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Abstract 

Background Topic models are a class of unsupervised machine learning models, which facilitate summarization, 
browsing and retrieval from large unstructured document collections. This study reviews several methods for assess-
ing the quality of unsupervised topic models estimated using non-negative matrix factorization. Techniques for topic 
model validation have been developed across disparate fields. We synthesize this literature, discuss the advantages 
and disadvantages of different techniques for topic model validation, and illustrate their usefulness for guiding model 
selection on a large clinical text corpus.

Design, setting and data Using a retrospective cohort design, we curated a text corpus containing 382,666 clinical 
notes collected between 01/01/2017 through 12/31/2020 from primary care electronic medical records in Toronto 
Canada.

Methods Several topic model quality metrics have been proposed to assess different aspects of model fit. We 
explored the following metrics: reconstruction error, topic coherence, rank biased overlap, Kendall’s weighted tau, par-
tition coefficient, partition entropy and the Xie-Beni statistic. Depending on context, cross-validation and/or bootstrap 
stability analysis were used to estimate these metrics on our corpus.

Results Cross-validated reconstruction error favored large topic models (K ≥ 100 topics) on our corpus. Stability analy-
sis using topic coherence and the Xie-Beni statistic also favored large models (K = 100 topics). Rank biased overlap 
and Kendall’s weighted tau favored small models (K = 5 topics). Few model evaluation metrics suggested mid-sized 
topic models (25 ≤ K ≤ 75) as being optimal. However, human judgement suggested that mid-sized topic models 
produced expressive low-dimensional summarizations of the corpus.

Conclusions Topic model quality indices are transparent quantitative tools for guiding model selection and evalu-
ation. Our empirical illustration demonstrated that different topic model quality indices favor models of different 
complexity; and may not select models aligning with human judgment. This suggests that different metrics capture 
different aspects of model goodness of fit. A combination of topic model quality indices, coupled with human valida-
tion, may be useful in appraising unsupervised topic models.
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Background
An increasing share of modern human communication is 
captured in digital text format [1]. The increasing digiti-
zation of communication creates a demand for compu-
tational and statistical methods to facilitate exploration, 
understanding and extraction of meaningful insights 
from these voluminous and complex text data sources.

Topic models represent a class of statistical tech-
niques for summarizing large text corpora. These mod-
els represent a document as arising from an admixture 
of latent topical vectors. The k = 1…K latent topical vec-
tors describe the thematic content of the corpus using a 
set of semantically correlated word clusters. An admix-
ing parameter (of dimension K) expresses the extent to 
which a particular document displays an affinity for a 
particular topic. Numerous statistical algorithms exist 
for estimating a topic model. One of the earliest tech-
niques involved representing a text corpus as a document 
term matrix (DTM) and decomposing the resulting large 
sparse DTM via singular value decomposition – a meth-
odology coined Latent Semantic Analysis (LSA) [2–4]. To 
facilitate improved interpretation, non-negative matrix 
factorization (NMF) has been employed to decompose 
the DTM. NMF summarizes an input DTM in terms of 
a low-rank outer product decomposition; however, in 
NMF the statistical decomposition forces non-negativity 
constraints on row and column bases, yielding an addi-
tive parts-based interpretation [5–7]. To enhance inter-
pretation of how complex document collections emerge, 
probabilistic extensions of LSA/NMF were developed, 
including probabilistic latent semantic indexing (pLSI) 
[8] and latent Dirichlet allocation (LDA) [9–12].

As with other unsupervised machine learning algo-
rithms, post-hoc evaluation, validation, and criticism 
of fitted topic models is encouraged, albeit challenging. 
Depending on the variant of topic model fit to a given 
document collection, several hyper-parameters need to 
be tuned to achieve a meaningful summarization of the 
corpus. A common hyper-parameter employed in all the 
aforementioned topic models is the number of topics 
(k = 1,2,3,…K), a discrete positive hyper-parameter which 
governs model complexity. Specification of too few top-
ics often yields a noisy thematic characterization, where 
learned topics are broad in scope (i.e. words loading 
highly on a given topic are not semantically correlated); 
whereas, specification of too many topics often results 
in over-clustering (a phenomena whereby semantically 
related topics are redundantly repeated in the summari-
zation). Topic model validity indices are post-hoc quan-
titative metrics which can be used to guide the analyst 
towards aspects of a “good fitting” model. A wide vari-
ety of internal model quality indices have been proposed 
across disparate statistical research fields.

The primary objective of this manuscript is to review 
and synthesize literature surrounding modern topic 
model validity indices. As a secondary objective, we fit 
several topic models and apply different topic model 
quality indices to a large corpus of clinical notes col-
lected from primary care electronic medical records 
from Toronto, Canada. We comment on the ability of 
these quality indices to guide analysts towards a con-
sensus model. We critically appraise the different topic 
model quality indices and investigate how different met-
rics assess different aspects of model stability, robustness, 
and goodness of fit.

Literature review
Non‑negative matrix factorization topic models
In this study, we fit a non-negative matrix factorization 
(NMF) topic model to an input document term matrix 
(DTM). The DTM is a large sparse matrix with d = 1…D 
rows (a single row for each document/note in the cor-
pus) and v = 1…V columns (a single column for each 
word/token in the empirical vocabulary). Each element 
of the DTM (Xdv) is a count random variable, denoting 
the number of times word/token (v) occurs in document 
(d). NMF factorizes the D*V dimensional DTM into two 
latent sub-matrices of dimension D*K ( θ ) and K*V ( φ ). 
The DTM (X) consists of non-negative integers (i.e. word 
frequency counts); whereas, the learned matrices ( θ,φ ) 
consist of non-negative real values.

Many suitable objective functions have been proposed 
for learning the NMF latent matrices (θ,φ ). We introduce 
a general NMF objective function below.

The objective function specifies that the observed ele-
ments of the DTM are approximated by a K-dimensional 
bilinear form ( K

k=1 θ{d,k}φ{k ,v} ). The user must specify 
the dimension of the latent space (K). The model can be 
adapted to different data generating mechanisms via the 
choice of loss function ( f

(

X{d,v};
∑K

k=1 θ{d,k}φ{k ,v}

)

 ). 
Arbitrary weighting of data points can be accommo-
dated through w{d,v} (examples of weighted NMF models 
are given in Udell et  al. [13]). Regularization 
( �

(

θd,k ,φk ,v
)

 ) can be introduced to achieve parameter 
estimates with desirable properties (e.g. sparsity, 
smoothness, minimum volume, etc.). Seminal articles on 
NMF include Paatero & Tapper [14] and Lee & Seung [5, 
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6]. Surveys of NMF and low rank models are given in 
Berry [15] and Udell et al. [13].

