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Abstract
Background  Bronchopulmonary Dysplasia (BPD) has a high incidence and affects the health of preterm infants. 
Cuproptosis is a novel form of cell death, but its mechanism of action in the disease is not yet clear. Machine learning, 
the latest tool for the analysis of biological samples, is still relatively rarely used for in-depth analysis and prediction of 
diseases.

Methods and results  First, the differential expression of cuproptosis-related genes (CRGs) in the GSE108754 dataset 
was extracted and the heat map showed that the expression of NFE2L2 gene was significantly higher in the control 
group whereas the expression of GLS gene was significantly higher in the treatment group. Chromosome location 
analysis showed that both the genes were positively correlated and associated with chromosome 2. The results of 
immune infiltration and immune cell differential analysis showed differences in the four immune cells, significantly 
in Monocytes cells. Five new pathways were analyzed through two subgroups based on consistent clustering of CRG 
expression. Weighted correlation network analysis (WGCNA) set the screening condition to the top 25% to obtain 
the disease signature genes. Four machine learning algorithms: Generalized Linear Models (GLM), Random Forest 
(RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGB) were used to screen the disease signature 
genes, and the final five marker genes for disease prediction. The models constructed by GLM method were proved 
to be more accurate in the validation of two datasets, GSE190215 and GSE188944.

Conclusion  We eventually identified two copper death-associated genes, NFE2L2 and GLS. A machine learning 
model-GLM was constructed to predict the prevalence of BPD disease, and five disease signature genes NFATC3, 
ERMN, PLA2G4A, MTMR9LP and LOC440700 were identified. These genes that were bioinformatics analyzed could be 
potential targets for identifying BPD disease and treatment.
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Introduction
Bronchopulmonary Dysplasia (BPD) is a disease with 
a high prevalence in preterm infants, affecting 35% of 
all babies born prematurely each year [1]. The disease is 
caused by a number of factors [2, 3], such as the weight 
and survival of the preterm infant [4, 5]. Because the 
lungs of preterm infants are at an immature stage, inap-
propriate treatment can impair lung growth and produce 
structural changes in the affected lungs due to reduced 
alveoli and disturbed matrix remodeling, which may 
persist into adolescence [6]. Current research findings 
suggest that treatment options for BPD are limited to 
supportive care such as hyperoxia and medications [1, 
7], and that relatively advanced screening and diagnostic 
imaging techniques are only available for specific popula-
tions [8], and that more efficient and feasible treatments 
need to be developed.

In contrast to the established apoptotic modalities, 
Cuproptosis is a novel way of causing cell death through 
the accumulation of copper ion concentrations in cells 
[9]. Available studies suggest that the specific mechanism 
of action of Cuproptosis is the induction of cell death 
by targeting lipid acylated TCA cyclins [10]. The com-
bined analysis of Cuproptosis and disease has focused 
on oncology, such as bladder cancer, liver cancer and 
melanoma [11–14], involving multiple aspects of tumor 
microenvironment, clinical outcome and patient progno-
sis. Fewer studies have been performed in non-oncology 
areas, with results published only in rheumatoid arthri-
tis, inflammatory bowel disease and Alzheimer’s disease 
[15–17]. Through the published literature, non-tumor 
diseases are less studied for Cuproptosis and need to be 
studied in more depth.

Although machine learning models are a type of tech-
nology derived from artificial intelligence research, they 
have gradually taken an important place in the analysis of 
large amounts of complex biological data in recent years 
[18] and have been successfully applied in disease diag-
nosis, drug screening and basic research [19]. In the field 
of protein function, the incorporation of machine learn-
ing into analytical models can improve the accuracy of 
prediction and in-depth analysis of protein function [20]. 
In the field of metabolic engineering, machine learning 
has improved data analysis methods, saving time and 
improving the accuracy of predicting metabolic results 
[21]. Generalized Linear Models (GLM) is a regression 
model for non-normal dependent variables [22]; Random 
Forest (RF) can evaluate the importance of variables and 
model predictions [23]; Support Vector Machine (SVM) 
is a two-class classification model that assigns labels 
to objects through instance learning [24]; and Extreme 
Gradient Boosting (XGB) is to integrate the prediction 
results of multiple classifiers as the most do that predic-
tion [25]. It is a new attempt to apply the above machine 

learning algorithm model methods to disease target gene 
analysis and feature gene prediction.

