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Abstract 

Background With rising incidence of skin cancer and relatively increased mortality rates, an improved diagnosis 
of such a potentially fatal disease is of vital importance. Although frequently curable, it nevertheless places a consider‑
able burden upon healthcare systems. Among the various types of skin cancers, non‑melanoma skin cancer is most 
prevalent. Despite such prevalence and its associated cost, scant proof concerning the diagnostic accuracy via Artifi‑
cial Intelligence (AI) for non‑melanoma skin cancer exists. This study meta‑analyzes the diagnostic test accuracy of AI 
used to diagnose non‑melanoma forms of skin cancer, and it identifies potential covariates that account for heteroge‑
neity between extant studies.

Methods Various electronic databases (Scopus, PubMed, ScienceDirect, SpringerLink, and Dimensions) were examined 
to discern eligible studies beginning from March 2022. Those AI studies predictive of non‑melanoma skin cancer were 
included. Summary estimates of sensitivity, specificity, and area under receiver operating characteristic curves were 
used to evaluate diagnostic accuracy. The revised Quality Assessment of Diagnostic Studies served to assess any risk 
of bias.

Results A literature search produced 39 eligible articles for meta‑analysis. The summary sensitivity, specificity, 
and area under receiver operating characteristic curve of AI for diagnosing non‑melanoma skin cancer was 0.78, 
0.98, & 0.97, respectively. Skin cancer typology, data sources, cross validation, ensemble models, types of techniques, 
pre‑trained models, and image augmentation became significant covariates accounting for heterogeneity in terms 
of both sensitivity and/or specificity.

Conclusions Meta‑analysis results revealed that AI is predictive of non‑melanoma with an acceptable performance, 
but sensitivity may become improved. Further, ensemble models and pre‑trained models are employable to improve 
true positive rating.
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Background
Skin cancer accounts for 32.5% of all diagnosed malig-
nancies, and it has a prevalence of 7.96 million cases 
occurring globally each year among the general popula-
tion [1]. With respect to etiology, previous studies have 
demonstrated a deleterious association with chronic 
exposure to sunlight because the ultraviolet component 
induces deoxyribonucleic acid damage which later trig-
gers malignant mutations to occur. Other possible con-
tributors to skin cancer incidence may also include viral 
infection, drug usage and exposure to chemicals [2].

Pathologically, skin cancer is categorized into either 
melanoma or non-melanoma. Albeit relatively rare, 
three hundred thousand annual cases of melanoma are 
determined as highly malignant, with a reported mor-
tality rate of 1.6 per 100,000 worldwide [1]. By con-
trast, non-melanoma cases, which comprise a number 
of pathologically-distinct entities such as basal cell 
carcinoma and intra-epithelial carcinoma (i.e., actinic 
keratosis and Bowen’s disease) [3], are less malignant 
considering Mohs micrographic surgery and a 5-year 
cure rate of 98.9% [4]. Sixty-five thousand victims die 
on average, per annum, worldwide due to non-mela-
noma incidence when combined with a delayed diagno-
sis factor [1]. Furthermore, non-melanoma skin cancers 
such as basal cell carcinoma show a trend of increasing 
cases [5] and are easily misdiagnosed [6]. The above-
mentioned evidence clearly shows the diagnosis of 
non-melanoma skin cancer is of similar importance to 
melanoma forms of skin cancer.

Currently, clinical examination and dermoscopic evalu-
ation are major techniques for screening skin cancers 
[7]. These screening techniques are estimated to achieve 
75–84% of diagnosis accuracy, indicating human error 
may remain accountable via these approaches [8, 9]. 
When taking into account the high prevalence and life-
threatening risk of this disease, it is important to make a 
timely diagnosis for appropriate treatment to follow.

Artificial intelligence (AI) techniques are being 
employed to provide diagnostic assistance to dermatolo-
gists since most diagnoses rely principally on visual pat-
terning recognition [10], a particular strength of such a 
technology. Machine learning is a sub-field of AI which 
refers to an effort to automate intellectual tasks normally 
performed by humans; and, deep learning is in turn a 
subset within machine learning [11]. A veritable pleth-
ora of attempts to utilize machine learning techniques 
aimed at supporting the accurate diagnosis of melanoma 
and non-melanoma types of skin cancer have already 
taken place [9, 12–34]. As such, a systematic report-
ing is deemed necessary for reliable interpretation and 
aggregation of these results. However, the comparison of 
pre-existing skin lesion classification evidence is difficult 

because differences may exist in the data types used or in 
the statistical quantities presented [35].