When using NMF for topic modelling, a sparse D*V 
dimensional DTM (X) is factored into two non-negative 
real matrices: a D*K dimensional matrix of per-docu-
ment topic parameters ( θ ) and a K*V dimensional matrix 
of per-topic word parameters ( φ ). The NMF model 
imposes non-negativity constraints on the estimates of 
the latent matrices ( θ and φ ). Post-hoc, one can normal-
ize the row-vectors constituting both θ and φ , dividing 
by their respective row-sums. The resulting normalized 
vectors can be interpreted as compositional/probabil-
ity vectors (i.e. each normalized row of θ and φ contains 
non-negative entries which sum to one). Row vectors 
of the matrix φ encode a set of k = 1…K per-topic word 
probabilities (estimated over a discrete set of v = 1…V 
words in our corpus). Row vectors of the matrix θ encode 
a set of d = 1…D per-document topic proportions (esti-
mated over a discrete set of k = 1…K latent dimensions), 
encoding the affinity a given document has for a particu-
lar topic.

Quality indices/metrics for evaluating NMF topic models
A topic model validity index is a numeric metric/score 
used to guide selection of an “optimal” topic model fitted 
to a given document collection. The choice of an “opti-
mal” model is context dependent and, in many cases, may 
even represent a nebulous concept [16, 17]. As a result of 
the difficulty associated with a priori defining the attrib-
utes of an optimal performing topic model, different 
validity indices have been developed across different sta-
tistical research communities, which highlight different 
aspects of model goodness of fit. Four broad classes of 
topic model quality indices will be introduced: 1) metrics 
which emphasize model fit (i.e. residual error or recon-
struction error), 2) metrics which focus on evaluation of 
the per-topic distribution over words matrix (φ{k ,v}) , 3) 
metrics which prioritize evaluation of the per-document 
distribution over topics matrix ( θ{d,k} ), and 4) metrics 
which simultaneously combine evaluation of θ{d,k} and 
φ{k ,v}.

Each of the topic quality indices discussed are examples 
of internal validation indices [18, 19]. Internal indices 
construct a validation score using only data available dur-
ing the topic model fitting process. These internal indi-
ces can be contrasted with external validation indices. 
An external validation index uses information collected 
via the same sampling process that generated the original 
DTM; however, it is external to the topic model fitting/
estimation algorithm. For example, it is common to eval-
uate a topic model in terms of the ability of the latent top-
ical basis (particularly the D*K matrix of per-document 

topic weights, θ) to predict an external target vector in a 
regression/classification context.

A final approach to validating topic models involves 
subjective human interpretation/validation.

Matthews [20] describe “eyeballing” as a common 
approach to validating (or ascribing meaning) to fitted 
topic models. Using the “eyeballing” method, researchers 
fit several topic models to an observed document collec-
tion (over a pre-determined hyper-parameter grid) and 
subjectively label learned topic distributions by inspec-
tion of high-loading words/tokens (from φ ) or high-load-
ing documents (from θ ). This subjective human-centric 
approach to topic model validation parallels that of face 
validity checks or social validity checks used in qualita-
tive content analyses [21]. Doogan et  al. [17] are also 
proponents of a more exhaustive approach to human-
in-the-loop topic model validation where both the latent 
topic vectors and the per-document topic weights are 
simultaneously evaluated.

Monte Carlo cross validation on reconstruction error 
metrics
Cross validation is a commonly employed methodology 
for estimating model performance and conducting model 
validation/selection [22]. Several challenges arise when 
cross validating a matrix factorization topic model. The 
input data structure in NMF topic modelling is a sparse 
high-dimensional DTM. When performing cross-vali-
dation in the context of NMF topic modelling we do not 
want to hold-out an entire row/column of the DTM. If an 
entire row/column index of the DTM is held-out for vali-
dation/testing (in a k-fold cross-validation scheme), then 
the training algorithm will never learn an embedding/
basis over the held-out row/column indices. As such, 
simple k-fold cross-validation schemes are not amenable 
for cross-validating an NMF topic model.

Wold [23] discusses several hold-out schemes relevant 
to cross-validating matrix factorization models. One 
scheme holds-out individual elements/indices (d,v) at 
random from the DTM, in such a manner that no entire 
row/column is left out of the training process. Wold [23] 
introduces an alternative cross-validation scheme which 
holds out diagonal bands of the DTM, again ensuring 
that no entire row/column is excluding from the train-
ing process. Owens et  al. [24] extends the idea, holding 
out contiguous blocks of rows/columns, again ensur-
ing no entire/row column is held out of the DTM dur-
ing the training and cross-validation process. Bro et  al. 
[25] review cross-validation in the context of matrix fac-
torization problems. Lastly, if the matrix (or DTM) being 
sampled is dense many of the above cross validation 
schemes are trivial to implement; however, if the matrix 
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is sparse (as is the case with many DTMs), checks on 
the validity of the hold-out process need to be carefully 
implemented.

In this study we employ a Monte Carlo cross-validation 
scheme similar to Wold [23]. We represent the DTM 
using a sparse triplet/coordinate-format data structure. 
We randomly sample 80% of data elements for inclu-
sion in the training process, and 20% of data elements 
are held-out for inclusion in the validation process. Sam-
pling is conducted without replacement. When sampling 
(d,v,x) triples for inclusion in the training sample, we 
write assertions to check that all row indices (d = 1…D) 
and all column indices (v = 1…V) are included in the 
training sample. If a randomly generated training sample 
excludes an entire row/column index) then the Monte 
Carlo cross-validation sample is rejected as invalid. We 
repeat the random sampling process five times (noting 
that sampling (d,v,x) triples from a large/sparse DTM 
is computationally expensive). We fit five independent 
NMF topic models to each Monte Carlo cross-validation 
training sample, estimate reconstruction error on each of 
the training/validation samples, and average the recon-
struction errors over held-out validation samples.

Bootstrap stability analysis using topic coherence metrics
Stability analysis is a generic methodology for evaluat-
ing the quality of a fitted unsupervised machine learning 
model. The methodology proceeds by drawing bootstrap 
samples (i.e. sampling with replacement) from the origi-
nal data structure; a model is fitted to each bootstrap 
replicate dataset, and its quality/stability is evaluated [26, 
27]. The specifics of the methodology are dependent on 
the topic model quality metric used in the analysis. In 
this section we discuss stability analysis in the context of 
topic coherence metrics.

