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Abstract 

Background  With the prevalence of cerebrovascular disease (CD) and the increasing strain on healthcare resources, 
forecasting the healthcare demands of cerebrovascular patients has significant implications for optimizing medical 
resources.

Methods  In this study, a stacking ensemble model comprised of four base learners (ridge regression, random for-
est, gradient boosting decision tree, and artificial neural network) and a meta learner (elastic net) was proposed for 
predicting the daily number of hospital admissions (HAs) for CD using the historical HAs data, air quality data, and 
meteorological data in Chengdu, China from 2015 to 2018. To solve the label imbalance problem, a re-weighting 
method based on label distribution smoothing was integrated into the meta learner. We trained the model using the 
data from 2015 to 2017 and evaluated its predictive ability using the data in 2018 based on four metrics, including 
mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and coefficient of 
determination (R2). In addition, the SHapley Additive exPlanations (SHAP) framework was applied to provide explana-
tion for the prediction of our stacking model.

Results  Our proposed model outperformed all the base learners and long short-term memory (LSTM) on two 
datasets. Particularly, compared with the optimal results obtained by individual models, the MAE, RMSE, and MAPE of 
the stacking model decreased by 13.9%, 12.7%, and 5.8%, respectively, and the R2 improved by 6.8% on CD dataset. 
The model explanation demonstrated that environmental features played a role in further improving the model 
performance and identified that high temperature and high concentrations of gaseous air pollutants might strongly 
associate with an increased risk of CD.

Conclusions  Our stacking model considering environmental exposure is efficient in predicting daily HAs for CD and 
has practical value in early warning and healthcare resource allocation.

Keywords  Stacking ensemble model, Environmental exposure, Hospital admissions, Cerebrovascular disease, SHAP 
value

Background
Cerebrovascular disease (CD) is a leading cause of death 
and disability worldwide. The World Health Organiza-
tion has reported that more than 6 million deaths can 
be attributed to CD each year [1]. In China, about 13 
million people suffered from stroke, a subtype of CD 
[2]. Although hypertension, high-fat diet, smoking, and 
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alcohol consumption are well-known risk factors for CD, 
evidence from epidemiological studies indicates that 
short-term environmental exposure, such as air pollution 
and extreme weather conditions, also has an important 
impact on the onset of CD, resulting in an increased risk 
of morbidity [3–5]. Additionally, toxicological studies 
have also presented several credible biological mecha-
nistic pathways for the negative health effects associated 
with air pollution [6–8]. For example, air pollution expo-
sure may provoke platelet activation, leading to enhanced 
blood coagulation and thrombosis formation [9].

The growing morbidity and high treatment cost of 
CD have caused a heavy burden on the limited health-
care resources. Forecasting the daily number of hospi-
tal admissions (HAs) for CD is of practical significance 
to optimize medical resources and protect public health 
by providing an early-warning signal against the impend-
ing incidence. Common traditional regression methods 
for time series prediction, such as the gray model, simple 
exponential smoothing (SES) model, and autoregressive 
integrated moving average (ARIMA) model, have been 
widely applied in predicting healthcare service demand 
[10–13]. The traditional methods can be easily imple-
mented but have difficulties dealing with multi-factor 
effects and non-linear mapping, therefore, these studies 
seldom extract features from factors other than historical 
demand series.

Machine learning (ML) methods can overcome these 
disadvantages of traditional regression models [14] and 
have been applied by a limited number of studies to fore-
cast the demands for healthcare services associated with 
environmental exposure. For instance, Qiu et  al. [15] 
found that the light gradient boosting machine model 
outperformed the other five ML models they tested in 
predicting the peak demand days for cardiovascular dis-
ease (CVD) admissions. The researchers also identified 
that meteorological conditions and air pollutants sub-
stantially contributed to prediction accuracy. Bibi et  al. 
[16] used a backpropagation neural network model to 
predict emergency department visits and found that the 
model performance was remarkably improved after con-
sidering temperature, humidity, and air pollution. Kas-
somenos et  al. [17] discovered that the use of Artificial 
Neural Network (ANN) resulted in a 15% increase in the 
coefficient of determination (R2) compared to the Gen-
eralized Linear Model (GLM) for forecasting HAs for 
CVDs.

