms of significant 
TBI and findings on CT was identified [13]. Many chil-
dren under age 2 who have sustained a TBI are clinically 
asymptomatic [10].

Though a few clinical decision rules (i.e., CATCH [14] 
and CHALICE [15]) have been derived to aid the medi-
cal provider in their neuroimaging decision for children, 
these decision rules were determined by using a simple 

univariate χ2 test to identify those statistically significant 
clinical features one by one. Like existing statistical meth-
ods for detecting the significance of each clinical feature 
associated with TBI, they all adopted logistic regression 
with (generalized) linear additive assumptions [16–20]. 
However, these restrictive assumptions often do not hold 
and are difficult to verify in practice [16, 21]. Further-
more, the univariate method did not adjust for confound-
ing factors that could lead to biased parameter estimates 
and overfitting, i.e., the prediction accuracy for future 
children using the decision rules could be low. More 
robust machine learning methods, e.g., the classification 
and regression tree (i.e., PECARN rule [6]) and the opti-
mal classification tree, [22] were adopted to derive the 
clinical decision rules for TBI identification in children. 
Though these decision rules relax those very restrictive 
assumptions made in the parametric method, all these 
rules were derived without conducting any statistical test, 
i.e., the “importance” of each clinical feature was empiri-
cally determined. Therefore, the role of each clinical fea-
ture included in these rules is not necessarily significant 
and not statistically interpretable either. Identifying sig-
nificant clinical features associated with TBI for ED acu-
ity decision-making is critical yet challenging because 
many clinical features can interactively impact TBI status 
in very complex fashions. To address this challenge and 
motivated by deep neural network (DNN) models for 
accurately approximating complex functions universally, 
[23, 24] we adopt a scoring algorithm to filter out unsta-
ble DNN models due to the random parameter initiali-
zation used in the conventional DNN method [25, 26] 
to deal with the complexity of TBI data and improve the 
prediction performance. However, like all other machine 
learning models, DNN-based methods suffer from the 
interpretation transparency of each clinical feature’s role 
in outcome prediction due to the use of abstract algo-
rithm, i.e., they are black-box machines without the capa-
bility to assess the exact significance of each predictor 
in the model. The black-box nature of machine learning 
models may introduce confusion [27]. To overcome this 
disadvantage, we further adopt a permutation-based fea-
ture importance test (PermFIT) procedure for the DNN 
model with a valid and robust statistical test to correctly 
identify significant features for predicting TBI status reli-
ably [28]. PermFIT has shown to be a powerful tool for 
identifying important features for different data types, 
and applicable to various machine learning models [28, 
29].

The rest of the paper is organized as follows: we 
describe the details of a scoring algorithm to construct 
a stable DNN ensemble for robustly modeling the com-
plex association relationship between clinical features 
and TBI status along with a universal feature importance 
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test procedure, i.e., PermFIT, for deciphering the role of 
each clinical feature on developing TBI risk in the Meth-
ods section. We then apply the derived PermFIT-DNN 
framework to a cohort of children under age 2 with 
suspected minor head trauma to derive statistically sig-
nificant clinical features associated with TBI risk in the 
Results section. A brief discussion concludes the paper.

Methods
TBI Prediction via Machine Learning Models:    Let 
X = (X1, ...,Xp) be a p-dimensional clinical features (e.g., 
age, injury mechanism, etc), and Z be the binary TBI sta-
tus (e.g., Z = 1 and 0 for positive and negative, respec-
tively) with π(X) = E(Z|X) = Pr(Z = 1|X) being the 
conditional probability of positive TBI given the observed 
clinical features X. To predict TBI status, we need to 
obtain the estimate of π(X = x) , i.e., π̂(x) . Traditionally, a 
logistic regression model is used. This modeling strategy, 
however, needs to make the (generalized) linear addi-
tive assumptions for the clinical features, meaning these 
features impact the probability of positive TBI status 
in a generalized linear additive fashion. That is under a 
logistic regression framework, the logit of the probability 
to be in positive TBI status is assumed to be a function 
of the linear combination of the clinical features. How-
ever, the linear additive assumption can barely hold and 
is difficult to verify in practice. To relax this restrictive 
assumption, machine learning methods can be adopted. 
Indeed, tree-based machine learning methods have been 
used to derive clinical decision rules for TBI status iden-
tification [6, 22]. Here, we compare several commonly 
used machine learning models, i.e., deep neural network 
(DNN) [30, 31], random forest (RF) [32, 33], XGBoost 
(XGB) [34] and support vector machine (SVM) [35, 36], 
for their performance in identifying the statistically sig-
nificant features associated with TBI status. However, 
unlike the conventional DNN method, we introduce a 
scoring algorithm to address unstable prediction issue of 
conventional DNN method as we describe below.

Scoring Algorithm for Constructing Stable DNN 
Ensemble:    Due to the random parameter initialization 
used in the conventional DNN method, it could result 
in unstable predictions. Here, we adopt the stable DNN 
procedure by using a scoring algorithm [25] to filter out 
those unstable bootstrapped DNN models. To avoid the 
redundancy, we refer readers to the paper by LeCun et al. 
for the general review about conventional DNN method 
[31]. The stable DNN method can remarkably improve 
prediction precision [26]. Specifically, we adopt the fol-
lowing score-based algorithm to filter out poorly per-
forming DNN models as described following.