In summary, in this study, we used BPD disease as an 
entry point to explore Cuproptosis genes expression 
in disease transcriptome cohorts, the location of sig-
nificantly expressed genes in human chromosomes and 
immune cell differences. Consistent clustering analysis 
identifies unique pathways across different subgroups. 
WGCNA combines four machine learning models to 
mine genes characteristic of BPD disease, evaluates 
model performance and sets up a validation group to test 
model accuracy.

Methods and materials
Data sources and analysis tools
High throughput gene expression data for human were 
retrieved from the Gene Expression Omnibus data base 
(GEO) using the search term “Bronchopulmonary Dys-
plasia” [26]. All studies involving BPD disease were 
screened for the following inclusion criteria: (1) BPD 
infant cord blood. (2) Provide specific study platform and 
technical information. (3) Normal infant cord blood was 
included in each dataset as a control group. The sequenc-
ing cohort used for the analysis is based on the GPL13497 
platform GSE108754 samples from the GEO. The vali-
dation dataset is from the same database, GSE190215 
based on GPL30862 platform and GSE188944 based on 
GPL14951 platform. The bioinformatics analysis tools 
involve text fast processing of Perl language [27] scripts, 
and the compiler is Strawberry perl (version 5.30.0.1). 
Systematic analysis and visualization were performed 
using R language scripts (R version 4.1.3) [28], which 
contains a number of data analysis packages. When P 
value was used as a test for significance of difference, P 
less than 0.05 was statistically significant.

Expression of CRGs
The expression matrix of BPD disease genes was obtained 
using perl language script, and the expression of copper 
death genes in the matrix was extracted from the cor-
rected data to obtain the expression matrix of 19 CRGs 
[29]. Based on the CRGs expression matrix, the “limma” 
package [30] was used to analyze the correlation between 
differential expression and CRGs between the prema-
ture birth of infants with BPD disease (treat) and healthy 
preterm infants (control) groups. The “RCircos” package 
[31] was used to annotate the distribution of CRGs on 
chromosomes.

Immune cell related expression analysis
The tumor immune infiltration analysis package “CIBER-
SORT” [32] was introduced to observe the expression of 
immune cells in the control and treat groups, and box 
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plots can show the differences in immune cells between 
the different groups.

Consistency clustering analysis
Samples were grouped into different subtypes based on 
the expression of differential CRGs in the samples. The 
“ConsensusClusterPlus” [33], an R package specifically 
designed for onsistency clustering analysis, was used to 
analyze only the experimental group samples and set the 
clustering K values. The most reliable results of the clus-
tering analysis were obtained by judging the cumulative 
distribution function of K taking different values. Immu-
nocytic infiltration analysis is performed on the typed 
groups. The Gene Set Variation Analysis (GSVA) uses 
two data packages “GSEABase” and “GSVA” to construct 
functions and set parameters to evaluate whether dif-
ferent metabolic pathways are enriched among samples 
without typing.

WGCNA method to construct gene co-expression network
The data package “WGCNA” [34], which is required for 
weighted correlation network analysis (WGCNA) built 
into the R language, was used to select the top 25% of the 
most fluctuating genes in the BPD disease gene expres-
sion matrix for analysis. After first removing the offend-
ing genes and samples from the data, the samples were 
clustered. Then, the Power value power index range of 
1:20 was set and the scatter plot showed the fit index 
and average connectivity. Finally, the genes are clustered 
and the dynamic modules identify the modules where 
the genes are located and the modules are clustered. The 
similarity between modules is found and the module with 
the smallest p-value of the correlation test is identified as 
the disease key gene module.

Machine learning model construction
Four R language packets “caret” [35], “dalex”, “random-
Forest” [36] and “xgboost” [37] are combined to build 
four machine learning models: Generalized Linear Mod-
els (GLM), Random Forest (RF), Support Vector Machine 
(SVM), and Extreme Gradient Boosting (XGB). The 
“kernlab” [38] package has a built-in cluster of algorithms 
that can perform many tasks in machine learning. The 
expression of core genes in the intersection of WGCNA 
is extracted and the results are predicted using four mod-
els. The accuracy of the models is evaluated by plotting 
the residual box line, the cumulative distribution of resid-
ual directions, and the ROC curves of the models. Impor-
tance scores are assigned to each model gene to filter out 
the characteristic genes for BPD disease.