Topic coherence metrics represent a family of scoring 
functions used to quantify the semantic correlation of word/
token lists. For a given topic model, consider the top-P 
words/tokens loading most highly on a specific topical vec-
tor (k). Typically P is chosen to be a small integer value 
(P = {5, 10, 25, etc.}). Topical coherence is estimated by con-
structing 





P

2



  co-occurrence scores between each pair of 

words/tokens in the top-P list. The co-occurrence scores are 
based on word frequency co-occurrence counts in the 
observed document collection (although external corpora 
may also be introduced for scoring). For each topic k = 1…K, 
an estimate of topical coherence is obtained. Averaging over 
k = 1…K topics in a fitted topic model results in an overall 
coherence score for the model fit. These scores can then be 
compared across b = 1…B bootstrap replicate samples to 
assess model stability. In this manuscript we consider two 
metrics: the UCI scoring metric [28, 29] and the UMASS 

scoring metric [30]. Development of topic coherence scores 
remains a popular area of research and a review on available 
topic coherence metrics is discussed in Roder et al. [31].

The UCI and UMASS scores are given below. The 
quantities describe the marginal or joint occurrence 
probabilities of words/tokens in the empirical corpus 
(although any arbitrarily chosen external corpus could 
be used to estimate the marginal/joint probabilities of a 
word occurrence).

Stability analysis using set based agreement metrics
Set based agreement metrics can also be employed to assess 
topic model stability. Under this approach to stability  
analysis, we begin by drawing b = 1…B bootstrap replicate 
samples from the original DTM (i.e. sampling with replace-
ment). The goal is to compare agreement between top-P lists 
of semantically aligned topics fitted under different models. 
If there exist B bootstrap samples drawn for the stability 
analysis, then there exist 





B

2



  models to compare, each of 

complexity K. For any given per-topic word distribution 
(indexed k = 1…K), and any two models  (Ms and  Mt from 
bootstrap samples  bs and  bt respectively – for {s,t} = 1…B) 
the goal is to pair-wise compare the two resulting top-P lists 
(over k = 1…K latent dimensions in the model). There exist 
numerous metrics for comparing top-P lists of discrete 
items, and these types of metrics are reviewed in Fagin et al. 
[32]. In this study, we will use a particular set-based agree-
ment metric, rank biased overlap (RBO) [33].

An inherent challenge associated with this variant 
of stability analysis involves the exchangeability of the 
learned topics from a fitted NMF model. That is, the 
ordering of the topical basis in the low-rank reconstruc-
tion is arbitrary. As such, even if two NMF topic mod-
els of the same latent dimension are fitted to a dataset 
(or two different bootstrap datasets) there is no guar-
antee that semantically related topics occur in the same 
(arbitrary) ordering across different model fits. However, 
it is possible to align the learned topical bases ( φs ) and 
( φt ) across the two bootstrap datasets. Alignment of 
the respective topical matrices is a type of linear-sum-
assignment problem. In other words, the goal is to learn 
an optimal K*K permutation matrix (π ε П) such that the 
Frobenius norm error between the topical matrices ( φs ) 
and ( φt ) is minimized. Solving such a problem can be 

scoreUCI
(
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approached using the Hungarian algorithm [34, 35; see 
also Appendix A].

Given two aligned topical matrices, from two NMF 
model fits, on two distinct bootstrap datasets, we pro-
ceed to estimating the RBO agreement metric between 
the two top-P token/word lists (S and T).

Mathematically RBO is defined below. The metric 
measures the weighted average agreement between two 
top-P sets. The metric lives on the space [0,1] with zero 
indicating no agreement between top-P lists, and one 
indicating complete agreement. The RBO score is a func-
tion of a tunable hyper-parameter (z ∈ (0,1)) which deter-
mines how the score prioritizes agreement over top-P list 
depth. Smaller values of z favor top-weighted elements in 
the list, and when z = 0 (in the limit) only the first item 
in the pair of lists are compared.  AP measures the frac-
tional/proportional agreement of the lists (S and T) up to 
depth-P. An example of top-5 agreement between word 
lists is given below (Table 1).

We note that using an identical strategy as defined 
above, the RBO metric could also be used to assess the 
stability of returned top-P document-lists from the 
matrix of per-document topic proportions (θ).

Stability analysis using rank based correlation metrics
Another commonly encountered metric for comparing 
top-P lists is Kendall’s Tau statistic, a measure of rank-
based correlation [36] ranging between [-1, + 1]. The sta-
tistic is defined below. The numerator is the number of 
concordant-pairs minus discordant-pairs between the 
two ranked lists, and the denominator is the total num-

ber of ways to choose two items from a rank-P list: 
(

P

2

)

.

argmin
πǫ�

�φs − πφt�2

RBO(S,T ,P,A) = (1− z)

∞
∑

P=1

zP−1AP

Kendall’s tau, and other rank-based correlation met-
rics can be used to assess the quality/stability of either 
top-P word/token lists emerging from φ ; and can also be 
used to assess quality/stability of top-P document lists 
emerging from the matrix θ . An issue with Kendall’s tau 
in the context of comparing top-P lists is that the met-
ric demands that all elements in one list be contained in 
the other list. In other words, the two top-P lists being 
compared must be conjoint, and not disjoint. Heuris-
tics have been proposed to circumvent this challenge: 
for example, removing items/elements which occur in 
only one set from the scoring, or adding items occurring 
in only one set to the end of the other set. We have not 
seen these types of heuristics employed in the context 
of topic model evaluation; however, they are necessary, 
as bootstrap sampling does not ensure the same indices 
are present in even two pair-wise samples/models being 
compared. Hence, we consider concordance estimated 
over the intersection of indices present in two pairs of 
bootstrap samples. By the bootstrap 0.632 principle 
and the independence of the generated bootstrap sam-
ples, the concordance is estimated over approximately 
0.632*0.632 = 0.399*100 percent of the original indices in 
the input DTM.

In this study, we use a variant of Kendall’s tau –weighted 
Kendall’s tau – and estimate concordance over all ele-
ments of θ and φ , respectively. Using weighted Kendall’s 
tau, elements of the top-V or top-D lists are not given equal 
weight, rather items appearing higher in the ranked lists are 
given higher weighting under the weighted Kendall’s tau 
metric. Any positive weighting function can be employed – 
in this study we use the hyperbolic function: 1/(1 + r). The 
hyperbolic function assigns high weight to items appearing 
near the top of the ranked lists and attempts to ensure that 
arbitrary swaps/exchanges of low-ranking elements of the 
large lists do not unnecessarily deflate estimates of rank-
based concordance.