In recent years, as an advanced part of artificial intelli-
gence, deep learning (DL) have attracted much attention 
in related fields owing to their strong abilities in captur-
ing potential complex relationships among variables [18]. 
Khatibi et  al. [19] and Wang et  al. [20] proposed novel 
predictive models based on convolutional neural network 

and long short-term memory (LSTM) to predict HAs 
due to mental disorders and cardiopulmonary diseases, 
respectively.

Despite the widespread use of ML and DL models in 
predicting healthcare demand, these models have their 
disadvantages. Lightweight ML models have limited pre-
diction capabilities, and each of them has specific pre-
defined structures and assumptions. No single model 
can always be optimal in various application scenarios. 
DL models generally rely on massive amounts of train-
ing data and a relatively long time window for the input 
sequence. In this context, the stacking ensemble tech-
nique [21–23] can provide an effective solution to strike 
a compromise by combining the strengths of multiple 
lightweight ML models to achieve superior performance 
using limited amounts of samples. Additionally, most 
existing studies treated these models as “black boxes” 
and rarely provided explanations for them, which might 
reduce their acceptance by the medical community [24]. 
Thus, it is essential to increase the transparency of ML 
models in the medical domain.

In this study, we applied stacking ensemble learn-
ing based on heterogeneous lightweight ML models 
to forecast medical demands caused by CD consider-
ing short-term environmental exposure and explained 
the predictions by the SHapley Additive exPlanations 
(SHAP) method. The main contributions of this study 
can be summarized as follows:

(1)	 A stacking ensemble model was proposed to pre-
dict daily HAs for CD using the HAs data, air qual-
ity data, and meteorological data of the previous 
6 days.

(2)	 A re-weighting method based on label distribution 
smoothing was integrated into the proposed model 
to address the label imbalance problem that broadly 
existed in healthcare data.

(3)	 A post-hoc interpretation for the prediction mecha-
nism of our proposed model was provided from 
global and local perspectives, which is conducive to 
understanding the model and exploring the factors 
affecting HAs for CD.

Methods
Data collection and preprocessing
The daily counts of HAs due to CD and stroke from January 
1, 2015 to December 31, 2018 were collected from the elec-
tronic hospitalization summary reports of all the tertiary 
and secondary hospitals in the urban areas of Chengdu, 
China (a total of 1461 observations). Patients under the age 
of 35 or with residential addresses outside of the urban dis-
tricts of Chengdu were not included in the count of daily 
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HAs. All the causes of HAs were coded using the Inter-
national Classification of Disease, Revision 10 (ICD-10), 
including the HAs for CD (I60-I69) and stroke (I60-I64).

Hourly air pollutant concentrations measured at six 
monitoring stations in the urban areas of Chengdu were 
obtained from the China National Environmental Moni-
toring Center (http://​www.​cnemc.​cn/). The 24  h average 
concentrations of the particular matter with a diameter 
less than 2.5  µm (PM2.5), the particular matter with a 
diameter less than 10  µm (PM10), the coarse particular 
matter with a diameter between 2.5 µm and 10 µm (PMC), 
sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon 
monoxide (CO) and the 8 h moving average concentration 
of ozone (O3) were calculated as their daily concentra-
tions [25]. The air quality index (AQI) was also obtained, 
assessed using the air pollutants mentioned above. 
Because the missing rate of ambient air quality data was 
2.73% (40/1461), we used linear interpolation, which has 
been reported as an effective data filling method when the 
missing rate is low (e.g., < 5%) [26] to fill in missing values.

Meteorological observations, including the daily aver-
age temperature (TEM) and relative humidity (RH), were 
derived from the Chengdu Meteorological Monitoring 
Database (http://​data.​cma.​cn/).

Feature extraction and normalization
Based on our collected data, the HAs features, environ-
mental features, and calendar features were extracted, as 
shown in Table 1.

For the time series of HAs and environmental exposure, 
lag features were broadly considered in epidemiological 
studies and HAs predictions [27, 28]. In our study, single-
day lag features, namely historical values on day x (x ∈ {1, 
2, 3, …, L}) before prediction, and cumulative lag features, 
including the moving average and standard deviation of his-
torical values during the previous 1 to L days were extracted. 
Besides, L was set to 6 to represent the short-term effect 
of environmental exposure as most epidemiological stud-
ies [3, 4]. In calendar features, day of the week (DOW), 
month (MON), season (SEA), year (YEAR), and timestamp 
(TS) were used to depict the trends of HAs from short to 
long term. Holiday (HOL), workday (WD), first work day 
(FWD), and last work day (LWD) were extracted to present 
the impact of the work-rest schedule in hospitals.