That is, instead of assuming π(X = x) being a lin-
ear additive function of x, we relax this assumption by 

letting π(X = x) being an unspecified smooth func-
tion of x, and use an L-hidden-layer feedforward DNN 
model to approximate it since DNN is an ideal tool 
for universally approximating very complex functions 
[31]. Let the output function be gout(τ ) = 1/(1+ e−τ ) , 
and the inner activation functions be g l (l = 1, · · · , L) , 
e.g., a rectified linear activation unit function (ReLU), 
[37] leading to the final convoluted output function as 
π = gout ◦ gL ◦ · · · ◦ g1 , with θ = {b(i),W (i)}L+1

i=1  being a 
parameter vector and estimated by minimizing the asso-
ciated risk function. The risk function associated with 
the DNN model is optimized via a mini-batch stochastic 
gradient descent algorithm [38, 39], along with the adap-
tive learning rate adjustment [40]. However, DNN could 
be unstable in finite sample settings. Here, we adopt two 
procedures, i.e., bootstrapping and filtering, to address 
this issue. First, the bootstrap aggregating [41] is adopted 
to increase the stability and accuracy of a single DNN 
[42]. To further boost DNN performance, we adopt a 
filtering algorithm to remove poorly performing bagged 
DNNs based on the observation that ensembling only a 
subset of bagged DNNs that are well fit to the data could 
lead to a better performing ensemble model [25, 43]. 
Specifically, the filtering algorithm first calculates the 
performance scores {�k}Kk=1 associated with the K sets of 
bootstrapped samples as follows:

where DOk
 is the kth set of out-of-bag bootstrap samples 

with nOk
 being the associated sample size, πk being the 

estimated function of π , ŷik = π̂k(Xi) ( i ∈ DOk
 ), and 

yOk
=

∑
i∈DOk

ŷi/nOk
 . Based on the performance scores, 

the filtering algorithm then selects an optimal subset of 
bagged DNNs to construct the final ensembled DNN 
model, where the optimal number of DNNs for the final 
ensemble can be determined by minimizing the training 
loss [25, 26]. With the scoring algorithm, only those top 
performing bagged DNN models will be kept in the final 
ensemble such that stable and accurate predictions will 
be obtained. Also, with the stable DNN procedure, there 
is no need to involve the cumbersome parameter tuning 
process as required in the conventional DNN method.

Though the machine learning methods relax the 
restrictive assumption made in the traditional paramet-
ric method and improve the prediction accuracy, they 
lack transparency regarding the role of each clinical fea-
ture on outcome prediction accuracy. To determine the 
significant features based on a valid statistical inference 
for machine learning models, we adopt the permuta-
tion-based feature importance test procedure as briefly 
described below [28].

�k =
∑

i∈DOk

1

nOk

{

yi log

(

ŷik

yOk

)

+ (1 − yi) log

(

1 − ŷik

1 − yOk

)}
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Significant Clinical Features Identification for TBI: 
Though the permutation-based feature importance meth-
ods have been proposed for random forests and DNNs, 
[29, 44] they do not conduct any statistical inference on 
the feature importance. Instead, we adopt the following 
general permutation feature importance test procedure for 
machine learning models [28].

We define the feature importance score �j of Xj (i.e., the 
jth feature in X (j = 1, ..., p) ) as the expected squared dif-
ference between π(X) and π

(
X (j)

)
 , where 

X (j) = (X1, ...,Xj−1,Xj′ ,Xj+1, ...,Xp) , or X but with its jth 
feature replaced by Xj′ , a random permutation of the ele-
ments of Xj . The importance score �j can be re-expressed 
as �j = EX,Xj′

[π(X)− π
(
X(j)

)
]2 , which is zero only when 

π(X) ≡ π(X (j)) , implying no contribution of X (j) on π(X) 
conditional on the other covariates. The stronger the 
impact of X (j) on π(X) , the larger �j is expected to be. Fur-
thermore, �j can be estimated empirically. Let 
X ′
j = (Xs1,j , ...,Xsn,j) be a random sample of the elements in 

Xj without replacement, and the empirical permutation 
importance score be �

(P)
j = 1

n

∑n
i=1�

(P)
ij  where 

�
(P)
ij = Zi log

(
π̂ (Xi.)

π̂(X
(j)
i. )

)
+ (1− Zi) log

(
1−π̂(Xi.)

1−π̂(X
(j)
i. )

)
 with 

Xi· = (Xi1, ...,Xip) and X
(j)

i⋅
= (Xi1,⋯ ,Xi,j−1,Xsi ,j

,Xi,j+1,⋯ ,Xip) . 
Note that E[�(P)

j ] = E[�
(P)
ij ] = n−1

n �j . π(·) estimate, i.e. 
π̂(·) , can be obtained using four machine learning models 
we consider, i.e., DNN, RF, XGB, and SVM, or the para-
metric logistic regression method. Particularly, the DNN 
method we use is the stable DNN [25, 26] as we described 
above. �P

j  can then be estimated as

To avoid potential overfitting of the approximator π̂(·) 
under the finite sample size setting, we employ a cross-
fitting strategy to separate the input data into training 
and validation sets, with the training set used for gen-
erating π̂(·) and the testing set for estimating �̂(P)

j  . Let 
π̂T (·) be the estimate of π(·) from the training set, and 
DV = {Zi,Xi·}

nV
i=1 be the validation set, we obtain the fea-

ture importance score estimate �̂(P)
j  as:

and the variance estimate of �̂(P)
j  as:

Δ̂
(P)

j
=

1

n

n
∑

i=1

[

Zi log

(

�̂(Xi.)

�̂(X
(j)

i.
)

)

+ (1 − Zi) log

(

1 − �̂(Xi.)

1 − �̂(X
(j)

i.
)

)]

�̂
(P)
j =

1

nV

nV∑

i=1

[
Zi log

(
π̂T (Xi.)

π̂T (X
(j)
i. )

)
+ (1− Zi) log

(
1− π̂T (Xi.)

1− π̂T (X
(j)
i. )

)]

V̂ar[�̂
(P)
j ] =

1

nV

nV∑

i=1

[
Zi log

(
π̂T (Xi.)

π̂T (X
(j)
i. )

)
+ (1− Zi) log

(
1− π̂T (Xi.)