Until present time, synthetic evidence regarding the 
performance of AI techniques applied for the diagnosis 
of non-melanoma skin cancer remains insufficient [7, 
10]. Without reliable evidence, the application of AI in 
the diagnosis of non-melanoma skin cancer is frequently 
obstructed. Furthermore, what important factors/strate-
gies that may influence the performance of AI in the diag-
nosis of non-melanoma skin cancer are at times unclear.

In viewing the unfulfilled areas of knowledge, the pur-
poses of this meta-analysis are therefore: 1) to meta-ana-
lyze the accuracy of diagnosis for non-melanoma skin 
cancer via machine learning and deep learning; and, 2) 
to examine potential covariates that can account for the 
heterogeneity found among these studies. The main con-
tributions of this study are:

• Summary of the performance of AI for diagnosing 
non-melanoma skin cancer with quantitative evi-
dence so that AI’s utility assessment can be made 
with greater efficacy and objectivity.

• Identification of potential covariates as they relate 
to AI performance since it may improve through an 
adoption of those strategies indicated by these identi-
fied covariates whenever building AI models.

• Accumulation of knowledge of diagnostic test accu-
racy for AI in non-melanoma skin cancer takes place 
so that earlier and more accurate diagnosis of non-
melanoma skin cancer is practical.

The remainder of this paper is structured as follows. 
Related work section introduces prior reviews on the 
topic of diagnostic test accuracy, focusing on how these 
reviews were planned and evaluated. Material and meth-
ods section presents the research method adopted in this 
study. Results section describes the analytical findings 
based on collected data, Discussion section interprets 
and describes the significance of the findings, and Con-
clusions section summarizes the findings of the current 
study.

Related work
Up until the most recent examples, a number of stud-
ies have started to review existing evidence related to 
AI techniques for skin-lesion classification [7, 10, 23, 
35–37]. Several themes may be observed from Table  1. 
First, much evidence is qualitative in nature [10, 35–37], 
except for the study of Sharma et al. [7] and Rajpara et al. 
[23]. Without quantitative evidence, the performance of 
AI-based predictive models are not easily or objectively 
assessed. Second, few reviews [7, 10] have focused solely 
on non-melanoma forms of skin cancer, with such efforts 
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being devoted to the review of evidence concerning mela-
noma [16, 23] or both [35, 37]. By focusing exclusively on 
non-melanoma skin cancer, a better understanding may 
yet be achieved. Third, most reviews include studies that 
have adopted machine learning and deep learning, with 
the exception of Brinker et al. [35]. Despite deep learning 
being widely considered as having better performance 
than machine learning, studies that adopted machine 
learning should also be included in order to have a more 
holistic understanding of AI performance in the diagno-
sis of melanoma and non-melanoma skin cancers. Finally, 
review components/metrics for assessing the perfor-
mance of AI techniques are quite diversified. Classifica-
tion methods, data source, and diagnostic accuracy are 
primary components of these reviews. Further, reviews 
that followed the Preferred Reporting Items for a Sys-
tematic Review and Meta-analysis statement (PRISMA) 
for Diagnostic Test Accuracy (DTA) commonly reported 
pooled diagnostic odds ratio, pooled positive/negative 
likelihood ratio, pooled sensitivity, and pooled specificity, 

while other reviews usually reported separate accuracy, 
area under receiver characteristic curve, F1-score, pre-
cision, sensitivity, or specificity by individual study. This 
study therefore follows PRISMA-DTA for reporting sum-
mary metrics of included studies for global assessment of 
AI performance for the diagnosis of non-melanoma skin 
cancer.

Methods
This study was conducted according to the PRISMA 
statement [38] (see  Additional file  1: Appendix A for 
diagnostic test accuracy checklist and Additional file  2: 
Appendix B for diagnostic test accuracy abstracts check-
list). The Institutional Review Board of E-Da Hospital 
(EMRP-108–128) approved the study-wide protocol.