τ =
#concordant−pairs − #discordant−pairs

(P ∗ (P − 1)/2)

Table 1 Example of average set-based agreement calculated over different top-P depths (P = 1,2,3,4,5)

Depth (P) Tokens in Bootstrap Sample-S at Depth-P Tokens in Bootstrap Sample-T at Depth-P Intersection of 
Tokens in Samples 
S and T

Fraction 
Agreement 
 (AP)

1 Cough Flu {} 0/2 (0)

2 Cough, Cold Flu, Cold {Cold} 1/3 (33.3)

3 Cough, Cold, Flu Flu, Cold, Cough {Cough, Cold, Flu} 3/3 (100.0)

4 Cough, Cold, Flu, Fever Flu, Cold, Cough, Phlegm {Cough, Cold, Flu} 3/5 (60.0)

5 Cough, Cold, Flu, Fever, Phlegm Flu, Cold, Cough, Phlegm, Fever {Cough, Cold, Flu, 
Fever, Phlegm}

5/5 (100.0)
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Stability analysis using fuzzy clustering quality indices
We note that NMF topic modelling resembles the frame-
work of admixture/mixed-membership modelling [37]. The 
learned parameter matrices (θ and φ) contain non-negative 
real numbers; however, we can scale the row vectors of 
both θ and φ to represent probability/compositional vec-
tors, dividing each by its respective row sum. Following 
transformation of the row-vectors from the θ matrix to the 
probability simplex, the NMF topic model closely resem-
bles the grade of membership matrix used in fuzzy cluster-
ing models [38], and hence quality indices developed for 
validating fuzzy clustering solutions may be used to evalu-
ate aspects of the quality of NMF topic model fits.

The normalized matrix of per-document topic-weights 
(θ*) describes the affinity of a given document for a specific 
latent topic vector. Each row of θ* is a compositional/prob-
ability vector (living on K-1 dimensional simplex). Under 
this transformation, the matrix θ* closely resembles the 
grade-of-membership matrix in fuzzy clustering models. 
Several validity indices from the fuzzy clustering commu-
nity have been developed for investigating aspects of the 
fuzzy clustering solutions, including the (modified) parti-
tion coefficient (PC) and the (modified) partition entropy 
(PE) [39, 40]. Mathematical details of both validity indices 
are given below. Hard clustering solutions would repre-
sent θ* as d = 1…D bit-vectors (i.e. K-1 elements would be 
0, and a single element would equal 1). As fuzzy cluster-
ing solutions (and membership vectors) tend towards bit-
vector type solutions, mixed-membership/admixture type 
models begin to look more like hard-clustering models (i.e. 
a data point is assigned to only a single latent topical vec-
tor; rather than a mixture over latent topics). This phenom-
enon is captured by the partition coefficient and partition 
entropy validity indices. For the partition coefficient, scores 
near 1 imply a hard-type clustering whereas, scores closer 
to zero imply a fuzzy clustering where documents spread 
topical prevalence weight across observed latent dimen-
sions. Conversely, for the partition entropy, scores near 
zero imply a near hard clustering solution; whereas, posi-
tive scores indicate a more fuzzy clustering solution.

The PC and PE validity indices discussed above focus 
only on evaluating the per-document topic-weight 
matrix (θ*). Alternative fuzzy clustering validity indi-
ces have been devised and reviewed [38]; many of the 
fuzzy clustering metrics attempt to evaluate aspects of 

PC =
1

D

D
∑

d=1

K
∑

k=1

(θ∗{d,k})
2

PE = −
1

D

D
∑

d=1

K
∑

k=1

θ∗{d,k}log(θ
∗
{d,k})

cluster separation and compactness. The Xie-Beni index 
is mathematically described in [41, 42] and is one such 
fuzzy-cluster validity index which may be applied to 
assess quality of a transformed NMF topic model solu-
tion. Smaller values of the Xie-Beni index indicate a bet-
ter fuzzy clustering model fit (i.e. topics are compact and 
well-separated; when scaled over the grade-of-member-
ship matrix). As such, the Xie-Beni index is one metric 
which simultaneously evaluates aspects of both latent 
matrices ( θ and φ).

In terms of stability analysis, we can draw b = 1…B 
bootstrap replicate samples (with replacement) from 
the original DTM (X), and estimate the fuzzy cluster 
stability indices on NMF topic models fit to each boot-
strap dataset and assess robustness/stability against data 
perturbations.

Data augmentation based stability analysis
Many of the NMF topic model validity indices discussed 
above could be applied to stochastically augmented/per-
turbed versions of the original DTM (rather than boot-
strap replicate data samples). In this scenario we envision 
the DTM being structured in (d,v,x) triplet/coordinate 
format – represented as (row-index, column-index, 
value) tuples. Using a data augmentation approach to 
stability analysis, one could maintain the row/column-
indices in the coordinate format data structure, and 
stochastically augment the observed data value using 
random noise. One may draw an entirely new value from 
some parametric distribution; or they may jitter the 
observed data value (up/down) by some random value, 
while obeying constraints of the original data generating 
mechanism (e.g. DTM entries are non-negative count/
integer random variables).

There exist certain advantages to the data augmentation 
approach to topic model stability analysis: 1) it is com-
putationally much faster to sample/jitter new data values 
from the triplet/coordinate format sparse DTM than it is 
to draw legitimate cross-validation or bootstrap samples, 
and 2) data augmentation trivially ensures that the row/
column indices from the original DTM are preserved and 
that documents and/or words/tokens appearing in the 
input DTM also appear in the augmented samples (this 
may not be the case with cross-validation or bootstrap 
sampling, and if desired must be verified via program-
matic assertions). As a limitation, data augmentation 
may not be theoretically as principled a methodology 
for assessing model stability and robustness as compared 
with cross-validation and bootstrap resampling. Further, 

XB =

∑K

k=1

∑D

d=1
(�

∗

{d,k}
)
2‖Xd − �k‖2

D ∗ min
j≠k

‖�k − �j‖2
≈

(weighted)variance

separation
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assumptions regarding the distribution generating aug-
mented values are subjective. We do not experimentally 
investigate the suitability of data augmentation in NMF 
topic model validity, but we do consider it to be an inter-
esting area for further research.

Methods
Study design, setting, data sources and inclusion/exclusion 
criteria
Our study employs a retrospective open cohort design. 
Encounter-level data are collected from patient primary 
care electronic medical records from Toronto, Canada. 
Data curation and cleaning is conducted by the University 
of Toronto Practice Based Research Network (UTOPIAN: 
https:// www. dfcm. utoro nto. ca/ utopi an). Additional details 
regarding UTOPIAN, including sampling, representative-
ness and data curation are given in Garies et al. [43]. The 
study start date is January 1, 2017 and the study end date is 
December 31, 2020. We include all patients who contrib-
ute at least one primary care clinical progress note during 
our study timeframe. We exclude patients who are missing 
basic demographic information (e.g. age or sex) or study 
identifiers (e.g. patient ID, physician ID, clinic ID).