1− π̂T (X
(j)
i. )

)
− �̂

(P)
j

]2

 Based on it, we construct the test statistic for importance 
hypothesis test of feature Xj as:

The PermFIT-DNN procedures are summarized in 
Algorithm  1, and the PermFIT R package is available 
at https:// github. com/ Skadi Eye/ deepTL. With the Per-
mFIT procedure, we can determine each feature’s effect 
on the TBI status (i.e., with the corresponding p-value) 
under the complex functional relationship using differ-
ent machine learning models. Based on the evaluated 
p-values, we then can determine which are the signifi-
cant clinical features and which are not, thus ED nurses 
can focus on those significant features to make triage 
decisions for children under age two with suspected 
minor head trauma, which is not available if the exist-
ing feature importance tools are used.

Algorithm  1 Significant Feature Identification via Machine Learning 

Method

Study Design and Participants:   To derive the clini-
cal decision rule for very young age children, we apply 
the PermFIT framework for four machine learning 
models and one parametric logistic regression method, 
to a subset of the publicly available data from the Pedi-
atric Emergency Care Advanced Research Network 
(PeCARN) Head Injury Study, a federally funded cohort 
study of children under 18 years of age who had sus-
tained head trauma within prior 24 hours and presented 
to an ED for evaluation of suspected minor head trauma 
[6]. The PeCARN study excluded children who had 

(1)δ =
�̂

(P)
j√

V̂ar[�̂
(P)
j ]

https://github.com/SkadiEye/deepTL
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“trivial” injury mechanisms (ground-level falls or walk-
ing or running into stationary objects) with no signs 
of head trauma other than abrasions or lacerations. In 
their primary study, the researchers also excluded chil-
dren from who had penetrating trauma, pre-existing 
neurological disorders, known brain tumors or pre-
vious neuroimaging for the injury. The definition of 
“suspected minor head trauma” was based on Glasgow 
Coma Scale scores of 14 or 15 which indicate an age-
appropriate or near-age-appropriate mental status on 
exam. Total 42, 412 participants were enrolled on a con-
secutive basis from 2004 to 2006 from 25 emergency 
departments within a U.S. pediatric research network. 
Among them, 10,  718 were very young children of age 
under 2 years. In this study, we include the 1, 429 chil-
dren of age under 2 years who had a completed CT scan 
(i.e., TBI status is known) without missing values for 
all 24 clinical features collected in the primary study 
(i.e., samples with missing values and without CT scan 
conducted are excluded from the analysis) [6]. TBI was 
defined by any of the following findings on CT scan: 
intracranial hemorrhage or contusion; cerebral edema; 
traumatic infarction, diffuse axonal injury; shear-
ing injury; sigmoid sinus thrombosis; midline shift of 
intracranial contents or signs of brain herniation; dia-
stasis of the skull, pneumocephalus, or skull fracture 
depressed by at least the width of the table of the skull 
[6]. Among the 1, 429 children in our sample, 122 kids 
were diagnosed as TBI positive by CT scan. We adopted 
the PermFIT framework as described above to identify 
the significant features to be used to predict TBI sta-
tus reliably from the 24 available clinical features. They 
include: the children’s age in months, injury mecha-
nism, severity of injury mechanism (i.e., low, moderate, 
high), history of loss of consciousness, presence of any 
post-traumatic seizure, duration of any post-traumatic 
seizure, whether they are acting normally according to 
their caregiver, presence of vomiting after head injury, 
number of vomiting episodes, altered mental status 
according to the ED provider, anterior fontanelle bulg-
ing, raised scalp hematoma or swelling, hematoma 
or swelling location, size of the largest hematoma or 
swelling (i.e., small (< 1cm, barely palpable), medium 
(1-3 cm), large (> 3cm), and not applicable), evidence 
of trauma (bruise, laceration or hematoma) above the 
clavicles, trauma above the clavicles region: face, trauma 
above the clavicles region: neck, trauma above the 
clavicles region: scalp-frontal, trauma above the clavi-
cles region: scalp-occipital, trauma above the clavicles 
region: scalp-parietal, trauma above the clavicles region: 
scalp-temporal, gender, ethnicity, and race. Major clini-
cal feature distribution of the 24 total clinical features is 
summarized in Table 1.

Results
We adopt a 10-fold cross-validation by alternatively 
using one fold for testing and the other 9 folds for 
training, i.e., alternatively every 10% samples were used 
for testing while the rest 90% samples for training in 
each round of cross-validation. Under the permuta-
tion feature importance test framework, we use DNN, 
RF, XGB, and SVM method (referred as PermFIT-
DNN, PermFIT-RF, PermFIT-XGB, and PermFIT-SVM, 
respectively) to identify the significant clinical features 
associated with TBI status at the significance level 0.05. 
For stable DNN method, we used four hidden layers (no 
dropout layer) with (50, 40, 30, 20) hidden nodes from 
the first to the last hidden layer, respectively. The risk 
function is optimized via a mini-batch stochastic gradi-
ent descent algorithm [38, 39], along with the adaptive 
learning rate adjustment [40]. For the random forest 
method, we implemented by using R package “random-
Forest” with 1000 trees and other tuning parameters 
used were based on a 5-fold cross-validation (i.e., the 
minimum size terminal nodes 3 and 4 variables ran-
domly sampled as candidates at each split were deter-
mined). We adopted xgboost R package with turning 
parameters determined via a cross-validation (i.e., the 
max number of boosting iterations, 5, was determined). 
The tuning parameters used in SVM method were 
determined by using 5-fold cross-validation. Further-
more, the data used for hyper-parameter tuning and 
that used for performance evaluation are different. In 
particular, the data used for evaluating the performance 
of the model are never leaked/seen when training the 
model in each round of the cross-validation. Significant 
clinical features identified by each method and the cor-
responding p-values are presented in Table 2.

Results of Table  2 clearly indicate that the PermFIT-
DNN is the most powerful method among all machine 
learning models for detecting the significant clini-
cal features associated with the TBI status. While the 
PermFIT-DNN method claims 9 clinical features as 
significant features, the PermFIT-SVM, PermFIT-RF, 
and PermFIT-XGB methods claim 4, 1, and 2 features, 
respectively, as the significant features. Among the 
identified significant features by all machine learning 
models, we notice that age is the only clinical feature 
that is commonly claimed by all methods as the signifi-
cant feature.

