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Abstract 

Background Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Predicting the risk 
of developing DPN is important for clinical decision-making and designing clinical trials.

Methods We retrospectively reviewed the data of 1278 patients with diabetes treated in two central hospitals 
from 2020 to 2022. The data included medical history, physical examination, and biochemical index test results. 
After feature selection and data balancing, the cohort was divided into training and internal validation datasets 
at a 7:3 ratio. Training was made in logistic regression, k-nearest neighbor, decision tree, naive bayes, random forest, 
and extreme gradient boosting (XGBoost) based on machine learning. The k-fold cross-validation was used for model 
assessment, and the accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic 
curve (AUC) were adopted to validate the models’ discrimination and clinical practicality. The SHapley Additive exPla-
nation (SHAP) was used to interpret the best-performing model.

Results The XGBoost model outperformed other models, which had an accuracy of 0·746, precision of 0·765, recall 
of 0·711, F1-score of 0·736, and AUC of 0·813. The SHAP results indicated that age, disease duration, glycated hemo-
globin, insulin resistance index, 24-h urine protein quantification, and urine protein concentration were risk factors 
for DPN, while the ratio between 2-h postprandial C-peptide and fasting C-peptide(C2/C0), total cholesterol, activated 
partial thromboplastin time, and creatinine were protective factors.

Conclusions The machine learning approach helped established a DPN risk prediction model with good perfor-
mance. The model identified the factors most closely related to DPN.
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Introduction
The incidence of diabetes has been increasing world-
wide in recent years. About 6·7 million people died from 
diabetes or its complications in 2021 [1]. It is estimated 
that by 2045, China will have 174 million people with 
diabetes, ranking first in the world. The burden of dia-
betes-related complications is expected to increase with 
the increase in diabetes prevalence. Diabetic peripheral 
neuropathy (DPN) is the most common microvascular 
complication of diabetes [2], potentially leading to foot 
deformity, ulceration, and even amputation. It can also 
damage the central nervous system and increase the risk 
of all-cause and cardiovascular mortality [3–6]. Recent 
studies have found that DPN starts progressing in pre-
diabetes [7]. However, a nerve conduction study could 
not assess its subtle damage to nerve fibers, resulting 
in delayed DPN diagnosis, intervention, and treatment 
administration [8, 9]. Identifying risk factors for DPN is 
crucial for clinical management.

Studies have identified age, diabetes duration, and gly-
cosylated hemoglobin as risk factors for DPN progression 
[10, 11], and various other DPN-related factors are still 
being explored. However, due to differences in evaluation 
criteria among studies, many contrasting conclusions 
have been reported [12, 13], resulting in poor clinical 
applicability of DPN predictors. With the development 
of science and technology, the establishment of accurate 
predictive models through machine learning and risk fac-
tor acquisition are now applied clinically [14].

Machine learning does not require model structure 
pre-specification; rather, machine learning searches for 
the optimal fit within certain constraints. This approach 
can result in an accurate final prediction model that ana-
lyzes the complex interactions between many features 
[15]. Only a few DPN prediction models have been devel-
oped based on machine learning. Considering that DPN 
prevalence varies among countries [14], the existing DPN 
prediction models for China are limited by their small 
sample and single-center nature [16]. Our study aimed to 
discover the link between laboratory indicators and DPN 
through machine learning, and help clinicians quickly 
and accurately predict the risk of developing DPN.

Methods
Study population
We retrieved the data of 1278 patients with T2DM 
treated at Jiangsu Provincial Hospital of Traditional Chi-
nese Medicine (n = 1093) and Jiangsu Provincial Govern-
mental Hospital (n = 185) between February 2020 and 
July 2022. The data included 192 indicators, including 
the patient’s basic characteristics, complications, rou-
tine blood values, blood biochemistry, immune testing, 
thyroid function, coagulation function, routine urine 

values, urine biochemistry, routine stool values, insulin 
measurement, tumor screening, and sex hormone test-
ing (see Supplementary Table S1).The data were divided 
into those with and those without DPN according to the 
nerve conduction test results. See Fig.  1 for the entire 
research process, including feature selection, data balanc-
ing, model construction, model comparison, and optimal 
model selection and interpretation. This study followed 
the principles of the Declaration of Helsinki and was 
approved by the Ethics Committee of Jiangsu Provincial 
Government Hospitals (2022 Hospital Ethics Review No. 
030). All the above data have passed ethical verification.