Search strategy and selection process
A literature search, carried out  31st March, 2022, of Sco-
pus, PubMed, ScienceDirect, SpringerLink, and Dimen-
sions, by means of keyword combinations of the terms 

Table 1 Prior reviews on skin cancer diagnosis based on artificial intelligence

AI Artificial intelligence, AUROC Area under receiver operating characteristic curve, CNN Convolutional neural network, DL Deep learning, DOR Diagnostic odds ratio, 
ML Machine learning, ± LR Positive/negative likelihood ratio

Sources Type of skin cancer Method AI techniques Studies Review component(s) Metrics Main findings

[23] Melanoma Quantitative ML and DL 30 Comparison between der‑
moscopy and AI

• DOR
•  ± LR
• Sensitivity
• Specificity

• Pooled DOR of AI: 57.80
• Pooled + LR of AI: 6.36
• Pooled ‑LR of AI: 0.13
• Pooled sensitivity of AI = 0.91
• Pooled specificity of AI = 0.79

[35] Both Qualitative DL 13 Methods of classification • Accuracy
• AUROC
• Sensitivity
• Specificity

• Accuracy: 0.50–0.93
• AUROC: 0.82–0.98
• Sensitivity: 0.58–0.95
• Specificity: 0.74–0.85
• CNN can be used to extract 
features or classify lesions
• The comparison of different AI 
procedures is difficult

[10] Non‑melanoma Qualitative ML and DL 39 • Skin lesion database
• Feature extraction
• Methods of classification
• Diagnostic accuracy

• Accuracy
• AUROC

• Accuracy: 0.72–1
• AUROC: 0.83–1

[7] Non‑melanoma Quantitative ML and DL 57 • Skin cancer type
• Algorithm type
• Diagnostic standard
• Data set source and size

• Sensitivity
• Specificity

• Pooled sensitivity = 0.89
• Pooled specificity = 0.81
• ML algorithms for diagnosing 
skin cancer is promising

[36] Both Qualitative ML and DL 102 • Contributions
• Methods
• Achieved results

• Accuracy
• Precision
• Sensitivity
• Specificity

• Accuracy: 0.64–1
• Sensitivity: 0.35–1
• Specificity: 0.60–1
• Precision: 0.62–0.98
• The need for creation of large 
public image datasets
• Including clinical data may help 
improve classification accuracy

[37] Melanoma Qualitative ML and DL 53 • Data characteristics
• Diagnostic techniques
• Evaluation metrics

• Accuracy
• AUROC
• F1‑score
• Sensitivity
• Specificity

• Accuracy: 0.67–0.99
• AUROC: 0.82–0.92
• F1‑score: 0.83
• Sensitivity: 0.77–0.96
• Specificity: 0.70–0.96
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"basal cell carcinoma", "intra-epithelial carcinoma", 
"Bowen’s disease", "actinic keratosis", "skin lesion", "non-
melanoma skin cancer", "artificial intelligence", "machine 
learning", and "deep learning".

Inclusion criteria was determined by: 1) studies inves-
tigating the accuracy of non-melanoma skin cancer; 
2) studies written in English; and, 3) studies adopting 
machine-learning or deep-learning techniques. Studies 
were dis-qualified for inclusion, if: 1) they only investi-
gated the incidence of melanoma skin cancer; 2) stud-
ies were irrelevant to our research purpose; and, 3) full 
texts were unavailable for purposes of examination. We 
located 134 potentially eligible articles, of which 95 were 
excluded with reason (see Fig. 1), and the remaining 39 
articles being included in the eventual quantitative meta-
analysis that was made.

Data extraction
From each study, we extracted the following informa-
tion: Authorship, publication year, sample size, types 
of non-melanoma skin cancer described, whether data 
sources were publicly available, whether cross-valida-
tion procedures were undertaken, whether ensemble 
models were employed, and what type of artificial intel-
ligence technique was employed (i.e., deep learning or 
machine learning). Only studies that adopted a neural 
network algorithm with more than one hidden layer were 

categorized as being part of the deep learning group, 
with others categorized as being part of the machine 
learning group for purposes of our study. For models 
based on deep learning, further recorded information 
including whether pre-trained models were utilized and 
whether image augmentation was implemented. Further, 
we extracted the original numbers of true/false positives 
and true/false negatives from each study to derive out-
come measures, including summary sensitivity, speci-
ficity, and area under receiver operating characteristic 
curve, for purposes of diagnostic accuracy. Finally, if an 
article had classified more than one non-melanoma skin 
cancer simultaneously, we considered each of the non-
melanoma skin cancers as a different study, with relevant 
data extracted based upon the above-listed procedures.

Methodological analysis
Regarding the quality of each of the included studies, we 
evaluated the risk of bias and applicability in accordance 
with the revised Quality Assessment of Diagnostic Stud-
ies (QUADAS-2) including four domains: sample selec-
tion, index test, reference standard, flow, and timing [30].