With the selected significant features by each method, 
we evaluate the performance for predicting TBI status 
and draw a comparison with the corresponding machine 
learning model (i.e., DNN, RF, SVM, and XGB) using all 
24 clinical features for predicting TBI status via 10-fold 
cross-validation. In evaluating the performance, we adopt 
three metrics including accuracy (Accuracy), the area 
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under the receiver operating characteristic curve (AUC), 
and the precision-recall area under the curve (PR-AUC). 
For the accuracy evaluation, we use the cutoff of 0.5. That 
is the TBI status (i.e. zi ) for a patient i with clinical fea-
tures X = x is predicted as the following:

where π̂i(x) is the predicted probability for sample i 
being in positive TBI status based on the corresponding 

ẑi =

{
1 if π̂i(x) > 0.5
0 if π̂i(x) ≤ 0.5

Table 1 Baseline Characteristics for Children under Age 2 who Received a CT Scan

Categorical Feature No. (%)

Gender Boy 765 (53.53%)

Girl 664 (46.47%)

Post-traumatic seizure Yes 43 (3.01%)

No 1386 (96.99%)

Acting normally according to caregiver Yes 962 (67.32%)

No 467 (32.68%)

Altered mental status according to healthcare provider Yes 416 (29.11%)

No 1013 (70.89%)

Injury mechanism Motor vehicle collision 31 (2.17%)

Pedestrian struck by moving vehicle 12 (0.83%)

Bike rider struck by automobile 1 (0.07%)

Bike collision or fall from bike 2 (0.14%)

Other wheeled transport crash 11 (0.77%)

Fall from standing/walking/running 97 (6.79%)

Walked or ran into stationary object 42 (2.94%)

Fall from an elevation 858 (60.04%)

Fall down stairs 188 (13.16%)

Sports 0 (0.00%)

Assault 15 (1.05%)

Object struck head - accidental 72 (5.04%)

Other 100 (7.00%)

Duration of post-traumatic seizure < 1 min 20 (1.40%)

1− < 5 min 20 (1.40%)

5− 15 min 3 (0.21%)

> 15 min 0 (0.00%)

Not applicable 1386 (96.99%)

Hematoma or swelling location Frontal 350 (24.49%)

Occipital 94 (6.58%)

Parietal/Temporal 266 (18.62%)

Not applicable 719 (50.31%)

Size of hematoma or swelling Small 120 (8.40%)

Medium 391 (27.36%)

Large 199 (13.93%)

Not applicable 719 (50.31%)

Trauma above clavicles: scalp-frontal Yes 341 (23.86%)

No 488 (34.15%)

Not applicable 600 (41.99%)

Trauma above clavicles: scalp-parietal Yes 157 (10.99%)

No 672 (47.02%)

Not applicable 600 (41.99%)

Continuous Feature Mean (SD)
Age (in month) 9.30 (6.75)



Page 7 of 10Zou et al. BMC Medical Informatics and Decision Making           (2023) 23:58  

machine learning method employed conditioning on the 
clinic features included in the model. Performance com-
parisons are presented in Table 3.

Results shown in Table 3 demonstrate that all methods 
have similar performance regarding prediction accuracy. 
Also, using all 24 features, both the DNN and RF meth-
ods have comparable performance on AUC and PR-
AUC metrics, but they are all superior to SVM method. 
However, using the corresponding detected significant 
features by each method, only the PermFIT-DNN can 
achieve slightly improved or non-inferior prediction per-
formance for Accuracy, AUC and PR-AUC as compared 
with the DNN method using all 24 features. We present 
the predicted AUCs for all methods in Fig. 1. As shown 
in Table  3, both PermFIT-RF and PermFIT-SVM suffer 
from remarkably reduced AUC and PR-AUC compared 
with the corresponding RF and SVM methods using all 

24 features. This demonstrates that PermFIT-DNN is 
far more powerful than PermFIT-RF and PermFIT-SVM 
methods in identifying valid significant feature associ-
ated with TBI status. An interpretation is that there exist 
some complex functional relationships between clini-
cal features and TBI status, which DNN method can be 
superior to approximate this complex functional relation-
ship through layer by layer non-linear convolutions as 
supported by the universal approximation theorem. In 
particular, the PermFIT-RF only identified one significant 
feature. Using this significant feature only, the predictive 
model becomes a random classifier leading to poor pre-
diction performance.

Similarly, the PermFIT-SVM only identified 4 signifi-
cant features which may not be good enough to distin-
guish TBI patients. Though the prediction performance 
using the identified significant features by PermFIT-XGB 
does not suffer remarkable reduction as compared with 
that from using all features via XGBoost, it is notably 
worse than that from PermFIT-DNN. Also, PermFIT-
XGB just identified 2 significant features. Additionally, 
we identified the significant features via the traditional 
logistic regression method. They include 7 significant fea-
tures: the children’s age in months, presence of any post-
traumatic seizure, duration of any post-traumatic seizure, 
raised scalp hematoma or swelling, hematoma or swelling 
location, size of the largest hematoma or swelling, and 
race. Some of these features overlap with those identified 
by the PermFIT-DNN method and some do not. How-
ever, it should be noted that the traditional parametric 
method makes a restrictive (generalized) linear additive 
assumption between the clinical features and TBI sta-
tus which is unverifiable in practice. This also motivates 
us to adopt the machine learning methods to relax this 
restrictive assumption, and thus the identified significant 
features by the PermFIT-DNN method are more reliable. 
This observation also indicates that the DNN method not 
only helps to identify valid significant clinical features via 