Sample size
 In order to achieve better performances of ML models in 
predicting the risk factors of diabetic peripheral neuropa-
thy in this study, we included all records who fulfilled our 
inclusion criteria to fully train the models.

Data extraction
Screening of patient records according to the following 
inclusion and exclusion criteria.

Inclusion criteria
T2DM Patients diagnosed with DPN and had the diag-
nostic basis of EMG.

Exclusion criteria
Patients with neuropathy caused by other factors or 
patients with intervertebral disc disease, spinal nerve 
root disease and other neuropathy diseases.

Data exploration
We invited medical experts to manually select the fea-
tures with a significant impact on DPN diagnosis, reduc-
ing the 192 features in the dataset to 53. The features 
were selected based on their clinical relevance and previ-
ous research and included the patient’s age, weight, gly-
cosylated hemoglobin, blood lipids, and other essential 
characteristics. Some of these commonly used medical 
indicators are calculated by other indicators, as shown 
in the following formulae. Data mining treated the vari-
ables as complete (no without values) or incomplete 
(with missing values). Important incomplete variables 
were dealt with by deletion, imputation, or no process-
ing. We eliminated ten features whose missing data rate 
exceeded 30%. After eliminating features, the remaining 
categorical variables with missing data were completed 
with the variables’ modes, and the remaining continuous 
variables were filled with the variables’ mean values. This 
study included 748 samples with DPN and 530 samples 
without DPN.
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(1)C2/C0 =

2 hours postprandial C− peptide ng/mL

fasting C− peptide ng/mL

(2)HOMA − IR =

fasting plasmaglucose(mmol/L)× fasting seruminsulin(mU/L)

22 · 5

(3)NLR =

number of neutrophils(109/L)

number of lymphocytes(109/L)

Feature selection and data balancing
Feature selection, critical in feature engineering, can fil-
ter out highly correlated features to improve model per-

formance and reduce training time. Feature selection 
can be divided into the filtering, wrapping, and embed-
ding methods. The embedding feature selection method 

Fig. 1 Study design for building a machine learning model to predict diabetic peripheral neuropathy. Abbreviations and definitions: XGBoost, 
Extreme Gradient Boosting; NB, Naive Bayes; LR, Logistic Regression; KNN, K-Nearest-Neighbor; RF, Random Forest; DT, Decision Tree; K-Fold, K-Fold 
cross validation; SHAP, SHapley Additive exPlanations
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employed in this study uses a machine learning model to 
automatically select features and integrate them into the 
training process.

We balanced the data as most machine learning algo-
rithms do not work well with unbalanced datasets. For 
unbalanced data, over-sampling, under-sampling or both 
can be used to achieve positive and negative sample bal-
ance. The SMOTETomek method [17, 18]  was used for 
data balancing. It is a composite method that performs 
an over-sampling operation on a large proportion of sam-
ples and an under-sampling operation on a small propor-
tion of samples.

Research technology
Statistical analysis was performed using IBM SPSS Sta-
tistics for Windows, Version 27.0 (IBM Corp., Armonk, 
NY, USA). We used the Kolmogorov-Smirnov test to 
assess the continuous variables and the Chi-Squared test 
to assess the categorical variables (see Supplementary 
Table  S2  and S3). As the continuous variables were not 
normally distributed, they were compared by the Mann-
Whitney U test. Feature selection and data preprocess-
ing, balancing, modeling, and evaluation were performed 
using Python Software Foundation. Python Language Ref-
erence, version 3.9. Available at http:// www. python. org.