Statistical analysis
Following the suggestion of prior evidence [39], sen-
sitivity and specificity were pooled with a bivariate 
model. Area under receiver operating characteristic 

Fig. 1 Article selection process
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curve, diagnostic odds ratio, positive likelihood ratio, 
and negative likelihood ratio were also estimated in this 
study. Forest plots were produced to depict variability 
amongst the studies up for consideration. Besides, sum-
mary receiver operating characteristic curves with 95% 
confidence intervals (CI) and 95% prediction intervals 
(PI) were adopted to assess the existence of a threshold 
effect among the included studies [40]. The R statistics 
[41] with lme4 [42] and mada [43] packages were used for 
diagnostic accuracy test meta-analysis.

Several meta-regressions with plausible covariates, 
including types of non-melanoma skin cancer (i.e., basal 
cell carcinoma and intra-epithelial carcinoma), whether 
data sources were publicly available (public or propri-
etary), whether cross-validation procedures were under-
taken, whether ensemble models were adopted, types of 
AI technique employed (machine learning or deep learn-
ing), whether pre-trained deep learning models (e.g., 
DenseNet, ResNet, or AlexNet) were used (Yes or No), 
and whether image augmentation procedures were used 
by deep learning models (Yes or No) were undertaken to 
check for possible heterogeneity among studies. The sig-
nificance level is set to 0.05 for present study.

Results
General study characteristics
Among the 39 included articles, 13 articles [6, 19, 20, 24, 
26, 29, 32, 44–49] reported the identification of only one 
type of non-melanoma skin cancer, while other 26 arti-
cles simultaneously reported the identification of more 
than one non-melanoma skin cancers. Totally, 67 stud-
ies were included in our meta-analysis of diagnostic test 
accuracy.

Half of the included studies aimed to identify images 
of basal cell carcinoma (56.72%) and then intra-epithelial 
carcinoma (43.28%). About 76% of datasets were publicly 
available. Cross-validation procedures were adopted by 
near 22% of included studies, while approaches of ensem-
ble models were employed by about 16%. Deep learning 
techniques (76%) were adopted more frequently than 
machine learning techniques (19%). Among 51 studies 
adopting deep learning, about 73% of these utilized pre-
trained models for prediction, while nearly 65% of studies 
employed image augmentation techniques when building 
predictive models. Detailed characteristics of the inclu-
sive studies is given in Tables 2 and 3, respectively.

Quality assessment
According to the QUADAS-2 tool [30], 18 out of the 39 
included articles were assessed to have a moderate risk 
of bias, and 21 articles were considered as possessing a 
low risk of bias regarding patient selection. Three, four, 
and three articles were assessed as having a moderate 
risk factor related to index test, reference standard, and 
flow and timing, respectively (see Fig. 2). Furthermore, 18 
out of 39 included articles purporting a moderate risk are 
regarding the applicability of patient selection processes. 
Further, 38 articles were categorized as having a low 
applicability risk about the given index test and reference 
standard applied.

Diagnostic accuracy of non‑melanoma skin cancer 
predictive models based on machine learning
As shown in Table  4, the overall summary area under 
receiver operating characteristic curve for machine 
learning to predict non-melanoma skin cancers is about 

Table 2 Characteristics of included studies

Characteristics Values Frequency %

Study type (n = 67) Basal cell carcinoma 38 56.72

Intra‑epithelial carcinoma 29 43.28

Data sources (n = 67) Proprietary 16 23.88

Public 51 76.12

Cross validation (n = 67) No 52 77.61

Yes 15 22.39

Ensemble models (n = 67) No 56 83.58

Yes 11 16.42

Types of technique (n = 67) Deep learning 51 76.12

Deep learning + Machine learning 3 4.48

Machine learning 13 19.40

Pre‑trained models (n = 51) No 14 27.45

Yes 37 72.55

Image augmentation (n = 51) No 18 35.29

Yes 33 64.71
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0.97. Moreover, summary sensitivity, specificity, diag-
nostic odds ratio, positive likelihood ratio, and negative 
likelihood ratio were 0.78, 0.98, 224.31, 49.75, and 0.22 
respectively. Since our study focused on non-melanoma 
skin cancers, Figs.  3 and 4 illustrate the sensitivity and 
specificity of each of the included studies for basal cell 
carcinoma and intra-epithelial carcinoma, respectively.