Table 2 Identified Significant Clinical Features

Method Significant Clinical Features P-value

PermFIT-DNN Age < 0.001

acting normally according to parent 0.035

Altered mental status 0.015

Injury mechanism 0.028

Duration of post-traumatic seizure 0.002

Hematoma or swelling location < 0.001

Size of hematoma or swelling 0.001

Trauma above clavicles: scalp-frontal 0.048

Trauma above clavicles: scalp-parietal 0.042

PermFIT-RF Age 0.001

PermFIT-SVM Age 0.043

Altered mental status 0.019

Hematoma or swelling location < 0.001

Size of hematoma or swelling 0.003

PermFIT-XGBoost Age < 0.001

Size of hematoma or swelling 0.022

Table 3 Performance Comparison for TBI Status Prediction

a: a: Include all 24 clinical features in prediction model

b: Include identified significant clinical features only in prediction model

Method Accuracy(95% CI) AUC(95% CI) PR-AUC(95% CI) Sensitivity(95% CI) Specificity(95% CI)

DNNa 0.915(0.899,0.931) 0.781(0.703,0.859) 0.972(0.954,0.990) 0.034(0.000,0.171) 1.000(0.994,1.000)

PermFIT-DNNb 0.915(0.901,0.869) 0.791(0.713,0.869) 0.973(0.955,0.991) 0.048(0.000,0.129) 1.000(0.994,1.000)

RFa 0.911(0.895,0.927) 0.653(0.590,0.716) 0.949(0.933,0.965) 0.041(0.000,0.159) 0.996(0.991,1.000)

PermFIT-RFb 0.915(0.909,0.921) 0.411(0.354,0.468) 0.878(0.860,0.896) 0.004(0.000,0.055) 1.000(0.996,1.000)

XGBoosta 0.899(0.881,0.917) 0.760(0.684,0.836) 0.970(0.952,0.988) 0.107(0.000,0.260) 0.973(0.967,0.979)

PermFIT-XGBb 0.910(0.894,0.926) 0.753(0.679,0.827) 0.968(0.946,0.990) 0.107(0.000,0.225) 0.985(0.975,0.995)

SVMa 0.914(0.900,0.928) 0.798(0.718,0.878) 0.973(0.955,0.991) 0.016(0.000,0.151) 0.998(0.994,1.000)

PermFIT-SVMb 0.915(0.911,0.919) 0.720(0.655,0.785) 0.957(0.945,0.969) 0.004(0.000,0.022) 1.000(0.998,1.000)
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a PermFIT procedure but also using the identified sig-
nificant features by DNN method, it may improve pre-
diction performance as compared with the DNN model 
using all clinical features. Very minor or no prediction 
performance improvement using the identified statisti-
cally significant features by the PermFIT-DNN method 
over using all features via the DNN method implies that 
the identified significant features provide enough useful 
information to characterize TBI status, and the other fea-
tures are nuisance features.

Based on the results of Tables  2 and 3 by using the 
PermFIT-DNN method, we derive the clinical decision 
rule of classifying TBI status for suspected minor head 
trauma of age under 2 year children as: age (in months), 
acting normally or not based on parental report after 
head injury, presence or absence of altered mental status 
according to the ED provider (agitated, sleepy, slow to 
respond, repetitive questions in the ED), injury mecha-
nism, duration of any post-traumatic seizure, presence 
of any hematoma(s) or swelling(s) and the location(s) 
involved, size (diameter) of largest hematoma or swell-
ing, trauma above the clavicles region: scalp-frontal, and 

trauma above the clavicles region: scalp-parietal, are 
significant clinical features and should be leveraged and 
used to determine the TBI status for future children of 
age under 2 years with suspected minor head injury. ED 
nurses may focus on examining these significant features 
to make the triage decision instead of checking all of the 
available features. It is also worth pointing out that the 
very minor prediction improvements of PermFIT-DNN 
over DNN suggest the data set limitation, i.e., uncollected 
significant features, it is probably the limit of the predic-
tion power it can achieve. However, as shown in the PR-
AUC prediction, PermFIT-DNN can achieve over 97% 
for this highly imbalanced data set indicating the useful-
ness in clinical practice to identify those true positive TBI 
infants very accurately.

Discussion
This study adopted a PermFIT procedure to identify 
the significant clinical features affecting the TBI status 
using three commonly used machine learning mod-
els with all 24 features as the input. The identified sig-
nificant features by each machine learning model were 
used to predict the TBI status via a 10-fold cross-val-
idation and draw comparison with the corresponding 
machine learning model using all 24 clinical features. 
The study indicated that the stable DNN method not 
only outperformed other machine learning models for 
PR-AUC and comparable accuracy and AUC prediction 
with RF method, the stable DNN is the most power-
ful method to identify the significant clinical features. 
Also, using the identified significant features by the 
stable DNN can improve the prediction accuracy for 
AUC and PR-AUC. However, using the identified sig-
nificant features by RF and SVM models, the predicted 
AUC and PR-AUC are remarkably reduced as com-
pared to the corresponding predicted values by these 
two models using all 24 features. All these have clearly 
demonstrated the benefits of PermFIT-DNN method in 
clinical practice. Notably, each of the 9 clinical features 
identified by PermFIT-DNN are consistent with or 
directly related to clinical features identified as predic-
tors of TBI or clinically important TBI (ciTBI) in prior 
research and in previously developed clinical decision 
rules. For example, altered mental status according to 
the medical provider, child not acting normally accord-
ing to a parent, an occipital or temporal/parietal hema-
toma, and severe mechanism of injury (according to 
PECARN criteria for severity) were all predictors for 
ciTBI in the PECARN head injury study; [6] altered 
mental status according to the medical provider, his-
tory of seizure following the injury, and presence of 
swelling over 5 cm were all independent predictors of 

Fig. 1 Predicted AUC Comparisons
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clinically significant head injury; [15] and altered men-
tal status at 2 hours post-injury, dangerous mechanism 
of injury (based on similar criteria to PECARN) and 
large, boggy scalp hematoma were all predictors for the 
need for neurosurgery or brain injury on CT scan, the 
primary and secondary outcomes of the CATCH study 
and resulting clinical decision rule for children under 
age 16 [14].