We processed DOW, MON, SEA and YEAR with One-
Hot Encoding [29] and normalized features using the min–
max normalization [30] as formulated in Eq. (1),

Model construction
Stacking ensemble method
In this study, a stacking ensemble model comprised of 
four base learners and a meta learner was proposed to 
accurately predict the daily number of HAs for CD. As 
shown in Fig. 1, the development of the stacking model 
consists of two phases.

(1)X
′

=
X −min(X)

max(X)−min(X)

Table 1  Feature descriptions

a P ∈ {PM2.5, PM10, PMC, SO2, NO2, CO, O3, AQI, TEM, RH}

Feature Name Feature Descriptions

HAs Features
  HAs Lag x Historical HAs on day x before the day for prediction, x ∈ {1, 2, 3, …, L}

  HAs Lag 1L mean Moving average of historical HAs during the previous 1 to L days

  HAs Lag 1L std Standard deviation of historical HAs during the previous 1 to L days

Environmental Features
  Pa Lag x Historical values of P on day x before the day for prediction, x ∈ {1, 2, 3, …, L}

  P Lag 1L mean Moving average of historical P during the previous 1 to L days

  P Lag 1L std Standard deviation of historical P during the previous 1 to L days

Calendar Features
  DOW Day of the week, {Mon., Tues., …, Sun.}—> {1, 2, …, 7}

  MON Month of the year, {Jan., Feb., …, Dec.}—> {1, 2, …, 12}

  SEA Season of the year, {spring, summer, fall, winter}—> {1, 2, 3, 4}

  YEAR The year, {2015, 2016, 2017, 2018}—> {1, 2, 3, 4}

  TS Timestamp, serial number from 1 to 1461

  HOL Holiday, [0,1], 1 represented the day is a holiday, while 0 represented not

  WD Workday, [0,1], 1 represented the day is a work day, while 0 represented not

  FWD First work day, [0,1], 1 represented the day is the first workday, while 0 represented not

  LWD Last work day, [0,1], 1 represented the day is the last work day, while 0 represented not

http://www.cnemc.cn/
http://data.cma.cn/
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Initially, we split the whole dataset into a training set, 
which covered the period from January 1, 2015 to Decem-
ber 31, 2017, and a testing set, which covered the period 
from January 1, 2018 to December 31, 2018. We denoted 
them as Strain = (Xtrain, Ytrain) and Stest = (Xtest , Ytest) , 
respectively, where X represented the feature set and Y 
represented the corresponding label set.

In the first phase, the four base learners, includ-
ing linear regression with L2 regularization (Ridge) 
[31], random forest (RF) [32], gradient boosting deci-
sion tree (GBDT) [33], and ANN [34], were trained 
and used to make predictions as the input features 
for the meta learner. To avoid overfitting and improve 
the generalization capability, a five-fold cross-vali-
dation was implemented. We split Strain into five sub-
sets in chronological order, and the ith subset was 
denoted as Si = (Xi, Yi)(i = 1, 2, 3, 4, 5) . At the ith-fold 
cross-validation, the jth base learner (j = 1, 2, 3, 4) 
was trained using the subsets except Si and made pre-
dictions on Si, which were recorded as Pj(Xi) . Con-
sequently, this process was repeated a total of 20 
(4 × 5) times, with each base learner making pre-
dictions once on each fold. Afterwards, the predic-
tions generated by the jth base learner throughout 
the five-fold cross-validation were represented as 

Mj(Xtrain) = {Pj(X1), Pj(X2), Pj(X3), Pj(X4), Pj(X5)} and 
treated as a new feature in the new training set. At the 
meantime, the jth base learner trained at the ith-fold 
cross-validation made predictions using Stest , which 
were recorded as Qji(Xtest) , and the average of predic-
tions were calculated as a new feature in the new test-
ing set, namely Nj(Xtest) =

1
5

5
i=1Qji(Xtest).