We divided the data into a 7:3 ratio of training set 
and test set, using the training set to train the predic-
tion  model and the test set for the model  evaluation. 
Six machine learning algorithms were  used to build the 
prediction models, including  logistic regression, k-near-
est neighbor, decision tree, naive Bayes, random forest, 
and extreme gradient boosting (XGBoost). We used the 
open-source package sklearn 0.24.2 for model realization 
and evaluation [19]. Model performances were assessed 
by  the indicators’ accuracy, precision, recall, F1-score, 
confusion matrix, and the area under the receiver 
operating characteristic curve (AUC)  under 10-fold 
cross-validation.

Model interpretation
The interpretation of the model is a very important step 
that helps one to understand the process of model clas-
sification. The SHapley Additive exPlanations(SHAP) 
originated from cooperative game theory and have a 
solid theoretical foundation [20]. The method is a model-
independent solution to model interpretability. We syn-
thetically selected the best-performing model, and used 
SHAP to calculate the marginal contribution of features 
to explain the model output, identify significant features 
in the various classifications, and indicate whether they 
were positively or negatively correlated.

Results
Participants
We used the collected data of 1278 diabetic patients for 
modeling of machine learning, all patients have com-
pleted EMG results. Nerve conduction abnormalities 
involving one or more nerves was defined as nerve injury, 
grouped according to the patient’s nerve conduction out-
come. 748 (58.53%) of which did and 530 (41.47%) did 
not develop DPN. The description of the general situa-
tion of the study subjects is presented in Supplementary 
Table S3.

Feature selection
The 43 variables included in this study comprised 34 
continuous variables and nine categorical variables. We 
used the embedded method and random forest as pri-
mary learners to further filter the features and select 16. 
Supplementary Table S4 presents the weights of these 16 
features.

As shown in Table  1, age, alanine aminotransferase, 
albumin, total bilirubin, urea, total cholesterol, glyco-
sylated hemoglobin, activated partial thromboplastin 
time (aPTT), 24-h urine protein quantification, urine 
protein concentration, diabetes duration, neutrophil-to-
lymphocyte ratio, and the homeostatic model assessment 
of insulin resistance (HOMA-IR) index were statistically 
significant (P<0·05).

Data balancing
The data distribution before and after balancing is shown 
in Table 2.

Modeling and evaluation
The evaluation results of the six machine learning algo-
rithms are shown in Table  3. The results showed that 
XGBoost had the best accuracy (0·753 ± 0·032), recall 
(0·721 ± 0·050), and F1-value (0·744 ± 0·036). K-nearest 
neighbor showed the highest precision (0·858 ± 0·070) 
but performed poorly in the other indicators.

The confusion matrix serves as a formalized method 
for evaluating machine learning models, reflecting the 
results presented in Table 3. As can be easily deduced 
from Fig.  2, the overall performance of the Random 
Forest and XGBoost models is significantly superior to 
that of the other models, with the XGBoost model hav-
ing a slight edge over the Random Forest model. Spe-
cifically, the XGBoost model slightly outperforms the 
Random Forest model in terms of accuracy, precision, 
and recall metrics.

The performance of the six machine learning algo-
rithms in predicting DPN is shown in Fig. 3. The AUC 
of XGBoost (0·818) was the largest, followed by random 

http://www.python.org
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forest (0·804). The decision tree model had the smallest 
AUC (0·636).

Descriptive statistics of AUC values for different mod-
els were shown in Table 4. Due to the small sample size 
and non-normal distribution of AUC, we conducted a 
Wilcoxon signed-rank test on the XGBoost model’s and 

other models’ AUC values. The AUC values of XGBoost 
were statistically significantly different from those of LR, 
KNN, NB, and DT, but not significantly different from RF, 
as shown in Table 5. Cross-validation results were often 
used for model selection, and based on the average values 
of various metrics in Table 3, we have chosen XGBoost.