Even though the PermFIT-DNN can perform valid 
statistical inference and offer high prediction accuracy 
and PR-AUC, the predicted AUC is not very high, which 
indicates a limitation for this study, i.e., some significant 
clinical features have not been included in the 24 input 
features. This suggests that larger scale studies should 
be conducted to collect more complete clinical features 
regarding TBI. With more comprehensive clinical fea-
tures regarding TBI being collected, we expect that more 
accurate decision rules using the PermFIT-DNN frame-
work can be derived to further improve TBI prediction 
accuracy. Another limitation of this study is the selection 
bias that is inherent to any study where only a fraction of 
the participants receives a diagnostic test, based on the 
clinician’s assessment of risk for a specific outcome. In 
the primary study by Kuppermann et  al. [6], a CT scan 
was only obtained if the medical provider deemed it to 
be warranted. Obtaining CT scans on all children who 
presented for the evaluation of a head injury would have 
exposed children to radiation unnecessarily and there-
fore would have been unethical. The children who did not 
have a CT scan due to low provider suspicion for ciTBI in 
the primary study were thus excluded from the current 
study. Thus, it is plausible that some of the children who 
did not have a CT scan did in fact sustain a TBI, i.e., some 
TBI cases were missed.

The results of this study indicate that PermFIT-DNN 
framework not only robustly identifies valid significant 
clinical features with solid statistical interpretation but 
also improves the prediction accuracy with the identi-
fied significant clinical features when compared to other 
machine learning models. The findings of this study could 
be used to inform the development of clinical decision 
tools to inform evidence-based clinical decision-making, 
such as those related to TBI risk and identification. It is 
worth pointing out that there exist many other machine 
learning methods that can approximate complex func-
tional relationships accurately. How they perform for 
identifying significant features under the PermFIT frame-
work deserve further investigation. Also, the PermFIT 
method can only determine if a feature is significantly 
associated with the outcome or not under the complex 
functional relationship. PermFIT can not tell how much 
the identified significant feature will increase(decrease) 
the outcome with a unit increase of the feature value. 

However, this won’t impede the application of PermFIT 
in clinical practice, e.g., the ED nurses may focus on col-
lecting the 9 identified features for future suspected 
minor head trauma infants and use them as the input 
to the trained DNN model to output the accurate prob-
ability estimations for these infants to have positive TBIs. 
Thus, the appropriate triage decisions can be made.

Acknowledgements
Not applicable.

Author’ contributions
BZ was involved in conceptualization, design, methodology, analysis, 
interpretation of findings, original draft writing, review and editing. FZ was 
involved in conceptualization, design, methodology, interpretation of findings, 
manuscript review and editing. XM got involved interpretation of findings, 
manuscript review and editing. ES was involved in data acquisition, interpreta-
tion of findings, significant manuscript review and editing. All authors have 
read and approved the final manuscript.

Funding
B. Zou was partially supported by the University of North Carolina - Chapel 
Hill Junior Faculty Development Award (2022) and grant from the National 
Institutes of Health (NIH) R56LM013784. F. Zou was partially supported by NIH 
grant R56LM013784. However, the funding body played no any roles in the 
design of the study and collection, analysis, and interpretation of data and in 
writing the manuscript.

Availability of data and materials
The data set supporting the conclusions of this article is from the Pediatric 
Emergency Care Applied Research Network (PeCARN), which is publically 
available at https:// pecarn. org/ datas ets/. To access this particular data set and 
other related files, click on the primary manuscript’s title: “Identification of 
children at very low risk of clinically-important brain injuries after head trauma: 
a prospective cohort study”.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no known competing financial interests 
or personal relationships that could have appeared to influence the work 
reported in this paper.

Received: 30 June 2022   Accepted: 15 March 2023

References
 1. Martin J, Weaver M, Barnato A, Yabes J, Yealy D, Roberts M. Variation in 

emergency department head computed tomography use for pediatric 
head trauma. Acad Emerg Med. 2014;21(9):987–95. https:// doi. org/ 10. 
1111/ acem. 12458.

 2. Martin J, Weaver M, Yealy D, Mannix R. Trends in visits for traumatic 
brain injury to emergency departments in the United States. JAMA. 
2014;311(8):1917–9. https:// doi. org/ 10. 1001/ jama. 2014. 3979.

 3. Amanullah S, Schlichting L, Linakis S, Steele D, Linakis J. Emergency 
Department Visits Owing to Intentional and Unintentional Traumatic 
Brain Injury among Infants in the United States: A Population-Based 
Assessment. J Pediatr. 2018;203:259–65. https:// doi. org/ 10. 1016/j. jpeds. 
2018. 08. 023.

https://pecarn.org/datasets/
https://doi.org/10.1111/acem.12458
https://doi.org/10.1111/acem.12458
https://doi.org/10.1001/jama.2014.3979
https://doi.org/10.1016/j.jpeds.2018.08.023
https://doi.org/10.1016/j.jpeds.2018.08.023


Page 10 of 10Zou et al. BMC Medical Informatics and Decision Making           (2023) 23:58 

 4. Dayan P, Holmes J, et al. Association of traumatic brain injuries with 
vomiting in children with blunt head trauma. Ann Emerg Med. 
2014;63(6):657–65. https:// doi. org/ 10. 1016/j. annem ergmed. 2014. 01. 009.

 5. Greenes D, Schutzman S. Clinical indicators of intracranial injury in head-
injured infants. Pediatrics. 1999;104(4):861–7. https:// doi. org/ 10. 1542/ 
peds. 104.4. 861.

 6. Kuppermann N, Holmes J, Dayan P, et al. Identification of children at 
very low risk of clinically-important brain injuries after head trauma: a 
prospective cohort study. Lancet. 2009;374:1160–70. https:// doi. org/ 10. 
1016/ S0140- 6736(09) 61558-0.