Furthermore, to help the meta learner decide which model 
to apply under a certain circumstance [23], we merged the 
key features selected by the base learners, namely calen-
dar features and HAs features (as shown in Additional 
file 1: Fig. S1), into the new training set and the new test-
ing set, which were denoted as Xtrain_key and Xtest_key , 
respectively. Hence, at the end of the first phase, we gained 
a new training set Snew_train = (Xnew_train, Ytrain) , where 
Xnew_train = (M1

(

Xtrain

)

,M2

(

Xtrain

)

,M3

(

Xtrain

)

,M4

(

Xtrain

)

,

Xtrain_key) , and a new testing set Snew_test = (Xnew_test , Ytest ) , where 
Xnew_test = (N1

(

Xtest

)

, N2

(

Xtest

)

, N3

(

Xtest

)

, N4

(

Xtest

)

, Xtest_key).
In the second phase, the meta learner, i.e., the elas-

tic net [35], was trained on Snew_train and then used to 
make the final predictions on Snew_test.

For a suitable architecture of the stacking model, we 
have tested eight widely utilized lightweight ML mod-
els in the preliminary experiment (see Additional file 1: 
Table S1), and Ridge, RF, GBDT, and ANN were picked 

Fig. 1  Schematic diagram of stacking model development
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as base learners for two reasons: 1) Each of them outper-
formed other models in daily HAs prediction. 2) Ridge 
and ANN are classical linear and network ML models, 
respectively. RF and GBDT are ensemble tree models 
based on the bagging and boosting methods, respec-
tively. Because the theories of these models are highly 
heterogeneous, they can obtain insight into the training 
data from different perspectives and eventually increase 
the accuracy and robustness of the stacking model [36]. 
Linear regression with a combination of L1 and L2 regu-
larization (elastic net) was selected as the meta learner 
because it was widely used in a similar context and can 
prevent overfitting to a large extent [21].

Re‑weighting with Label distribution smoothing (LDS)
In our study, daily HAs data exhibit an imbalanced dis-
tribution, where certain target values, especially peaks 
and troughs, have strikingly fewer observations. For 
classification tasks, re-sampling and re-weighting are 
the two main methods to address data imbalance. How-
ever, methods based on re-sampling, such as SMOTE 
[37] and SMOGN [38], are not directly applicable to our 
task, because the distance between labels was not con-
sidered and the intrinsic seasonal pattern of HAs might 
be damaged. We adopt the LDS method [39] to extend 
re-weighting schemes to regression tasks, which includes 
the following steps: First, discretize the continuous tar-
get space into finite bins, which can be considered as 
the empirical label density distribution. Then convolve 
the empirical label density with a symmetric kernel to 
calculate the effective label density that accounts for the 
overlap in the information of nearby labels so that the 
cost-sensitive re-weighting method can be utilized based 
on the effective label distribution.

To integrate this approach into our proposed model, 
in the training process of the meta learner, we used the 
inverse of effective label density as the weight of train-
ing samples when calculating the loss function, and 
given that the HAs data show a yearly rising trend and an 
annual seasonal pattern, it is more reasonable to calcu-
late the LDS estimated label density within each year as 
shown in Fig. 2.

Training details and parameters
In our experiment, the ANN were completed using Keras 
with Tensorflow 2.4.1 as the backend. Other base learn-
ers were implemented based on the Scikit-learn 0.24.2 
Python library. The computation was performed using 
AMD Ryzen 74800U with Radeon Graphics 1.80  GHz. 
In the stacking model, the hyper-parameters of the base 
learners and the meta learner were tuned with the last 
20% of the original training dataset and the last 20% of 

the new training dataset, respectively. The grid search 
was applied, and the best hyper-parameter combinations 
were illustrated in Additional file 1: Table S2.

Model evaluation
To demonstrate the superiority of our stacking model, 
we compared the stacking model with all base learners 
and LSTM [20] on the testing set. In the LSTM, the input 
variables only included historical HAs and environmen-
tal features, and the time window of the input sequence 
was set to 6, which was consistent with the lag days of 
other methods. The hyper-parameters of the benchmarks 
were also tuned with the last 20% of the original training 
dataset (shown as Additional file 1: Table S2).

Four metrics, including mean absolute error (MAE), 
root mean square error (RMSE), mean absolute percent-
age error (MAPE), and coefficient of determination (R2) 
were used to evaluate the effectiveness of the prediction 
models as Hu et al. [22].