Computationally processing the clinical progress note 
corpus
Representing collections of text data using a document term 
matrix
A document term matrix is a D*V dimensional matrix. 
D represents the number of documents in the collection 
(here the number of unique clinical progress notes, writ-
ten during patient-provider interactions). V represents 
the number of unique words/tokens in the empirical 
vocabulary of the document collection. A given element 
 (X{d,v}) of the matrix, is a count random variable, denot-
ing the number of times a particular word/token (v) was 
used in a particular document (d).

Pre-processing text data
Raw clinical text data are a sequence of digital charac-
ters (letters, numbers, punctuation, other symbols, etc.). 
For each document in our collection, these raw text 
strings must be processed into individual words/tokens 
to facilitate creation of a DTM. Many approaches exist 
for processing clinical text data. We discuss several key 
elements of our text pre-processing pipeline, namely, 
tokenization, vocabulary normalization and dictionary/
vocabulary creation.

Tokenization refers to the process of separating raw 
text strings (i.e. digital character sequences) into indi-
vidual words/tokens [44, 45]. We employ a simple form 

of “whitespace tokenization”, which separates input 
character sequences into words/tokens based on the 
presence of whitespace boundaries (e.g. spaces, tabs, 
newlines, etc.).

Text normalization refers to the process of converting 
word/tokens into a single canonical form. We normalize 
tokens based on regular expressions, namely: case fold-
ing (lowercase conversion), and removal of punctuation/
numbers.

Following tokenization and normalization we manu-
ally review the most frequently occurring words in the 
corpus and select to include 2210 tokens for inclusion 
in the corpus vocabulary; where the particular token-
set selected consisted of focused/specific medical 
entities (e.g. disease names, disease symptoms, drug 
names, medical procedures, medical specialties, ana-
tomical locations, etc.).

Non-negative matrix factorization
We estimated NMF topic models using the module 
sklearn.decomposition.NMF() from sklearn 
version = 0.24.2 in 64-bit Python version 3.6. We var-
ied model complexity (K = {5,10,25,50,75,100,150,200,25
0} topics) and investigated which models are selected as 
optimal using different metrics of model quality. We did 
not apply any regularization to latent parameter matrices. 
We randomly initialized parameter matrices. We esti-
mated parameters using a gradient descent method on an 
L2/Frobenius-norm loss function, and we employed a loss 
function convergence tolerance of 1e-5 for terminating 
iterative update processes. 

Experiments comparing the quality of NMF topic models 
on the Utopian clinical note corpus

A) Monte Carlo cross-validation using a reconstruction 
error metric: �X −

∑K
k=1 θdkφkv�2

B) (Average) bootstrap stability using UCI/UMASS 
topic coherence metrics (over phi)

C) (Pair-wise average) bootstrap stability using a RBO 
metric (over phi)

D) (Pair-wise average) bootstrap stability using a RBO 
metric (over theta)

E) (Pair-wise average) bootstrap stability using Kendall’s 
tau metric (over phi)

F) (Pair-wise average) bootstrap stability using Kendall’s 
tau metric (over theta)

G) (Average) bootstrap stability using PC/PE fuzzy clus-
tering coefficients (over theta)

H) (Average) bootstrap stability using XB fuzzy cluster-
ing metric (over theta and phi)

https://www.dfcm.utoronto.ca/utopian
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Research ethics
This study received ethics approval from North York 
General Hospital Research Ethics Board (REB ID: NYGH 
#20–0014).

Results
Description of corpus
The study corpus/sample consists of 382,666 primary 
care progress notes from 44,828 patients, 54 physicians, 
and 12 clinics collected 01/01/2017 through 31/12/2020 
from Toronto, Canada.

NMF Per-topic word/token distribution
We summarize the corpus using the k = 1…K rows of the 
matrix φ. We report on the top-5 words loading most 
highly on each topical vector (Table  2). Next to each 
word/token in Table  2, we additionally display its prob-
ability of occurrence under topic k = 1…50. These topical 
vectors provide a low-dimensional thematic summari-
zation of the clinical text dataset. We observe interest-
ing topics corresponding to many major thematic areas 
of primary care, including: acute health conditions (e.g. 
COVID-19 and other respiratory conditions such as 
cough, flu, and colds), chronic physical health conditions 
(e.g. heart disease, cancer, arthritis and other musculo-
skeletal issues), mental health conditions (e.g. anxiety, 
depression and sleep issues), preventative health/screen-
ing (e.g. pap smears, flu shots, diet/exercise) and social/
familial dynamics.

Human judgement validation was used to determine 
the complexity of the model below (i.e. K = 50 latent topi-
cal bases). On inspection, we found that a model with 
approximately K = 50 latent topical dimensions resulted 
in a parsimonious summary of the primary care clinical 
text corpora. Models with far fewer topics often resulted 
in an incomplete summarization of primary care top-
ics; and/or resulted in distinct primary care concepts 
being grouped under a single topical construct. Con-
versely, models with a far greater number of topics were 
often more time consuming to interpret, and resulted in 
semantically similar topics being redundantly described. 
In the results sub-sections which follow, we compare 
topic model complexity identified via human judgement 
evaluation, with those identified using quantitative topic 
model quality indices.

NMF Per-document topic-distribution
We inspected the top-5 documents loading most highly 
on each of the k = 1…K columns of the latent matrix θ . 
Excerpts of the most-relevant documents under each 
topical query provide complementary evidence that the 
learned latent basis effectively summarizes the corpus, 

and further can be used as a tool to facilitate document 
retrieval and clustering. We observed that documents 
loading most highly on a topical vector of θ are seman-
tically related to the corresponding word/tokens used to 
describe the topic (Table 2). Top-5 most probable docu-
ments under a particular topic are not displayed because 
clinical text excerpts may contain sensitive information 
and/or other protected health information.

NMF Topic model validity indices
In the subsections below we apply several topic model 
quality indices to the primary care clinical note corpus. 
We demonstrate how different topic model quality indi-
ces highlight different aspects of model goodness of fit, 
stability, and robustness.