 7. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier break-
down as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 
2010;6(7):393–403. https:// doi. org/ 10. 1038/ nrneu rol. 2010. 74.

 8. Stone E, Davis L, McCoy T, Travers D, Van Horn E, Krowchuk H. A secondary 
analysis to inform a clinical decision rule for predicting skull fracture and 
intracranial injury in children under age 2. Res Nurs Health. 2020;43(1):28–
39. https:// doi. org/ 10. 1002/ nur. 21993.

 9. Griffin E, Lippmann S, Travers D, Woodard E. A matched-cohort study 
of pediatric head injuries: collecting data to inform an evidence-based 
triage assessment. J Emerg Nurs. 2014;40(1):98–104. https:// doi. org/ 10. 
1016/j. jen. 2013. 07. 001.

 10. Atabaki S, Hoyle JJ, Schunk J, Monroe D, Alpern E, Quayle K, et al. Compar-
ison of Prediction Rules and Clinician Suspicion for Identifying Children 
With Clinically Important Brain Injuries After Blunt Head Trauma. Acad 
Emerg Med. 2016;23(5):566–75. https:// doi. org/ 10. 1111/ acem. 12923.

 11. Dayan P, Holmes J, et al. Risk of traumatic brain injuries in children 
younger than 24 months with isolated scalp hematomas. Ann Emerg 
Med. 2014;64(2):153–62. https:// doi. org/ 10. 1016/j. annem ergmed. 2014. 
02. 003.

 12. Lee L, Monroe D, et al. Isolated loss of consciousness in children with 
minor blunt head trauma. JAMA Pediatr. 2014;168(9):837–43. https:// doi. 
org/ 10. 1001/ jamap ediat rics. 2014. 361.

 13. Dietrich A, Bowman M, Ginn-Pease M, Kosnik E, King D. Pediatric head 
injuries: can clinical factors reliably predict an abnormality on computed 
tomography? Ann Emerg Med. 1993;22(10):1535–40. https:// doi. org/ 10. 
1016/ s0196- 0644(05) 81254-5.

 14. Osmond M, Klassen T, Wells G, et al. Pediatric Emergency Research 
Canada (PERC) Head Injury Study Group. CATCH: A clinical decision rule 
for the use of computed tomography in children with minor head injury. 
CMAJ. 2010;182(4):341–348. https:// doi. org/ 10. 1503/ cmaj. 091421.

 15. Dunning J, Daly J, Lomas J, et al. Children’s Head Injury Algorithm. 
Derivation of the children’s head injury algorithm for the prediction of 
important clinical events decision rule for head injury in children. Arch 
Dis Child. 2006;91(11):885–891. https:// doi. org/ 10. 1136/ adc. 2005. 083980.

 16. Harrell F, Lee K, Mark D. Multivariable prognostic models: issues in devel-
oping models, evaluating assumptions and adequacy, and measuring 
and reducing errors. Stat Med. 1996;15:361–7. https:// doi. org/ 10. 1002/ 
(SICI) 1097- 0258(19960 229) 15: 4< 361:: AID- SIM16 8>3. 0. CO;2-4.

 17. McNett M. A review of the predictive ability of Glasgow Coma Scale 
scores in head-injured patients. J Neurosci Nurs. 2007;39(2):68–75. 
https:// doi. org/ 10. 1097/ 01376 517- 20070 4000- 00002.

 18. Jacobs B, Beems T, Stulemeijer M, van Vugt A, van der Vliet T, Borm G, 
et al. Outcome prediction in mild traumatic brain injury: age and clinical 
variables are stronger predictors than CT abnormalities. J Neurotrauma. 
2010;27(4):665–8. https:// doi. org/ 10. 1089/ neu. 2009. 1059.

 19. Easter J, Bakes K, Dhaliwal J, Miller M, Caruso E, Haukoos J. Comparison of 
PECARN, CATCH, and CHALICE rules for children with minor head injury: 
a prospective cohort study. Ann Emerg Med. 2014;64(2):145–52. https:// 
doi. org/ 10. 1016/j. annem ergmed. 2014. 01. 030.

 20. Cowley L, Farewell D, Maguire S, Kemp A. Methodological standards for 
the development and evaluation of clinical prediction rules: a review of 
the literature. Diagn Progn Res. 2019;3(16):837–43. https:// doi. org/ 10. 
1186/ s41512- 019- 0060-y.

 21. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. New York: Springer-Verlag; 2001.

 22. Bertsimas D, Dunn J, Steele D, Trikalinos T, Wang Y. Comparison of 
Machine Learning Optimal Classification Trees With the Pediatric Emer-
gency Care Applied Research Network Head Trauma Decision Rules. 
JAMA Pediatr. 2019;173(7):648–56. https:// doi. org/ 10. 1001/ jamap ediat 
rics. 2019. 1068.

 23. Leung M, et al. Deep learning of the tissue-regulated splicing code. Bioin-
formatics. 2014;30:i121–9. https:// doi. org/ 10. 1093/ bioin forma tics/ btu277.

 24. Goto T, Camargo C, et al. Machine Learning-Based Prediction of Clinical 
Outcomes for Children During Emergency Department Triage. JAMA 
Netw Open. 2019;2(1):e186937. https:// doi. org/ 10. 1001/ jaman etwor 
kopen. 2018. 6937.

 25. Mi X, Zou F, Zhu R. Bagging and deep learning in optimal individualized 
treatment rules. Biometrics. 2019;75:674–84. https:// doi. org/ 10. 1111/ 
biom. 12990.

 26. Mi X, Tighe P, Zou F, Zou B. A Deep Learning Semiparametric Regres-
sion for Adjusting Complex Confounding Structures. Ann Appl Stat. 
2021;15(3):1086–100. https:// doi. org/ 10. 1214/ 21- AOAS1 481.