Model explainability
To explain the predictions of our final model, we made 
use of the permutation explainer implemented in the 
SHAP Python library (version 0.39.0). SHAP [40] is a 
unified approach based on the additive feature attribu-
tion method that interprets the difference between an 
actual prediction and the baseline as the sum of the 
attribution values, i.e., SHAP values, of each feature. In 
this study, the SHAP value for each feature in a given 
sample of CD dataset was calculated based on our pro-
posed stacking model to present its contribution to the 
variation of HAs predictions. For the historical HAs 
and environmental features, their SHAP values were 
regarded as the sum of the SHAP values of all single-day 
lag and cumulative lag features, rendering their contri-
butions during the previous 6 days.

A post-hoc interpretation was provided by analyzing 
the SHAP values from two perspectives. On the global 
scale, the SHAP values over all training samples were 
holistically analyzed to reveal how the stacking model 
fits the relationship between daily HAs and predictors. 
On the local scale, the SHAP values in several samples 
selected from the testing set were investigated to disclose 
how the predictions were generated in the effect of envi-
ronmental features.

Results
Descriptive statistics
The summary statistics of daily HAs, air pollutants, and 
meteorological indicators are shown in Table 2, and the 
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corresponding temporal variations of them are visualized 
in Additional file 1: Figs. S2 and S3, respectively. The cor-
relations between environmental exposure variables are 
shown in Additional file 1: Table S3.

From 2015 to 2018, the total number of HAs for 
CD was 102,708, and the average number of daily 
HAs was 70 (std = 35). The daily mean ± std concen-
trations of PM2.5, PM10, PMC, O3, SO2, NO2, and CO 
were 57.9 ± 40.6, 95.7 ± 62.1, 37.8 ± 25.6, 96.6 ± 54.6, 
12.7 ± 5.5, 53.9 ± 17.7, and 1030 ± 360  µg/m3, respec-
tively. The value of AQI ranged from 16.7 to 404.6, with 
a mean of 85.2. The mean TEM and RH were 16.9℃ and 
80.5%, respectively.

Model performance
Table  3 compares the performance of base learners, 
LSTM, and the proposed stacking model on CD dataset 
and stroke dataset.

On both datasets, ANN and LSTM surpass other indi-
vidual models in terms of MAE, RMSE, and R2, but gain 

higher MAPE than tree-based models, and the stacking 
model is substantially superior to all individual mod-
els. After using LDS, the performance of the stacking 
model is further improved. On CD dataset, compared 
with the optimal results obtained by individual mod-
els, the MAE, RMSE, and MAPE of the stacking model 
with LDS remarkably reduced by 13.9%, 12.7%, and 5.8%, 
respectively, and the R2 increased by 6.8%. Additionally, 
the results of the t-test indicate that, when evaluated by 
most metrics, the performance gap between the stack-
ing model with LDS and the best individual model is 
significant, and the difference between the R2 of them is 
visualized in Additional file  1: Fig. S4. Figure  3 shows a 
comparison between the observed HAs and the predic-
tions of the stacking model with LDS on two datasets.

Model explanation
Global explanation
Figure 4 shows the distribution of SHAP values of each 
feature in chronological order, and the features are 

Fig. 2  Schematic diagram of label distribution smoothing
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ranked according to the average of their absolute SHAP 
values over all the training samples, which represents 
their global importance.

Most straightforwardly, a calendar feature nearly always 
had similar SHAP values when it remained at the same 
values, resulting in visually prominent color blocks with 
a periodic alternation. In contrast, the impact of environ-
mental features varied over samples without explicit pat-
terns. In light of additive feature attribution theory, the 
predicted HAs could be regarded as the additive combi-
nation of three parts: a baseline (generally the average of 
predictions), a regular difference attributed by calendar 

features and historical HAs, and a highly volatile differ-
ence attributed by environmental features. As shown in 
Table  4, the second part depicted the general trend of 
variations in the number of daily HAs, and the third part 
served to further enhance the model performance.

After further observing each feature shown in Fig. 4, we 
found that TS and historical HAs played a major part in 
profiling the growth trend in HAs, and DOW served to 
depict the periodic variation of HAs caused by the work-
rest schedule in hospitals (see Additional file 1: Fig. S2). 
TEM in the fall and summer contributed to increasing 
the predicted HAs. Notably, the annual peak concentra-
tions of several air pollutants, such as O3, CO, and PM2.5, 
and their SHAP values pushing up the predicted HAs 
occurred at similar times (see Additional file 1: Fig. S3).