Machine learning model validation
The disease signature gene expression obtained from 
the machine learning model with the highest accuracy 

is extracted, the Nomogram is plotted to score each sig-
nature gene, and the probability of the patient develop-
ing the disease is finally assessed based on the combined 
score. The calibration curve and decision curve can 
reflect the accuracy of the Nomogram plot scoring mech-
anism. The expressions of the feature genes are learned 
according to the construction machine, validated on two 
datasets, GSE190215 and GSE188944, and ROC curves 
are drawn to demonstrate the prediction results.

Results
Expression of CRGs in BPD
The list of CRGs contains 19 genes, and it can be seen in 
the differential expression analysis plot (Fig. 1A) that two 
genes, NFE2L2 and GLS, are differentially expressed in 
the Control and Treat groups. As seen in the heat map 
(Fig.  1B), for the two CRGs that were significantly dif-
ferentially expressed, NFE2L2 was upregulated in the 
Control group and downregulated in the Treat group. 
However, GLS is opposite to this, which is worth our 
attention. On the circle plot of gene distribution on 
chromosomes (Fig. 1C), two genes are mainly associated 
with human chromosome 2. In terms of gene correlation 
(Fig. 1D), the two genes show a positive correlation.

CRGs and immune cell correlation analysis
From the histogram of 22 immune cell infiltration in 
different groups (Fig.  2A), it can be seen that the Treat 
group had higher content of B cells naive and B cells 
memory, while the Control group had higher content of 
T cells CD4 naive and Neutrophils cells, and the content 
of other immune cells differed less, the specific reasons 
need further experimental verification. In the immune 
cell differential analysis plot (Fig.  2B), the conclusions 
obtained were consistent with the infiltration results, 
with statistically significant differences in B cells naïve, 
B cells memory, T cells CD4 naive and Neutrophils 
between the different subgroups (p < 0.05). Analysis of 
the correlation between differentially expressed CRGs 
and immune cells in BPD disease showed (Fig. 2C) that 
15 immune cells were positively regulated with CRGs, 
and negative regulation was mainly reflected in B cells 
naive, Macrophages M0, and T cells CD4 memory acti-
vated. The most significant correlation in the positive 
regulatory relationship was found in Monocytes cells.

Classification of DCRGs into two subtypes by consistency 
clustering
The BPD samples were typed based on the expression of 
differential CRGs genes. The two clustering subgroups 
defined by the consistency matrix heat map (Fig.  3A) 
and the consistency cumulative distribution function 
(CDF) curve (Fig. 3B) demonstrate that the CDF reaches 
an approximate maximum at K = 2, when the clustering 
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results are most reliable. Looking at the immune cell 
content between subgroups C1 and C2, the histogram 
(Fig. 3C) shows less variability in immune cells between 
the two groups. The GSVA analysis plot (Fig. 3D) can be 
observed that there are five pathways that are differential 
between the different subtypes. Three pathways: pan-
tothenate and coa biosynthesis, cell adhesion molecules 
cams, and asthma are shown in red, representing positive 
regulatory relationships in the C2 subgroup; ascorbate 
and aldarate metabolism, and selenoamino acid metabo-
lism are shown in blue, representing the positive regula-
tory relationship in the C1 subgroup.

Application of WGCNA to construct a gene co-expression 
network in BPD Patients
WGCNA first clustered the samples (Fig.  4A) and used 
the top 20% of the BPD disease samples with the most 
divergent genes for analysis, setting a soft threshold of 2 
(Fig. 4B). The gene expression matrix was then dynami-
cally identified in modules, each containing no less than 
100 genes (Fig. 4C). The module gene correlation model 

was constructed (Fig. 4D), and the darker the color at the 
connection of two modules, the stronger the correlation. 
A total of 17 co-expression modules were aggregated in 
the cohort (Fig. 4E), and the blue module had the stron-
gest negative correlation with the Control group score 
(Cor = -0.94, P = 2e-05) and the strongest positive corre-
lation with the Treat group score (Cor = 0.94, P = 2e-05). 
Finally, setting the gene importance greater than 0.5 and 
the gene-module correlation greater than 0.8, 482 pivotal 
genes were screened as potential BPD-related genes from 
the 643 gene force of the blue module (Fig. 4F).