Monte Carlo cross-validation using a (predictive) 
reconstruction error metric
In this subsection we use a Monte Carlo cross-valida-
tion methodology for comparatively evaluating topic 
model quality, across NMF models of complexity K = (5, 
25, 50, 75, 100, 150, 200, 250). For each model complex-
ity parameter (k) we assess mean reconstruction error 
on training and held-out test samples, using a five-fold 
Monte Carlo cross-validation scheme. The results sug-
gest that larger (more complex) NMF models provide a 
more optimal fit to the primary care corpus (Fig. 1).

(Average) bootstrap stability using UCI/UMASS topic 
coherence metrics (over phi)
In this subsection we use an average bootstrap stability 
analysis methodology employing a topic coherence met-
ric for assessing model quality over NMF complexity 
parameters K = (5, 10, 25, 50, 75, 100). For a given NMF 
model of complexity K, we average the k = 1…K topical 
coherences vectors ( φk) , resulting in a single measure 
of model coherence. We further compare model-based 
topical coherence scores across the five separate boot-
strap replicate samples in the stability analysis, and 
observe higher scores at larger values of model complex-
ity (implying more coherent topics) (Fig. 2).

(Pair-wise average) bootstrap stability using a RBO metric 
(over phi)
In this subsection we use an average bootstrap stability 
analysis methodology employing a rank biased overlap 
metric for assessing model quality over NMF complexity 
parameters K = (5, 10, 25, 50, 75, 100). Using a five-fold 

stability analysis there exist 
(

5

2

)

 pair-wise model com-

parisons (over aligned NMF topical matrices φ). We aver-
age the pair-wise RBO scores from the five-fold stability 
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Table 2 Top-5 words/tokens loading most strongly on each of the learned k = 1…50 topical/thematic bases (row vectors of φ ), along 
with the per-topic word occurrence probabilities, from the fitted NMF model (with K = 50 latent bases)

Word 1 Word 2 Word 3 Word 4 Word 5

Topic 1 tylenol (34.7) advil (9.1) tab (2.6) headache (2.5) tabs (2.3)

Topic 2 mg (44.8) tab (2.1) tabs (1.7) capsules (1.4) po (1.3)

Topic 3 fever (33.9) diarrhea (2.5) vomiting (2.4) tylenoladvil (2.3) viral (2.1)

Topic 4 neck (21.1) head (4.2) arm (2.8) headache (2.3) headaches (2.0)

Topic 5 bw (31.2) iron (3.2) tsh (2.3) ferritin (1.9) thyroid (1.7)

Topic 6 work (46.7) social (4.5) stress (3.4) working (3.2) treatment (2.7)

Topic 7 bp (57.8) systolic (3.7) diastolic (3.3) htn (2.7) norvasc (1.5)

Topic 8 sleep (36.9) bed (4.6) sleeping (3.2) apnea (2.5) insomnia (2.2)

Topic 9 anxiety (30.4) anxious (4.3) panic (3.1) social (2.5) counselling (2.4)

Topic 10 flu (36.7) shot (31.9) anaphylactic (3.0) influenza (2.8) ibuprofen (2.0)

Topic 11 weight (32.1) kg (9.0) bmi (4.7) height (3.7) lbs (2.8)

Topic 12 pain (51.7) palpation (1.7) flexion (1.2) physio (1.0) arm (1.0)

Topic 13 ear (31.0) hearing (5.7) ears (5.3) wax (4.9) cerumen (4.8)

Topic 14 eating (4.9) diet (4.3) food (3.6) wt (3.2) snack (2.7)

Topic 15 throat (23.3) sore (12.8) strep (4.0) viral (2.8) nodes (2.6)

Topic 16 rx (43.4) shingrix (1.4) ativan (1.3) ra (1.3) abx (1.2)

Topic 17 meds (43.1) bmd (1.3) vit (1.2) chronic (1.1) bone (1.1)

Topic 18 pap (12.4) bleeding (3.8) vaginal (2.6) discharge (2.4) pelvic (2.3)

Topic 19 vaccine (20.5) influenza (8.2) flu (7.8) allergy (5.6) fever (5.2)

Topic 20 dose (31.3) medication (9.8) immunization (5.0) injection (3.8) shingrix (2.7)

Topic 21 breast (26.7) cancer (3.2) nipple (3.0) mammogram (2.4) lump (2.2)

Topic 22 medications (14.6) allergy (6.4) drug (5.0) capsules (5.0) capsule (4.7)

Topic 23 cough (25.7) sob (3.1) ventolin (2.9) asthma (2.6) coughing (2.5)

Topic 24 bilat (26.4) masses (2.1) neuro (1.9) limbs (1.8) head (1.7)

Topic 25 heart (19.7) bpm (17.2) systolic (16.2) diastolic (16.0) bp (2.4)

Topic 26 urine (13.6) uti (6.8) urinary (4.3) dysuria (3.8) hematuria (3.4)

Topic 27 eye (27.5) vision (5.6) drops (4.9) eyes (4.5) discharge (3.9)

Topic 28 symptoms (41.6) nausea (1.6) urinary (1.6) headache (1.4) gi (1.2)

Topic 29 foot (11.9) swelling (7.3) ankle (4.2) toe (3.7) feet (2.3)

Topic 30 sx (41.1) neuro (3.0) gi (2.5) urinary (2.0) melena (1.5)

Topic 31 mother (29.6) father (5.5) parents (2.1) sister (2.0) mothers (1.6)

Topic 32 mood (22.3) cipralex (4.3) depression (3.1) counselling (3.0) speech (2.7)

Topic 33 exercise (6.1) diet (5.0) ldl (3.4) screening (2.0) cancer (2.0)

Topic 34 tablets (27.3) tablet (26.4) medications (7.0) oral (4.6) mg (3.9)

Topic 35 rn (24.1) immunization (3.4) injection (2.8) baby (2.4) arm (1.8)

Topic 36 er (23.9) felt (5.3) head (3.5) ct (3.4) sob (2.4)

Topic 37 covid (22.7) health (13.6) physical (13.3) emergency (10.5) pandemic (4.1)

Topic 38 back (48.7) spine (2.1) lumbar (1.7) flexion (1.7) physio (1.5)

Topic 39 mom (36.2) dad (2.9) parents (2.0) baby (1.8) feeding (1.4)

Topic 40 chest (27.5) sob (4.2) cvs (3.0) edema (1.9) palpitations (1.8)

Topic 41 knee (28.7) swelling (4.7) oa (3.2) joint (2.6) medial (2.5)

Topic 42 blood (30.9) pressure (13.6) medication (3.0) pulse (2.6) pounds (2.2)

Topic 43 family (8.2) social (5.8) counselling (4.2) husband (4.0) daughter (3.8)

Topic 44 feeling (39.6) felt (4.6) tired (2.8) anxious (2.6) treatment (1.6)

Topic 45 feels (50.4) felt (2.5) tired (1.3) stress (1.3) anxious (1.2)

Topic 46 hip (23.4) xray (4.8) oa (3.4) physio (2.6) flexion (2.0)

Topic 47 nasal (19.1) sinus (6.0) congestion (5.8) nose (3.8) nasonex (3.4)

Topic 48 skin (13.1) rash (8.5) cream (4.3) derm (3.3) lesions (2.9)

Topic 49 referral (32.4) derm (3.2) ent (1.8) gi (1.6) mri (1.5)

Topic 50 abdo (13.5) diarrhea (3.6) stool (3.3) bm (2.9) masses (2.6)
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analysis process and comparatively evaluate model qual-
ity over complexity K = (5, 10, 25, 50, 75, 100). Using RBO 
we favor smaller models (K = {5,10}) (Fig. 3). 