Local explanation
As the contributions of calendar features and HAs 
features are relatively straightforward and regular, it 
makes more sense to concentrate on how the involve-
ment of environmental features improves the model 
performance. Thus, the samples on every Wednesday 
in August 2018 were selected to fix the calendar fea-
tures except TS, where August was selected to further 
explore the impact of high temperatures on the risk of 
CD, and Wednesday was selected to reduce the inter-
ference caused by weekend breaks and Chinese holi-
days. The sum of the first two parts of the predictions 
mentioned above was set as a new baseline. Figure  5 
shows how the SHAP values of environmental features 
were accumulated from the new baseline to reach the 
final predictions.

By comparing Fig. 5 and Additional file 1: Fig. S5, it 
was observed that the TEM in August and peak con-
centrations of PM2.5 and O3 that appeared in the six 

Table 2  Descriptive statistics of daily HAs for CD and environmental exposure data in Chengdu, 2015–2018

a Std standard deviation

Variables Units Mean Stda Min 25% 50% 75% Max

Daily HAs CD HAs persons 70 35 6 42 68 96 214

Stroke HAs persons 45 21 4 27 43 60 131

Air pollutants PM2.5 μg/m3 57.9 40.6 6.1 29.6 46.3 74.5 324.5

PM10 μg/m3 95.7 62.1 12.0 51.6 78.4 124.5 492.5

PMC μg/m3 37.8 25.6 3.9 20.3 30.9 48.0 238.2

O3 μg/m3 96.6 54.6 5.6 54.2 86.2 135.2 290.4

SO2 μg/m3 12.7 5.5 3.9 8.5 11.2 15.3 37.9

NO2 μg/m3 53.9 17.7 13.9 41.0 51.9 64.6 130.4

CO mg/m3 1.0 0.4 0.4 0.8 1.0 1.2 2.8

AQI 1 85.2 48.5 16.7 52.5 71.4 103.8 404.6

Meteorological measures TEM ℃ 16.9 7.3 -1.1 10.1 17.4 23.2 30.2

RH % 80.5 9.2 43.0 74.4 80.8 87.7 99.3

Table 3  Performance comparison of different methods in 
predicting HAs for CD and stroke

The best result for each metric is in bold. 
* The differences in the MAE, RMSE, or MAPE between the stacking model with 
LDS and the best individual model are significant (P-value < 0.05) according to 
the t-test

Datasets Models MAE RMSE MAPE R2

CD RF 14.713 20.649 0.154 0.652

GBDT 14.661 20.296 0.154 0.663

Ridge 14.894 19.963 0.183 0.674

ANN 14.408 18.407 0.191 0.723

LSTM 13.774 18.421 0.165 0.739

Stacking 12.467 17.053 0.153 0.762

Stacking + LDS 11.855* 16.078* 0.145 0.789
Stroke RF 10.889 14.660 0.175 0.51

GBDT 11.251 14.995 0.178 0.487

Ridge 10.357 13.278 0.210 0.598

ANN 9.525 12.140 0.191 0.664

LSTM 9.422 12.166 0.185 0.676

Stacking 9.038 11.898 0.170 0.677

Stacking + LDS 8.961* 11.850 0.159* 0.680
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days leading up to August 28 served to increase the 
predicted values of HAs, while gradually declining RH 
over the previous 6 days lowered the predicted values 
on August 21 by around 1 count.

Discussion
Model performance analysis
A distinct improvement of the stacking model compared 
to the base learners can be attributed to three aspects: 1) 
ANN and tree-based models performed best when evalu-
ated by different metrics, which reflected the heterogene-
ity of their predictions and laid the foundation for meta 
learner to combine their strengths and obtain a better 
generalization [36]. 2) The key features served to help the 
meta learner understand how to choose and combine the 

predictions of base learners under various circumstances. 
3) The re-weighting method based on LDS reduced the 
error caused by label imbalance, as shown in Fig. 6.

As shown in Additional file  1: Table  S3, there are 
significant correlations among environmental expo-
sure variables, however, the performance of the stack-
ing model was not impacted because the base learners 
and the meta learner we selected can effectively handle 
multicollinearity. In Ridge and elastic net, the L2 reg-
ularization term added to their loss function can help 
stabilize the estimates and reduce overfitting in the 
presence of collinearity [41].