Pooling sensitivity and specificity based on univariate 
meta-analysis of diagnostic test accuracy can sometimes 
be misleading [40]. The bivariate meta-analysis of sum-
mary sensitivity, specificity, and their respective confi-
dence intervals is depicted in Table 5. Figure 5 illustrates 
the summary ROC curve with 95% CI and 95% PI for 
included studies. We conducted χ2 tests to evaluate the 
heterogeneity of sensitivity and specificity. The test for 
equality of sensitivity and of specificity were both signifi-
cant, χ2 (66) = 2702.33, p < 0.001 and χ2 (66) = 12,373.02, 
p < 0.001, indicating significant between-study heteroge-
neity existed for both sensitivities and specificities.

As shown in Table  5 and Fig.  6(a), the sensitivity was 
higher for the studies classifying basal cell carcinoma 
(0.83; 95% CI, 0.77–0.88) than for the studies classifying 
intra-epithelial carcinoma (0.70; 95% CI, 0.53–0.82), and 
a statistically significance was evident (p = 0.046). The 
corresponding specificity was close between basal cell 
carcinoma and intra-epithelial carcinoma (0.98; 95% CI, 
0.96–0.98 vs. 0.99; 95% CI, 0.98–0.99), but a significant 
difference was still detected (p = 0.006).

Studies utilized public data sources, as displayed in 
Table 5 and Fig. 6(b) achieved a higher sensitivity (0.79, 

95% CI, 0.69–0.86 vs. 0.78, 95% CI, 0.69–0.86) than those 
used proprietary data sources, but didn’t reach statisti-
cal significance (p = 0.686). Specificity was however sig-
nificantly higher for studies which adopted public data 
sources (0.99; 95% CI, 0.98–0.99) than proprietary data 
sources (0.93; 95% CI, 0.88–0.97, p < 0.001).

As presented in Table 5 and Fig. 6c), studies that imple-
mented cross-validation procedures during the training 
phase had a higher sensitivity (0.79; 95% CI, 0.64–0.89 vs. 
0.78; 95% CI, 0.69–0.85) than studies that did not, but no 
statistical significance was observed (p = 0.380). However, 
studies that implemented cross validation showed a sig-
nificant lower specificity than studies that did not (0.97; 
95% CI, 0.92–0.98 vs. 0.99; 95% CI, 0.98–0.99, p = 0.008).

Studies that adopted ensemble models, as depicted in 
Table  5 and Fig.  6(d), had a significant higher sensitiv-
ity (0.91; 95% CI, 0.84–0.95 vs. 0.75; 95% CI, 0.66–0.82, 
p = 0.014), and a tied specificity (0.98; 95% CI, 0.94–0.99 
vs. 0.98; 95% CI, 0.98–0.99).

The studies that used deep-learning techniques, as 
showed in Table 5 and Fig. 6(e), achieved a lower sensitiv-
ity (0.75; 95% CI, 0.66–0.83 vs. 0.83; 95% CI, 0.69–0.91) 
and a higher specificity (0.99; 95% CI, 0.98–0.99 vs. 0.95; 
95% CI, 0.88–0.98) than the studies that used machine-
learning techniques. Significant differences were however 
only found in specificity (p = 0.001) but not sensitivity 
(p = 0.344).

As depicted in Table 5 and Fig. 6(f ), deep learning stud-
ies that adopted pre-trained models achieved a higher 
sensitivity (0.81; 95% CI, 0.73–0.87 vs. 0.58; 95% CI, 

Fig. 2 Methodological assessment by QUADAS‑2
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0.33–0.79) and a higher specificity (0.99; 95% CI, 0.98–
0.99 vs. 0.98; 95% CI, 0.97–0.99) than studies that did not. 
Statistical significant difference was only established for 
sensitivity (p = 0.048) rather than specificity (p = 0.263).

Table  5 and Fig.  6(g) showed that the sensitivity of 
the deep learning studies that adopted image-augmen-
tation procedures to deal with over-fitting was lower 
than the studies without adopting image-augmentation 
procedures (0.73; 95% CI, 0.62–0.82 vs. 0.80; 95% CI, 
0.61–0.91), but no statistical difference was observed 
(p = 0.413). There was however a statistically significant 

difference between studies adopted image-augmentation 
procedures and studies that did not (0.99; 95% CI, 0.99–
0.99 vs. 0.98; 95% CI, 0.96–0.99, p = 0.031).

Discussion
Considering the potential health threat posed by non-
melanoma skin cancer and the advances of AI techniques 
made in recent years, it is timely to both synthesize and 
report the results in diagnosis of non-melanoma skin 
cancers based on AI. According to the included studies, 
our meta-analysis shows there to be diagnostic perfor-
mance with a moderate sensitivity, a strong specificity 
and AUC. Sensitivity was significantly dependent on the 
types of non-melanoma skin cancer encountered and 
whether ensemble models were adopted, while specific-
ity was significantly dependent on included covariates 
except for whether ensemble models were adopted and 
whether pre-trained models were used.