(Pair-wise average) bootstrap stability using a RBO metric 
(over theta)
In this subsection we use an average bootstrap stability anal-
ysis methodology employing a rank biased overlap metric 
for assessing model quality over NMF complexity parame-
ters K = (5, 10, 25, 50, 75, 100). Using a five-fold stability 

analysis there exist 
(

5

2

)

 pair-wise model comparisons (over 

aligned NMF per-document topic-prevalence matrices θ). 
We average the pair-wise RBO scores from the five-fold sta-
bility analysis process and comparatively evaluate model 
quality over complexity K = (5, 10, 25, 50, 75, 100). Using 
RBO we favor smaller models (K = {5,10}) (Fig. 4). 

(Pair-wise average) bootstrap stability using weighted 
Kendall’s tau metric (over phi)
In this subsection we use an average bootstrap stability 
analysis methodology employing a weighted Kendall’s tau 

metric for assessing model quality over NMF complexity 
parameters K = (5, 10, 25, 50, 75, 100). Using a five-fold 

stability analysis there exist 
(

5

2

)

 pair-wise model com-

parisons (over aligned NMF topical matrices φ). We aver-
age the pair-wise Kendall weighted tau statistics from the 
five-fold stability analysis process and comparatively 
evaluate model quality over complexity K = (5, 10, 25, 50, 
75, 100). Using Kendall’s weighted tau we favor smaller 
models (K = {5,10}) (Fig. 5). 

(Pair-wise average) bootstrap stability using weighted 
Kendall’s tau metric (over theta)
We used an average bootstrap stability analysis method-
ology employing a weighted Kendall’s tau metric for 
assessing model quality over NMF complexity parame-
ters K = (5, 10, 25, 50, 75, 100). Using a five-fold stability 

analysis there exist 
(

5

2

)

 pair-wise model comparisons 

(over aligned NMF topical matrices  θ). We average the 
pair-wise Kendall weighted tau statistics from the five-
fold stability analysis process and comparatively evaluate 

Fig. 1 Average training/testing reconstruction error of NMF models of complexity K = (5,10,25,50,100,150,200,250) estimated using five-fold Monte 
Carlo cross-validation
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a

b

Fig. 2 Average topic coherence of NMF models of complexity K = (5,10,25,50,75,100) estimated using five-fold stability analysis. The left-hand panel 
plot uses the UCI topic coherence score, and the right-hand panel plot uses the UMASS topic coherence score
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model quality over complexity K = (5, 10, 25, 50, 75, 100). 
Using Kendall’s weighted tau we favor smaller models 
(K = {5,10}) (Fig. 6). 

(Average) bootstrap stability using PC/PE fuzzy clustering 
coefficients (over theta)
In this subsection we use an average bootstrap stability 
analysis methodology employing partition coefficient 
and partition entropy metrics for assessing model quality 
over NMF complexity parameters K = (5, 10, 25, 50, 75, 
100). For a given NMF model of complexity K we aver-
age/compare partition coefficient/entropy scores across 
the five separate bootstrap replicate samples in the stabil-
ity analysis (Fig. 7).

(Average) bootstrap stability using Xie-Beni fuzzy 
clustering metric (over theta and phi)
In this subsection we use an average bootstrap stability 
analysis methodology employing Xie-Beni fuzzy cluster-
ing metrics for assessing model quality over NMF com-
plexity parameters K = (5, 10, 25, 50, 75, 100). For a given 
NMF model of complexity K we average/compare Xie-
Beni scores across the five separate bootstrap replicate 

samples in the stability analysis. The Xie-Beni statistic 
appears to favor larger topic model fits on our observed 
corpus (Fig. 8).

Discussion
The major finding of this study (and one which has been 
observed elsewhere) is that different topical model qual-
ity indices do not necessarily agree on a single topic 
model as being “optimal” when applied to a given empiri-
cal dataset. Cross-validated reconstruction error, (aver-
aged) topic coherence and (averaged) Xie-Beni score (a 
ratio of compactness vs separation) were observed to 
favour large models; whereas, set based agreement meas-
ures (rank biased overlap) and rank correlation measures 
(weighted Kendall’s tau) pair-wise averaged over aligned 
bootstrapped datasets seem to favour small models. 
Few/none of the metrics were observed to guide selec-
tion towards “mid-sized” models as being optimal (which 
were subjectively preferred based on human/analyst 
judgement). Large models (K ≥ 100 topics) were observed 
to produce smaller residual error (we do not observe 
an increase in validation/test error even at K = 250 top-
ics; noting that fitting larger models is computationally 

Fig. 3 Average rank-biased overlap of φ over NMF models of complexity K = (5,10,25,50,75,100) estimated using five-fold stability analysis
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prohibitive on our dataset). Similarly, large models were 
observed to generate focused, interpretable, and coher-
ent topical vectors. And finally, the Xie-Beni fuzzy 
clustering coefficient is suggestive that geometrically 
compact topics/clusters that are well-separated form at 
increasing model complexity. On the contrary, stability 
metrics based on rank correlation (e.g. weighted Kend-
all’s tau) and set based agreement (rank biased overlap) 
seem to favour models of much lower complexity (K = 5 
topics). The evidence suggests that different topic model 
quality indices lead to different inferences regarding an 
optimal NMF topic model. The investigated quality indi-
ces provide different/complementary insights regarding 
model goodness of fit, and it likely makes sense to uti-
lize numerous indices when evaluating fitted models to 
empirical datasets.