A comprehensive performance analysis of the six mod-
els indicated that XGBoost was the optimal model for 
predicting DPN. We used SHAP to elucidate the relation-
ship between the features and the output of the XGBoost 
model. From Fig. 4, we can get the top 10 indicators that 
have the greatest impact on classification, all of which 
P < 0̵·05. Figure  4 shows that age, disease duration, C2/
C0, and total cholesterol were essential features for DPN 
prediction by XGBoost and significantly impacted the 
classification results. Age, disease duration, glycated 
hemoglobin, insulin resistance (IR) index, 24-h urine 
protein quantification, and urine protein concentration 
were risk factors, while C2/C0, total cholesterol, aPTT, 
and creatinine were protective factors.

Discussion
DPN is the most common complication of diabetes in 
China, in addition to cardiovascular and cerebrovascu-
lar diseases. DPN is often neglected in its early stages 
because nerve conduction studies cannot detect small 
fiber lesions. The nerve damage caused by DPN is irre-
versible by the time the disease is fully established. 
Therefore, it is very important to identify the clinical 
indicators, predictors, and risk factors of DPN. This 
study built a DPN prediction model based on XGBoost 

Table 1 Single factor analysis of DPN selection variables

a Statistics: Mann-Whitney U Test for continuous variable comparisons; P < 0.05 are in bold

Characteristic NDPN DPN Pvaluea

Age(years) 56·0(46·0–65·0) 64·50(55·0–72·0) < 0·001
Alanine aminotransferase (U/L) 20·0(14·0–22·0) 17·0(13·0–24·0) < 0·001
Albumin(g/L) 41·9(39·6–43·8) 40·8(38·4-–43·3) < 0·001
Total bilirubin(µmol/L) 10·4(7·9–13·8) 9·9(7·3–13·0) 0·005
Urea(mmol/L) 5·3(4·4–6·4) 5·8(4·7–7·1) < 0·001
Creatinine(µmol/L) 66·6(56·0–77·8) 66·1(56·0–80·1) 0·319

Uric acid(µmol/L) 317·0(269·0–393·0) 318·0(262·0–377·0) 0·231

Total Cholesterol(mmol/L) 4·9(3·9–5·3) 4·4(3·6–5·3) 0·012
Glycated hemoglobin(mg/dl) 8·0(6·8–9·6) 8·8(7·3–10·5) < 0·001
Activated partial thromboplastin time(s) 36·0(33·4–38·9) 35·0(32·8–37·6) < 0·001
Urine protein quantity(mg/L) 39·0(24·0–75·0) 61·0(32·0–146·0) < 0·001
24 h urine protein quantity(mg/24 h) 80·5(44·5–128·5) 109·0(60·0–263·0) < 0·001
Diabetes duration(years) 5·0(2·0–11·0) 10·0(4·0–18·0) < 0·001
C2/C0 3·3(2·4–4·6) 2·9(1·9–4·1) < 0·001
NLR 1·8(1·3–2·6) 2·1(1·6–3·0) < 0·001
HOMA-IR 2·7(1·6–4·4) 3·1(1·7–5·4) 0·011

Table 2 Comparison of positive and negative samples before 
and after data balance

DPN with diabetic eripheral neuropathy, NDPN without diabetic eripheral 
neuropathy

DPN NDPN

Before sampling 748 530

After sampling 700 700

Table 3 Comparison of classification results of different models 
(mean ± std)

The best results are in bold

XGBoost Extreme Gradient Boosting, NB Naive Bayes, LR Logistic Regression, KNN 
K-Nearest-Neighbor, RF Random Forest, DT Decision Tree

Algorithm Accuracy Precision Recall F1-score

LR 0·679 ± 0·052 0·687 ± 0·056 0·659 ± 0·062 0·672 ± 0·056

KNN 0·674 ± 0·039 0·858 ± 0·070 0·419 ± 0·073 0·559 ± 0·070

DT 0·682 ± 0.032 0·695 ± 0.032 0·648 ± 0·067 0·669 ± 0·042

NB 0·590 ± 0·029 0·784 ± 0·087 0·253 ± 0·061 0·378 ± 0·071

RF 0·736 ± 0·021 0·769 ± 0·026 0·677 ± 0·040 0·719 ± 0·027

XGBoost 0·746 ± 0·041 0·765 ± 0·040 0·711 ± 0·066 0·736 ± 0·050
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Fig. 2 Model classification confusion matrix. XGBoost, Extreme Gradient Boosting; NB, Naive Bayes; LR, Logistic Regression; KNN, 
K-Nearest-Neighbor; RF, Random Forest; DT, Decision Tree
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through machine learning. The high recall rate of the 
model shows that it has good reliability.