 27. Joseph J, James M, Lalit B. Machine learning at the clinical bedside-the 
ghost in the machine. JAMA Pediatr. 2019;173(7):622–4. https:// doi. org/ 
10. 1001/ jamap ediat rics. 2019. 1075.

 28. Mi X, Zou B, Zou F, Hu J. Permutation-based Identification of Important 
Biomarkers for Complex Diseases via Machine Learning Models. Nat 
Commun. 2021;12(1):3008. https:// doi. org/ 10. 1038/ s41467- 021- 22756-2.

 29. Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a cor-
rected feature importance measure. Bioinformatics. 2010;26(10):1340–7. 
https:// doi. org/ 10. 1093/ bioin forma tics/ btq134.

 30. Bengio Y. Learning Deep Architectures for AI. Found Trends Mach Learn. 
2009;2(1):1–127. https:// doi. org/ 10. 1561/ 22000 00006.

 31. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436. 
https:// doi. org/ 10. 1038/ natur e14539.

 32. Amit Y, Geman D. Shape quantization and recognition with randomized 
trees. Neural Comput. 1997;9(7):1545–88. https:// doi. org/ 10. 1162/ neco. 
1997.9. 7. 1545.

 33. Breiman L. Random forests. Mach Learn. 2001;45:5–32. https:// doi. org/ 10. 
1023/A: 10109 33404 324.

 34. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: proceed-
ings of the 22nd ACM SIGKDD international conference on knowledge 
discovery and data mining. New York: Association for Computing 
Machinery; 2016. p. 785–94.

 35. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–
97. https:// doi. org/ 10. 1007/ BF009 94018.

 36. Drucker H, Burges C, Kaufman L, Smola A, Vapnik V. Support Vector 
Regression Machines. In: Advances in Neural Information Processing 
Systems. 1997. p. 155-161. https:// doi. org/ 10. 5555/ 29989 81. 29990 03.

 37. Cybenko G. Approximations by superpositions of sigmoidal functions. 
Math Control Signals Syst. 1989;2(4):303–314. https:// doi. org/ 10. 1007/ 
BF025 51274.

 38. Byrd RH, Chin GM, Nocedal J, Wu Y. Sample size selection in optimiza-
tion methods for machine learning. Math Program. 2012;134(1):127–55. 
https:// doi. org/ 10. 1007/ s10107- 012- 0572-5.

 39. Mei S. A mean field view of the landscape of two-layer neural networks. 
Proc Natl Acad Sci. 2018;115(33):E7665–71. https:// doi. org/ 10. 1073/ pnas. 
18065 79115.

 40. Kinga D, Adam JB. A method for stochastic optimization. In: International 
Conference on Learning Representations (ICLR), vol. 5. Ithaca; 2015. p. 
1–13. https:// arXiv. org.

 41. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–140. https:// 
doi. org/ 10. 1007/ BF000 58655.

 42. Hansen LK, Salamon P. Neural network ensembles. IEEE Trans Pattern Anal 
Mach Intell. 1990;12(10):993–1001. https:// doi. org/ 10. 1109/ 34. 58871.

 43. Zhou Z, Wu J, Tang W. Ensembling neural networks: Many could be better 
than all. Artif Intell. 2002;137:239–63. https:// doi. org/ 10. 1016/ S0004- 
3702(02) 00190-X.

 44. Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, et al. 
Deep biomarkers of human aging: application of deep neural networks 
to biomarker development. Aging (Albany NY). 2016;8(5):1021–1033. 
https:// doi. org/ 10. 18632/ aging. 100968.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.annemergmed.2014.01.009
https://doi.org/10.1542/peds.104.4.861
https://doi.org/10.1542/peds.104.4.861
https://doi.org/10.1016/S0140-6736(09)61558-0
https://doi.org/10.1016/S0140-6736(09)61558-0
https://doi.org/10.1038/nrneurol.2010.74
https://doi.org/10.1002/nur.21993
https://doi.org/10.1016/j.jen.2013.07.001
https://doi.org/10.1016/j.jen.2013.07.001
https://doi.org/10.1111/acem.12923
https://doi.org/10.1016/j.annemergmed.2014.02.003
https://doi.org/10.1016/j.annemergmed.2014.02.003
https://doi.org/10.1001/jamapediatrics.2014.361
https://doi.org/10.1001/jamapediatrics.2014.361
https://doi.org/10.1016/s0196-0644(05)81254-5
https://doi.org/10.1016/s0196-0644(05)81254-5
https://doi.org/10.1503/cmaj.091421
https://doi.org/10.1136/adc.2005.083980
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
https://doi.org/10.1097/01376517-200704000-00002
https://doi.org/10.1089/neu.2009.1059
https://doi.org/10.1016/j.annemergmed.2014.01.030
https://doi.org/10.1016/j.annemergmed.2014.01.030
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1001/jamapediatrics.2019.1068
https://doi.org/10.1001/jamapediatrics.2019.1068
https://doi.org/10.1093/bioinformatics/btu277
https://doi.org/10.1001/jamanetworkopen.2018.6937
https://doi.org/10.1001/jamanetworkopen.2018.6937
https://doi.org/10.1111/biom.12990
https://doi.org/10.1111/biom.12990
https://doi.org/10.1214/21-AOAS1481
https://doi.org/10.1001/jamapediatrics.2019.1075
https://doi.org/10.1001/jamapediatrics.2019.1075
https://doi.org/10.1038/s41467-021-22756-2
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1561/2200000006
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1997.9.7.1545
https://doi.org/10.1162/neco.1997.9.7.1545
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.5555/2998981.2999003
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/s10107-012-0572-5
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1073/pnas.1806579115
https://arXiv.org
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/34.58871
https://doi.org/10.1016/S0004-3702(02)00190-X
https://doi.org/10.1016/S0004-3702(02)00190-X
https://doi.org/10.18632/aging.100968

	A deep neural network framework to derive interpretable decision rules for accurate traumatic brain injury identification of infants
	Abstract 
	Objective 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	References