Building a machine learning model to identify BPD disease 
signature genes
The 482 pivotal gene expression profiles from the 
WGCNA blue co-expression module were used to con-
struct prediction functions using four machine learn-
ing models. In the residual box line plot of the models 
(Fig.  5A), the red dots represent the root mean square 
of the residuals, GLM has the smallest value of residu-
als, XGB has the largest value of residuals, and the 

Fig. 1  Expression of cuproptosis-related genes (CRGs) in bronchopulmonary dysplasia (BPD) disease. (A) Differentially expressed of CRGs. 
***p < 0.001,**p < 0.01 and *p < 0.05. (B) Heat map of significantly different CRGs expression between different subgroups. ***p < 0.001,**p < 0.01 and 
*p < 0.05. (C) The position of CRGs on 23 chromosomes. (D) The correlation of CRGs in BPD disease
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distribution of residuals of RF and SVM is between 0 and 
0.2. The conclusion obtained from the plot of the reverse 
cumulative distribution of residuals (Fig.  5B) is consis-
tent with the above results. The results of the ROC curve 
(Fig.  5C) showed that the area under the curve of the 
XGB model was 0.5, and the area of the remaining three 
models was 1. From the results, it can be seen that the 
XGB model has a smaller curve area with other machine 
learning models, which may be related to the overfitting 
of the model. The importance analysis of genes was per-
formed for the four methods, and the gene importance 

scores of the four methods were obtained (Fig. 5D). In the 
GLM model, the top five genes with the highest impor-
tance scores were NFATC3, ERMN, PLA2G4A, MTM-
R9LP and LOC440700; LDOC1, ADAM19, ST7_AS1, 
RAB30 and HLA_DRB5 are the most important genes in 
the RF model; TMED6, LOC400958, P2RX5, KIAA0664 
and CD40 occupy an important position in the SVM 
model; the root mean square error (RMSE) loss after tra-
versal for ZFY, XIST, UTY, USP9Y and Type importance 
scores is 0.5 in the XGB model. In summary, we choose 

Fig. 2  Cuproptosis-related genes (CRGs) and immune cell correlation analysis. (A) Histogram of the expression levels of 22 immunocyte subgroups in 
control and treat groups. (B) The expression differences of immunocytes in different groups. ***p < 0.001,**p < 0.01 and *p < 0.05. (C) The expression of 2 
CRGs between 15 immunocyte subgroups
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the machine learning model GLM with the highest 
accuracy.

Machine learning model prediction accuracy check
The first five genes of the GLM model were selected as 
the disease signature genes, and the nomogram (Fig. 6A) 
was constructed to predict the incidence of BPD disease. 
Each signature gene would have a separate score interval, 
and the scores of all genes were summed to obtain the 
final score and then compared to the incidence rate. The 
predictive power of the nomogram is demonstrated using 
the calibration curve (Fig. 6B), where the solid and dashed 
lines are closer to each other in the figure, indicating the 

high accuracy of the model. The Model represented by 
the red line in the decision curve (Fig.  6C) is far away 
from the all curve, again indicating the model effect. Two 
validation datasets, GSE190215 and GSE188944, were set 
up to identify the models (Fig.  6D, E), and surprisingly, 
the accuracy of our constructed models can reach 94.2% 
and 98.7%.

Discussion
In this study, we obtained CRGs based on BPD dis-
ease, combined with Cuproptosis and machine learn-
ing to analyze high-throughput sequencing group data. 
The copper death genes NFE2L2 and GLS, which were 

Fig. 3  The expression of DCRGs was divided by consistent clustering into two different subtype samples and biological characteristics. (A) Consensus 
matrix heat map defining two clusters (k = 2) and their correlation area. (B) Consistency cumulative distribution function curve. (C) The abundance of 
each TME infiltrating cell in two clusters. (D) GSVA of biological pathways between two distinct subtypes, where red and blue represent up- and down-
regulated pathways, respectively
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differentially expressed in the disease and healthy groups, 
were obtained. Coincidentally, both genes were on chro-
mosome 2 and both genes showed positive correlation; 
and both genes were associated with Monocytes cells, 
again in a positive regulatory relationship. Consistent 
clustering of the samples by expression of CRGs showed 
that they could be clustered into C1 and C2 subgroups. 
GSVA analysis of the pathways of both subtypes showed 
that the subgroup C1 has 2 unique pathways relative to 
subgroup C2, and subgroup C2 has 3 pathways. WGCNA 
found hidden BPD potential genes in the blue module. 
GLM possessed higher accuracy among the four machine 
learning models and established five disease marker 
genes.