The developed model has several advantages. First, 
data from two medical  centers in Nanjing, China, were 
used for analysis. DPN diagnosis in all patients fol-
lowed the nerve conduction study classification, and 
their pathological data were tested by standardized 

Fig. 3 ROC curves for different classification models. XGBoost, Extreme Gradient Boosting; NB, Naive Bayes; LR, Logistic Regression; KNN, 
K-Nearest-Neighbor; RF, Random Forest; DT, Decision Tree; ROC curve,receiver operating characteristic curve

Table 4 Descriptive Statistics of AUC for Different Models

P < 0.05 are in bold

Performing a Shapiro-Wilk test for normality on the AUC values from 10-fold cross-validation

XGBoost Extreme Gradient Boosting, NB Naive Bayes, LR Logistic Regression, KNN K-Nearest-Neighbor, RF Random Forest, DT Decision Tree

Min Q1 Median(Q2) Q3 Max P value

XGBoost 0·679 0·709 0·764 0·775 0·801 0·074

RF 0·686 0·732 0·736 0·748 0·765 0·203

LR 0·586 0·675 0·683 0·720 0·737 0·040
KNN 0·607 0·650 0·671 0·698 0·739 0·853

NB 0·543 0·568 0·589 0.614 0·634 0·547

DT 0·636 0·663 0·679 0·690 0·759 0·299

Table 5 Significance Testing between XGBoost and Other 
Models

P < 0.05 are in bold

XGBoost Extreme Gradient Boosting, NB Naive Bayes, LR Logistic Regression, KNN 
K-Nearest-Neighbor, RF Random Forest, DT Decision Tree

RF LR KNN NB DT

P value 0·375 0·002 0·002 0·002 0·006
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laboratory techniques, to ensuring the accuracy of the 
variables in the prediction model. Second, unbalanced 
datasets make models highly dependent on some spe-
cific indicators, leading to over- or underfitting. We 
used the SMOTETomek method to solve this problem. 
Third, we constructed multiple classical machine learn-
ing DPN prediction models. We determined that the 
XGBoost model was the best after comparing the models 
by 10-fold cross-validations. Fourth, the SHAP method 
was used to explain the relationship between the input 
features and the output variables of the XGBoost model, 
ranking the features according to their contribution to 
the model output. We found several important indicators 
highly correlated with the progression to DPN. These are 
highly relevant since the key indicators of disease diagno-
sis were objectively extracted from real clinical data.

Previous studies have attempted to build predictive 
models of DPN. Wu et  al. [16] established four predic-
tive nomographs and selected the optimal model, but 
the Toronto Clinical Neuropathy Scoring System score 
suggested the diagnosis groups included false positives. 
Kazemi et  al. [21] built a DPN prediction model based 
on multicategory support vector machine; however, by 

directly selecting the research model, they could not 
compare it to others, possibly reducing the model’s accu-
racy. Baskozos et  al. [22] used the DOLORisk project 
dataset, applied machine learning to classify painful and 
painless DPN, built models, and identified predictive fac-
tors. Although their study used one of the largest and 
most comprehensively phenotyped cohort of people with 
DPN, its disadvantage was in its uncertain data qual-
ity. Metsker et al. [23] used EMRS data to build various 
machine-learning models for DPN. They found the most 
effective method for each research task to ensure the 
high accuracy of the research results. Therefore, it would 
be useful to build a better DPN prediction model using 
well-structured, large, and balanced datasets. The previ-
ously determined risk factors of DPN include age, diabe-
tes duration, glycosylated hemoglobin, 24-h urine protein 
quantification, and urine protein concentration [24], con-
sistent with our results. Our research has additional new 
findings.