Prior studies [8, 9] show that the accuracy for diagnos-
ing non-melanoma skin cancers based on AI is closer 
to human diagnosis based on sensitivity. It is also nota-
ble that the performance of AI is better than that based 
on human diagnosis in terms of specificity and AUC [8, 
9]. However, the pooled sensitivity in this study is lower 
than the pooled sensitivity in diagnosing melanoma skin 

Table 4 Performance of predicting non‑melanoma by artificial 
intelligence

CI Confidence interval

Metrics Performance (95% CI)

Area under receiver operating
characteristic curve

0.97

Sensitivity 0.78 (0.71, 0.84)

Specificity 0.98 (0.98, 0.99)

Diagnostic odds ratio 224.31 (123.15, 325.46)

Positive likelihood ratio 49.75 (33.94, 65.56)

Negative likelihood ratio 0.22 (0.15, 0.29)

Fig. 3 Sensitivity and specificity of basal cell carcinoma studies (n = 38)
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cancer based on AI. More studies are required to improve 
the performance of AI used to diagnose non-melanoma 
skin cancer, especially in terms of sensitivity. Significant 
covariates identified in this study may be included for 
purposes of this improvement.

In terms of differing types of non-melanoma skin can-
cer, the sensitivity of basal cell carcinoma was higher than 
those found in intra-epithelial carcinoma. Significant dif-
ference between basal cell carcinoma and intraepithelial 
carcinoma was observed. The potential reason that basal 
cell carcinoma reached a significant higher sensitivity 
may be due to more images of this type of skin cancer are 
included and thus more characteristics are learned than 
the other type of skin cancer (10,363 vs. 3,829). The spec-
ificity of basal cell carcinoma was lower than, but close 
to, that of intra-epithelial carcinoma. In words, there are 
few false positive results when using artificial intelligence 
to detect non-melanoma skin cancers.

Data for building machine-learning models that are 
collected from public data sources, in general, are more 
frequently leveraged than proprietary data sources in 
the present study. It is therefore reasonable that predic-
tive models based on public data sources often perform 
better than those based on proprietary data sources since 
data from public sources are better understood than data 

from proprietary sources. Our study confirmed stud-
ies that data used from public sources performs better 
in terms of both sensitivity and specificity than those of 
data used from proprietary sources. This finding was also 
reported by Dick et  al. [16], but their study focused on 
meta-analyzing the computer-aided diagnoses of mela-
noma skin cancers. The finding reported here suggests 
that the performance of predictive models using propri-
etary data sources may still have room for improvement 
by leveraging differing machine-learning or deep-learn-
ing techniques. Further, echoing the point of Tschandl 
et al. [3], more skin cancer images of all pertinent kinds 
should be collected and, most importantly, be made pub-
licly available.

In order to prevent over-fitting [73], it is widely 
acknowledged to split collected data into a training data-
set and a test one. The training dataset is used for train-
ing the predictive model while the test dataset is used 
to validate the established model [74]. To better esti-
mate the model performance, cross- validation methods 
focused on the training dataset are usually adopted [73]. 
In this research, studies that adopted cross validation 
showed a non-significant, higher sensitivity but a signifi-
cant, lower specificity than those that did not. One pos-
sible explanation for studies adopting cross-validation 

Fig. 4 Sensitivity and specificity of intra‑epithelial carcinoma studies (n = 29) Plausible covariates to explain between‑study heterogeneity
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methods showed a significant, lower specificity that may 
contribute to different types of cross-validation methods. 
This explanation included threefold [44], fivefold [62, 68], 
tenfold [19, 24, 32, 51], or leave-one-out [13, 48, 59] that 
were adopted as part of these studies. As such, they may 
have caused a larger variation in specificity, as illustrated 
in Fig. 6c.

Ensemble models are predictive models that combine 
predictions from more than one model into one model 
[75]. They tend to have much better predictive perfor-
mance than singular models [74]. It is therefore reason-
able to assume predictive models based on ensemble 
models perform better than single models. Our study 
confirmed that studies based on ensemble models per-
formed better in sensitivity (0.91 vs. 0.75) and a tied 
specificity (0.98 vs. 0.98) between two categories, a statis-
tically significant difference was found only in sensitivity. 