Using a human-centric approach to NMF topic 
model selection, where data scientists and subject mat-
ter experts attempt to select an optimal topic model 
fitted to the primary care clinical note corpus (after 
“eyeballing” fits at k = {5,10,25,50,75,100}), we prefer 
mid-sized models (K = 50 topic model). The mid-sized 
models (qualitatively) satisfy many desirable proper-
ties of a topic model: 1) the latent topical basis provide 

a meaningful characterization of the document col-
lection, facilitating an improved understanding of the 
large/complex primary care progress notes corpus, 2) 
the document topic weights seem appropriate, provid-
ing an efficient low-dimensional basis for retrieval, clus-
tering and browsing of documents, and 3) the model 
explained variation is reasonable (although could be 
improved with a more complex model). In terms of 
human judgement, we find large NMF topic models 
(subjectively) to be overly complex. It takes a great deal 
of time/effort to meaningfully “eyeball” K ≥ 100 topical 
bases (and high-loading documents). Further, when an 
NMF model of excessive complexity is fit to the primary 
care progress note corpus we observe an over-clustering 
effect where many of the learned focused/specific top-
ics appear redundant (and by Ockham’s razor, this may 
suggest a more parsimonious model is attainable and 
perhaps preferrable). On the contrary, we find that the 
NMF topic models of low complexity (K = {5,10}) which 
are preferred by the rank correlation metrics and the 
set based agreement metrics are not expressive enough 
to adequately summarize a complex clinical text cor-
pus (subjectively, the space of primary care medicine is 
about more than 5–10 topicals/themes).

Fig. 4 Average rank-biased overlap of θ over NMF models of complexity K = (5,10,25,50,75,100) estimated using five-fold stability analysis
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Limitations and future work
We focused on several popular quality indices applica-
ble to the evaluation of NMF topic models; however, our 
review is necessarily incomplete (as metrics are dispa-
rately studied over a vast number of scientific disciplines) 
and our evaluation focuses on a single large/complex 
biomedical text corpus. Future work should attempt to 
further synthesize/consolidate an increasing number of 
topic model quality indices, and further evaluate these 
metrics over many real and simulated datasets. Formal 
systematic literature reviews and/or scoping reviews may 
be valuable, as they could more exhaustively identify the 
space of available topic model quality indices. That said, 
our review has focused on some of the more popular 
metrics from a variety of disparate fields, such as: com-
puter science and topic modelling, matrix factorization, 
fuzzy clustering, and set theory.

This study focused on evaluating/selecting an optimal 
model complexity parameter (K) over fitted NMF topic 
models. Metrics presented above could also be used to 
investigate other NMF model hyper-parameters, for 
example: model loss function, model functional form, 
regularization, initialization techniques, and model 
termination criteria are all relevant hyper-parameters 

whose optimal configuration can be assessed with qual-
ity indices discussed in this study. Incorporation of the 
aforementioned topic model quality indices, in a formal 
hyper-parameter optimization framework, may help to 
guide the analyst towards an optimal hyper-parameter 
configuration for a topic model fitted to a particular 
empirical dataset [46].

This study has focused on combining appropriate topic 
model quality metrics with computational resampling 
methods (e.g. cross-validation or bootstrapping) for 
assessing NMF topic model goodness of fit. The evalua-
tion pipeline is computationally expensive: Monte Carlo 
cross-validation requires specific checks on the valid-
ity of returned DTMs and stability analysis may require 
application of expensive matrix alignment methods. Data 
augmentation was not thoroughly explored in this study; 
however, it may represent an interesting and computa-
tionally affordable approach to topic model evaluation.

This study focused on quality indices for evaluat-
ing aspects of NMF topic models. We did not compare 
NMF topic model fits against alternative topic modelling 
frameworks, for example: Bayesian probabilistic graphi-
cal models (e.g. latent Dirichlet allocation), neural topic 
models (e.g. BERTopic) or tensor factorization models 

Fig. 5 Average Kendall’s weighted tau of φ over NMF models of complexity K = (5,10,25,50,75,100) estimated using five-fold stability analysis
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(e.g. the canonical polyadic decomposition, or the Tucker 
decomposition). Each of the aforementioned methodolo-
gies estimate a latent representation, characterizing the 
extent to which 1) words load on topical vectors, and 2) 
document load on topical vectors. As such, many of the 
topic model quality indices investigated in this study 
could be used to evaluate topic models generated using 
alternative approaches to statistical estimation.

In this study we adopted a hybrid approach to text pro-
cessing and vocabulary construction. First, we performed 
an initial computational tokenization pass over the corpus; 
next, we reviewed the returned list of tokens and a human 
determined which ones to include in the final vocabulary 
(focusing particularly on lexical entities relevant to pri-
mary healthcare). The number of unique (and justifiable) 
approaches to text processing are essential uncountably 
large. This study did not investigate alternative text pro-
cessing pipelines, and their impact on topic model quality. 
For example, we did not consider using stemmers/lemma-
tizers; nor did we attempt to group semantically similar 
lexical variants post-tokenization. Further research should 
continue to investigate the impact of text processing pipe-
lines on vocabulary specification in vector space models, 
and in particular topic models.

Conclusions
In this study we reviewed and comparatively evaluated 
several topic model quality indices. Oftentimes an eye-
balling approach is used in topic model selection/evalu-
ation, whereby subject matter experts and data scientists 
iteratively review learned topic models and subjectively 
determine an appropriate fitting model for the corpus at 
hand – the approach is often criticized as lacking empiri-
cal rigor, and advocates often suggest employing one of 
potentially many available topic model quality indices for 
guiding model selection. This study illustrates some chal-
lenges associated with the latter line of thought, namely, 
a large host of defensible topic model quality indices 
exist, and the choice of an optimal model appears metric 
dependent (i.e. different quality metrics guide the analyst 
toward fundamentally different NMF topic models). This 
finding does not invalidate quantitative topic model qual-
ity indices, rather it suggests that different metrics high-
light different aspects of model goodness of fit. Further, 
human in the loop approaches to topic model selection/
evaluation are likely still required where different models 
(under different hyper-parameter configurations) are fitted 
to empirical datasets, and evaluated using a combination 
of human judgment in addition to different quality indices. 

Fig. 6 Average Kendall’s weighted tau of  θ over NMF models of complexity K = (5,10,25,50,75,100) estimated using five-fold stability analysis
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Fig. 7 Average partition coefficient and partition entropy scores of NMF models of complexity K = (5,10,25,50,75,100) estimated using five-fold 
stability analysis. The left-hand panel plot uses the partition coefficient score, and the right-hand panel plot uses partition entropy score. Both 
the partition coefficient and the partition entropy suggest that smaller models result in more “crisp” clustering solutions; whereas, larger models 
result in more “fuzzy/admixed” clustering solutions
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Both quantitative topic model quality indices, and human 
judgement evaluation, are crucially important when inter-
preting unsupervised machine learning models.
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