The C2/C0 index represents a protective factor of 
DPN. C2/C0 reflecting the secretory function of pancre-
atic β cells. The higher the C2/C0 value represents the 
higher increase in C-peptide after meals. C-peptide is a 

Fig. 4 Comparison of XGBoost Model Interpretations using SHAP across Different Dataset Splits
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polypeptide released by pancreatic β cells into the blood 
at a concentration equal to that of insulin. Laboratory 
studies have shown that C-peptide can increase endothe-
lial nitric oxide synthase to improve endothelial function, 
blood flow, and neural function [25]. It can also improve 
neural function and structural abnormalities by increas-
ing the activity of nerve Na+/K + ATPase and reduc-
ing Na + retention [26]. Furthermore, it can improve 
the gene expression of nerve growth factor, insulin-like 
growth factor-1, and neurotrophin-3 receptors correct-
ing the mRNA and protein expression of neurofilament 
and tubulin and normalizing the abnormal phosphoryla-
tion of neurofilament [27, 28]. Clinical studies of T1DM 
showed that C-peptide has a good neuroprotective effect 
[29]. As T2DM is related to IR, changes in insulin and 
C-peptide concentrations will occur with the develop-
ment of the disease. Therefore, there is no clear clinical 
evidence of the role of C-peptide in T2DM. Most patients 
in our cohort had T2DM. C2 and C0 were correlated 
with DPN when we started analyzing the data, but they 
were not significant enough. Their importance became 
apparent once they were combined into an index. Our 
finding confirms the neuroprotective effect C-peptide 
has in patients with diabetes and further explains the 
relationship between the secretion function and health of 
pancreatic β cells and DPN.

Total cholesterol protects against DPN in patients with 
diabetes. Total cholesterol is the sum of HDL-C, LDL-C, 
and the small amount of free cholesterol. Cholesterol is 
closely related to nerves and is an indispensable resource 
for myelin sheath development [30]. The myelin sheath 
can ensure the rapid transmission of nerve impulses and 
maintain normal nerve function in the peripheral nerv-
ous system (PNS) [31]. The myelin sheath in the PNS is 
mainly formed by a repeated wrapping of the Schwann 
cell membrane around the axon. Most of the cholesterol 
required to form the myelin sheath is synthesized in the 
endoplasmic reticulum of the neuronal cell body. How-
ever, when a very long axon is damaged away from the 
cell body, the Schwann cells need to take cholesterol 
from the circulation to form the myelin sheath [32, 33]. It 
was suggested that lower serum cholesterol levels might 
hamper peripheral nerve regeneration [34]. It was pro-
posed that nerve swelling due to changes in Schwann 
cell lipid components for lack of cholesterol affects axon 
regeneration after nerve injury [33, 35]. Furthermore, the 
effect of daily medication on the lipid profile in patients 
with diabetes should not be ignored. Most patients with 
diabetes are treated with insulin, which can increase the 
high-density lipoprotein cholesterol (HDL-C) level, but 
not the low-density lipoprotein cholesterol (LDL-C) level 
[36]. Metformin, a commonly used clinical hypoglycemic 
drug, can reduce LDL-C [37]. It was shown that LDL-C 

might cause nerve damage [32, 38, 39] while HDL-C pro-
tects against it [40]. HDL-C or LDL-C alone did not show 
a strong correlation with DPN in this study due to the 
diverse medications used by the patients. However, it can 
be assumed that changes in the lipid profile after diabe-
tes medication use might affect the nerves. In addition to 
hypoglycemic drugs, the intake of statins and the related 
reduction in serum cholesterol level are also associated 
with accelerated deterioration of neurological symptoms, 
microvascular injury, and peripheral nerve fiber injury 
[34, 41, 42]. But in some studies, hyperlipidemia is a risk 
factor for DPN in patients with T2DM [43]. In clini-
cal practice, most patients need medications to control 
blood lipids status. Consequently, a lingering question is 
whether we can predict DPN development based on the 
proportion of cholesterol in blood lipids, considering the 
use of drugs to control blood lipid within a certain range.