This finding may indicate that ensemble models can be 
considered when utilizing AI for predicting non-mela-
noma skin cancers.

The summary sensitivity and specificity is (0.75, 0.99) 
and (0.83, 0.95) when deep-learning and machine-learning 
techniques were used, respectively; however, statistical 
significance difference was evident only in specificity. As 
illustrated in Table 4 and Fig. 6 (e), the 95% CIs of sensitiv-
ity of deep learning and machine learning are quite wide, 
indicating that where the real sensitivity lies is unsure, 
while the 95% CIs of specificity is quite narrow, suggest-
ing the summary specificity is a more precise estimation. 
Regarding why the sensitivity of machine learning is higher 
than that of deep learning, we suspect the plausible rea-
son may be due to most studies being based on a machine 
learning adopted support vector machine [26, 27, 29, 48, 
59, 63] or random forest [19, 61]. The machine learning 

Table 5 Summary estimates for sensitivity and specificity

* denotes p < 0.05, ** p < 0.01, *** p < 0.001, and CI Confidence interval

Covariates Values Metrics Summary 
estimates

95% CI p value

Overall (n = 67) Sensitivity 0.78 [0.71, 0.84]

Specificity 0.98 [0.98, 0.99]

Types of non‑melanoma skin 
cancer

Basal cell carcinoma (n = 38) Sensitivity 0.83 [0.77, 0.88] [Reference]

Specificity 0.98 [0.96, 0.98] [Reference]

Intra‑epithelial carcinoma (n = 29) Sensitivity 0.70 [0.53, 0.82] 0.046*

Specificity 0.99 [0.98, 0.99] 0.006**

Data sources Public (n = 51) Sensitivity 0.79 [0.69, 0.86] [Reference]

Specificity 0.99 [0.98, 0.99] [Reference]

Proprietary (n = 16) Sensitivity 0.78 [0.69, 0.86] 0.686

Specificity 0.93 [0.88, 0.97] 0.000***

Cross validation Yes (n = 15) Sensitivity 0.79 [0.64, 0.89] [Reference]

Specificity 0.97 [0.92, 0.98] [Reference]

No (n = 52) Sensitivity 0.78 [0.69, 0.85] 0.380

Specificity 0.99 [0.98, 0.99] 0.008**

Yes (n = 11) Sensitivity 0.91 [0.84, 0.95] [Reference]

Specificity 0.98 [0.94, 0.99] [Reference]

Ensemble models No (n = 56) Sensitivity 0.75 [0.66, 0.82] 0.014**

Specificity 0.98 [0.98, 0.99] 0.510

Types of technique Deep learning (n = 51) Sensitivity 0.75 [0.66, 0.83] [Reference]

Specificity 0.99 [0.98, 0.99] [Reference]

Machine learning (n = 13) Sensitivity 0.83 [0.69, 0.91] 0.344

Specificity 0.95 [0.88, 0.98] 0.001**

Pre‑trained models Yes (n = 36) Sensitivity 0.81 [0.73, 0.87] [Reference]

Specificity 0.99 [0.98, 0.99] [Reference]

No (n = 15) Sensitivity 0.58 [0.33, 0.79] 0.048*

Specificity 0.98 [0.97, 0.99] 0.263

Image augmentation Yes (n = 34) Sensitivity 0.73 [0.62, 0.82] [Reference]

Specificity 0.99 [0.99, 0.99] [Reference]

No (n = 17) Sensitivity 0.80 [0.61, 0.91] 0.413

Specificity 0.98 [0.96, 0.99] 0.031*
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performances are generally considered as quite stable, 
while studies based on deep-learning techniques adopted 
a variety of differing techniques which may result in more 
unstable performance. Prior meta-analyses of diagnostic 
test accuracy of AI used for diagnosing melanoma skin 
cancers, by Dick et al. [16] and Rajpara et al. [23], showed 
summary sensitivities and specificities of (0.44, 0.92) and 
(0.91, 0.79), respectively. We however found that both 
deep-learning and machine-learning techniques per-
formed moderately well with sensitivity and quite well 
with specificity. These inconsistent results are explain-
able by the fact that these meta-analyzed studies were not 
conducted in similar clinical settings. Further, both prior 
meta-analyses [16, 23] focused on melanoma rather than 
non-melanoma skin cancer types respective this study.