LSTM has been successfully applied in many fields, but 
in our task, its prediction performance is still inferior to 
the proposed stacking model. There are two potential 

Fig. 3  The comparison and residual between the observed HAs and the predictions of the stacking model with LDS on CD dataset and stroke 
dataset
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reasons: 1) The size of our dataset is limited, with a total 
of 1461 samples, therefore, using lightweight models with 
simple architectures and fewer parameters can help avoid 
overfitting. 2) In our task, the time lag was set to 6 days to 
consider the short-term effect of environmental exposure, 
which constrained the advantage of LSTM in learning the 
long-time dependencies. However, the calendar features 
we extracted, such as YEAR, SEA, and MON, can assist 
the stacking model in capturing long-term trends.

Fig. 4  Heatmap plot of SHAP values of all features across all samples in the CD training set. The width of the black bar on the right-hand side shows 
the global importance of each feature. a Calendar features and HAs features b Environmental features

Table 4  The improvement of model performance attributed to 
environmental features estimated by SHAP

MAE RMSE MAPE R2

Baseline + SHAP values of HAs 
features and calendar features

12.306 16.584 0.152 0.775

Final prediction 11.855 16.078 0.145 0.789

Improvement 3.665% 3.054% 4.306% 1.743%
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Comparing SHAP explanation and conventional 
association analysis
In our study, the explanations obtained by SHAP dis-
played a strong agreement with the conclusion of asso-
ciation analysis using conventional analytical methods 
based on statistical models, such as GLMs and general-
ized additive models (GAMs). For example, the TEM in 
summer and the peak values of air pollutant concentra-
tions always played a role in describing the increase in 
HAs. This is consistent with the previous studies, which 
found high levels of air pollution and high tempera-
tures were associated with a high morbidity of stroke 
[4, 5, 42, 43], but we did not observe that cold weather 
served to drive up the predicted HAs, probably because 

the minimum TEM (-1.1℃) during our research period 
in Chengdu did not reach the extreme cold defined in 
related studies. This consistency indicates that our 
stacking model can accurately describe the relationship 
between daily HAs for CD and environmental factors, 
thus improving the model performance.

Moreover, if we associate SHAP values that push up the 
predicted HAs with an increased risk of CD, the model 
explanations can be regarded as a new perspective to 
explore the adverse health effects of air pollutants and 
extreme weather conditions. For example, the relation-
ship between the risk of CD and the lagged TEM and RH 
can be depicted in Fig.  7. Furthermore, SHAP can com-
prehensively account for the combined impact of multiple 

Fig. 5  Waterfall plot of SHAP values to four selected samples, i.e., samples on August 7, 14, 21 and 28, 2018. The new baselines and the final 
predictions are marked at the bottom and top of the image, respectively. The SHAP values of each feature are listed on the bar
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environmental factors, whereas most traditional methods 
can only analyze the association between single environ-
mental factors and HAs after controlling confounding 
effects among multiple covariates by smoothing functions.

Limitations
Several limitations should be addressed in our study. First, 
limited by the available data sources, we only considered 

the impact of ambient air pollutants and meteorologi-
cal conditions on daily HAs for CD, but some other envi-
ronmental factors and individual health behaviors may 
also play important roles in the development and severity 
of CD. Second, our proposed model is only applicable to 
predict HAs for non-communicable diseases, such as CD, 
which are associated with environmental exposure, and 
the model might not be suitable for forecasting the daily 
number of hospitalizations for infectious diseases. Third, 

Fig. 6  The left side shows empirical label distribution plots, and the right side shows comparison plots of error before and after using LDS on two 
testing datasets: a CD and b stroke

Fig. 7  SHAP dependence plots that show the effect of TEM lag5 and RH lag1 on the predictions of HAs
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the peak values of HAs are not well predicted, which could 
lead to under-allocation of medical resources.

Conclusions
This study proposed a stacking ensemble model to pre-
dict the daily number of HAs for CD using the HAs data, 
air quality data, and meteorological data. The experimental 
results showed that our proposed model is superior to the 
base learners and LSTM on two datasets under four evalu-
ation criteria. Moreover, the model explanation demon-
strated that environmental factors played a role in further 
improving the model performance and identified that high 
TEM and high concentrations of gaseous air pollutant might 
strongly associate with an increased risk of CD. This study 
indicates that the proposed model considering environmen-
tal exposure factors is efficient in predicting daily HAs for 
CD and has practical value for hospital management teams 
in early warning and healthcare resource allocation.
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