HOMA-IR is a predictor of DPN in patients with dia-
betes. It is an index calculated using fasting blood glu-
cose and insulin [44]. HOMA-IR is a good indicator of 
the degree of IR in the body and has been used in large-
scale clinical and epidemiological studies. IR is the main 
internal environment state in patients with T2DM. Neu-
ronal IR can lead to low insulin signaling and induce 
DPN progression. IR reduces the Akt signaling transduc-
tion by destroying insulin signaling in Schwann cells of 
the PNS [45]. Alterations in the Akt signaling pathway 
affect the neuronal mitochondrial function and lead to 
the subsequent increase in oxidative stress [46]. Glucose 
can mediate oxidative stress and promote the progres-
sion of DPN by inducing mitochondrial biogenesis and 
fission [47]. Therefore, the disruption to insulin signal-
ing induced by IR makes the PNS neurons more suscep-
tible to metabolic damage. Moreover, Akt regulates the 
myelination of the PNS nerve fibers by activating Rac1 
to enhance membrane encapsulation and synthesizing 
myelin protein through mammalian target of rapamycin 
complex 1 [48, 49]. The reduction in Akt signaling trans-
duction caused by IR impairs myelination and enhances 
DPN progression. IR was associated with DPN in labora-
tory studies [50], but related clinical data analysis is rare. 
This study was the first to use the HOMA-IR index as an 
indicator and explored the correlation between IR and 
DPN in clinical data.

Our model indicated that aPTT and creatinine were 
protective factors of DPN. aPTT represents the coagu-
lation ability in the body; the lower the value, the more 
likely there is a hypercoagulable state. Therefore, it is 
possible that the nerves have a better blood supply when 
the body is not in a hypercoagulable state, and the bet-
ter blood supply delays the progress to DPN. However, 
considering the obstacles to coagulation in patients with 
diabetes and the few related studies, this conclusion 



Page 10 of 12Lian et al. BMC Medical Informatics and Decision Making          (2023) 23:146 

remains to be explored. Creatinine was mostly associated 
with diabetic nephropathy in studies on diabetic com-
plications. Its association with DPN should be further 
explored as there are too few studies on the topic.

The results obtained by the model helped better under-
stand the importance of each feature to the model’s pre-
diction. Among the indicators detected by the model, 
the ten most closely related to DPN were age, diabetes 
duration, C2/C0, total cholesterol, glycosylated hemo-
globin, HOMA-IR index, aPTT, 24-h urine protein quan-
tification, creatinine, and urine protein concentration. The 
high correlation between age, diabetes duration, and DPN 
further highlighted the importance of early intervention 
to prevent complications in patients with diabetes.

Our study had several limitations that must be con-
sidered. First, all participants had diabetes, so we only 
explored diabetes-related indicators. The prediction 
results could have been different if we had included a 
control group of healthy individuals. Second, we lack the 
collection and analysis of patients’ subjective description. 
These will need to be addressed in future research. Third, 
all the indicators in this study were continuous variables, 
and the data analysis may be segmental. For example, the 
protective effects of aPTT and creatinine on DPN should 
be restricted to a certain threshold range. Future studies 
should focus on the impact of indicators within differ-
ent thresholds. Fourth, the prediction model data came 
mostly from Nanjing, Jiangsu Province. The applicability 
of our results to other regions remains to be verified.

In conclusion, we established a DPN risk prediction 
model, which showed good performance. Through the 
model, we identified the factors most closely related to 
DPN. Our team will address the existing problems and 
strive to establish a better DPN prediction model through 
future research to help doctors quickly and accurately 
judge the corresponding prognosis for improved, reliable, 
and convenient personalized treatment and management 
of patients with diabetes.
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