The first two genes identified were Cuproptosis-asso-
ciated genes. The NFE2L2 gene is now mostly studied in 
the cancer field; in esophageal squamous cell carcinoma 
NFE2L2 may confer oncogenic activity [39]; in cervical 
squamous carcinoma it is involved in immune progno-
sis, mainly acting in the tumor microenvironment [40]; 
autophagy and the NFE2L2 pathway activate ubiquitin 
ligases in prostate cancer [41]. In the non-cancerous cel-
lular domain, NFE2L2 gene variants affect metabolic and 
renal function parameters in patients with diabetes and 
hypertension [42]; are also genetic markers of susceptibil-
ity to cirrhosis [43] ; and evidence has even been found in 
the effect of obesity on heart rate [44]. It has been dem-
onstrated that GLS is an anti-cuproptosis gene [45]. GLS 

Fig. 4  Application of WGCNA to construct a gene co-expression network in BPD patients. (A) A weighted co-expression network. (B) Scale independence 
and mean connectivity. (C) Gene dendrogram and modules before merging. (D) Visualizing the gene network using a heat map plot. (E) Pearson correla-
tion analysis of merged modules and CAF score. (F) Scatterplot of MM and GS from the blue module
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has been identified as a genetic marker for the diagno-
sis of acute myocardial infarction [46] and has been less 
studied in other diseases, but results have been published 
in cancers such as glioma [47], breast cancer [48] and 
liver cancer [49].However, these two marker genes have 
not been studied in the subject of prematurity. It is worth 
our attention that these genes are related to human chro-
mosome 2, which provides a direction for future genetic 
screening of embryos. Also, there is a potential link 
between the genes and immune cells.

Adding machine learning algorithms in artificial intelli-
gence to statistical analysis in biology has good predictive 
effect. For the data in this study, the GLM model had the 
highest composite score in the prediction of BPD disease 
signature genes. Five disease signature genes (NFATC3, 

ERMN, PLA2G4A, MTMR9LP and LOC440700) were 
screened and scored for a range of values for different 
genes to assess the probability of preterm infants with 
the disease. NFATC3 gene can inhibit or enhance cancer 
progression by inducing and modulating other pathways 
[50–52]. ERMN genes are mostly present in the expres-
sion profile of autistic patients [53, 54]. The PLA2G4A 
gene has been shown to be associated with childhood 
asthma [55]. The MTMR9LP gene and LOC440700 gene 
are both long non-coding RNAs. The MTMR9LP gene 
may be a marker for the treatment and prevention of 
bisphosphonate-induced osteonecrosis of the jaw [56], 
and the mechanism of LOC440700 gene has not been 
identified. It can be seen that none of the above five genes 
selected by the GLM model have been studied in BPD 

Fig. 5  Building a machine learning model to identify BPD disease signature genes. (A) Four machine learning algorithms residual box line diagram. (B) 
Reverse cumulative distribution of residual among different machine learning models. (C) ROC curve to verify the accuracy of the model. (D) Importance 
score of feature genes in the model
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disease. The five disease marker genes have the potential 
to be marker genes for BPD disease prevention, predic-
tion and treatment. They can help obstetricians to evalu-
ate and treat preterm babies appropriately. Of course, 
our study is only at the stage of data analysis, and further 
basic medical experiments are needed to support the 
results of the research process.

Conclusions
In the present study, we identified two differentially 
expressed Cuproptosis-associated genes, NFE2L2 and 
GLS, in BPD disease. Based on these two genes, we 

explored the immune signature and immune corre-
lated expression. Combined with WGCNA analysis and 
machine learning models to screen for disease signature 
genes, the GLM model was identified as a predictive 
model for BPD disease. And five disease signature genes 
were predicted, NFATC3, ERMN, PLA2G4A, MTMR9LP 
and LOC440700. We introduced machine learning algo-
rithms in artificial intelligence to statistical analysis in 
biology, adding to the big data analysis in medicine.
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