Pre-trained models are generalizable deep neural net-
works which are trained on large-scale data and can 
be transferred to many tasks [76]. Simply fine-tuning 
these pre-trained models with a small amount of task-
related data can influence performance quite well [77]. 
Prior review evidence [36] also found pre-trained mod-
els outperformed experienced dermatologists. As such, 
deep-learning studies based on pre-trained models are 
expected to perform better than those that did not, as 
confirmed in this study. Both sensitivity and specificity of 
pre-trained models performed higher than those that did 

not, but only sensitivity reached statistical significance. 
This finding may imply that future studies may consider 
building predictive models based on pre-trained models 
to enhance predictive accuracy.

In order to prevent over-fitting, deep learning usually 
required large amounts of data for purposes of training 
[78]. Without sufficient training data, the generalization 
of predictive models may be limited [79]. Based on this 
notion, studies that adopted image-augmentation tech-
niques are expected to perform better than those did not. 
Our study however showed that sensitivity is lower for 
studies that adopted image augmentation than those did 
not, while specificity is higher for studies adopted image 
augmentation than those that did not. Only specificity 
reached a statistically significant difference. One plausi-
ble reason for why studies adopted image augmentation 
achieved lower sensitivity than studies that did not is that 
the implemented-augmentation techniques were differ-
ent among the included studies. Not every included stud-
ies utilized the same augmentation techniques, such as 
flipping, rotation, shearing, cropping, and translation.

Finally, our study meta-analyzed the diagnostic test 
accuracy based on PRISMA statement [38]. Common 
metrics for diagnostic test accuracy including area under 
receiver operating characteristic curve, sensitivity, speci-
ficity, diagnostic odds ratio, positive likelihood ratio and 

Fig. 5 Summary receiver operating characteristic curve for overall studies
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negative likelihood ratio were included. Furthermore, to 
account for the threshold effect, the pooled sensitivity and 
specificity was estimated based on a bivariate model [39]. 
Other metrics such as mean accuracy were not assessed in 
this study since prior evidence suggests that sensitivity and 
specificity are more sensible parameters to be analyzed in 
a meta-analysis, and they are clinically well known [80].

Just like most meta-analyses, our study has its limita-
tions. First, the interpretation of summary sensitivity and 
specificity should be approached cautiously since het-
erogeneity among studies exists. Further, 72 studies were 
excluded due to insufficient quantitative information. 
Future diagnostic studies aimed at predicting non-mel-
anoma skin cancers are suggested to include sufficient 
quantitative information for subsequent meta-analysis to 
better characterize and profile these studies. The covari-
ates identified in this study are purely based from a sta-
tistical viewpoint [81], future research could consider the 
different design ideas of deep learning-based approaches 
or machine learning-based approaches to identify the 
incidence of other potential covariates. Finally, future 
meta-analysis may adopt emerging techniques [82–85] to 
cluster or classify models into different groups or catego-
ries, so that different insights are obtainable.

Conclusions
Our study aims to meta-analyze the diagnostic test 
accuracy of applying AI techniques to the diagnosis of 
non-melanoma type skin cancer which is already con-
sidered insufficient in review evidence. Without a bet-
ter understanding of the performance of AI for the 
diagnosis of non-melanoma skin cancer, the potential 
of AI may not be fully realized. Furthermore, the results 
of this quantitative meta-analysis can provide a more 
objective synthesis of the AI performance for diagnos-
ing non-melanoma skin cancer. Based on the findings 
of this study, the usefulness of AI can be assessed with 
greater facility and objectivity. Moreover, strategies for 
improving the performance of AI used for screening 
non-melanoma skin cancer are identifiable. A quick, 
safe, and non-invasive screening of non-melanoma skin 
cancers can thus be expected. By searching multiple 
online databases, 39 articles (67 studies) were included 
for purposes of meta-analysis. A bivariate meta-analysis 
of diagnostic test accuracy was undertaken to obtain 
summary sensitivity, specificity, and AUC. A moder-
ate diagnostic performance of summary sensitivity, a 
strong summary specificity, and a strong AUC were all 
observed based according to a bivariate meta-analysis of 

Fig. 6 Summary sensitivity and specificity with 95% confidence interval for different covariates
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diagnostic accuracy test. Types of non-melanoma skin 
cancer, whether data sources were publicly available, 
whether cross-validation procedures were undertaken, 
whether ensemble models were adopted, the types of AI 
technique employed, whether pre-trained deep-learning 
models were used, and whether image-augmentation 
procedures were all determined to partially explain 
some of the heterogeneity found among primary stud-
ies. Future studies may consider adopting the suggested 
techniques to have better predictive performance of AI 
for the effective diagnosis of non-melanoma skin cancer.
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