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Abstract 

Background Signal delineation of a standard 12-lead electrocardiogram (ECG) is a decisive step for retrieving com-
plete information and extracting signal characteristics for each lead in cardiology clinical practice. However, it is ardu-
ous to manually assess the leads, as a variety of signal morphological variations in each lead have potential defects 
in recording, noise, or irregular heart rhythm/beat.

Method A computer-aided deep-learning algorithm is considered a state-of-the-art delineation model to classify 
ECG waveform and boundary in terms of the P-wave, QRS-complex, and T-wave and indicated the satisfactory result. 
This study implemented convolution layers as a part of convolutional neural networks for automated feature extrac-
tion and bidirectional long short-term memory as a classifier. For beat segmentation, we have experimented beat-
based and patient-based approach.

Results The empirical results using both beat segmentation approaches, with a total of 14,588 beats were showed 
that our proposed model performed excellently well. All performance metrics above 95% and 93%, for beat-based 
and patient-based segmentation, respectively.

Conclusions This is a significant step towards the clinical pertinency of automated 12-lead ECG delineation using 
deep learning.

Keywords 12-lead electrocardiogram, Bidirectional long short-term memory, Convolutional neural network, 
Delineation model, ECG waveform, Isoelectric line

Introduction
The assessment of electrocardiogram (ECG) signals’ 
waveform morphology is a crucial step designed to 
assist cardiologists in diagnosing heart diseases [1]. The 
diverse morphology of heart diseases is becoming more 
complicated, making the construction of an automated 

delineation algorithm challenging [2, 3]. ECG delineation 
plays a vital role in providing amplitudes, ranges, dura-
tion, and morphology [4], and it aims to determine the 
location of the peaks and boundaries (onset and offset) 
of three main waveforms (i.e., P-wave, QRS-complex, and 
T-wave) [2].

ECG signals are low bioelectrical signals and are very 
changeable; therefore, some noises may influence the 
characteristics of the signals, such as baseline wander, 
motion artifact, and muscle artifact [2, 5]. This makes 
ECG delineation through visual examination more dif-
ficult for cardiologists [6]. Many works in the literature 
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have explored ECG delineation algorithms based on 
machine learning and digital signal processing [7–13]. 
However, a major limitation is that most previous stud-
ies used only a single-lead or several leads to generate 
the delineation algorithm. Single-lead ECG is commonly 
used for basic heart monitoring, irregular rhythm checks, 
or observation of the effects of exercise on the ECG [14]. 
Hence, single-lead ECG monitoring may less accurately 
measure cardiac electrical activity [15]. In addition, 
another limitation of using single-lead ECG is a lack of 
sufficient validation data in actual clinical practice [16]. 
In our previous study [3, 5, 17], we proposed a state-of-
the-art deep learning (DL) algorithm to classify P-wave, 
QRS-complex, T-wave, and other straight lines or no 
deflection of ECG (isoelectric line) by using a single-
lead, and the study produced outstanding performance 
(above 98% accuracy and precision). However, the model 
could not be properly implemented—as specific diag-
nose, such as myocardial infarction that will show signifi-
cant ST segment elevation, is mandatory established by 
examining the number of leads (12-lead ECG) to observe 
morphological changes, accurate diagnosis and prompt 
therapeutic measures [18].

In realistic clinical settings, 12-lead ECG, includ-
ing six limb leads (I, II, III, aVF, aVR, and aVL) and six 
chest leads (V1, V2, V3, V4, V5, and V6), is a standard 
test performed in primary and intensive care units and 
can provide more valuable information than single-lead 
ECG [19]. The 12-lead ECG is a practical and cost-effec-
tive strategic alternative to routine echocardiography 
[20]. Some heart diseases require a standard 12-lead 
ECG observation because each ECG signal has a different 
heart vector orientation.

Automated computer analysis of standard 12-lead 
ECG has gained significance in the medical diagnosis 
process and is becoming more prevalent growing [21]. 
However, the use of a delineation algorithm for 12-lead 
ECG is still largely unexplored. Conventional algorithms 
based on wavelet transform have been implemented for 
P-wave, QRS-complex, and T-wave detection in 12-lead 
ECG [22]. However, the algorithm lacks feature analysis 
and has a high degree of uncertainty due to the subjective 
measurement aspect. Machine learning (ML) approach, 
which is a subset of DL has also proposed to waveform 
delineation in 12-lead ECG [23, 24]. Unfortunately, ML 
typically requires more ongoing human intervention to 
feature representation. Whereas with ML systems, we 
need to identify the applied features based on the type 
of data, and DL system learns the features without addi-
tional human intervention. The model of DL uses distinct 
layers to learn and discover high-level features from the 
data on its own. In addition, the delineation of 12-lead 
ECG is challenging because the resultant ECG pattern 

may vary when the location of the electrodes on the chest 
wall is varied. Further, the 12-lead ECG delineation may 
not be able to detect the boundary of ECG waveforms, as 
each of the 12-lead ECG represents varying morphology 
and a different direction of cardiac activation in a three-
dimension shape.

To enhance the drawbacks, this study aimed to explore 
an algorithm for delineating 12-lead ECG using an auto-
mated feature extraction method—DL. In our previous 
study [3], the DL has obtained the outstanding results with 
the performance above 98% accuracy and precision for 
single-lead ECG beat delineation. Therefore, in the cur-
rent study, we have improved and adjusted the previous 
model to 12-lead ECG delineation. The DL architecture 
consists of a convolutional neural network (CNN) for fea-
ture extraction and bidirectional long short-term memory 
(bidirectional LSTM/BiLSTM) as a classifier for 12-lead 
ECG. BiLSTM can be learned to use all available input data 
for a specific timeframe in the past and future. Both tech-
niques can enhance the ECG waveform classification per-
formance to automatically extract features from the input 
signals in 12-lead ECG. To the best of our knowledge, we 
are the first to implement and explore automatically high-
level feature representation using DL to delineate 12-lead 
ECG. Our goal was to improve the delineation model with 
automated feature representation to 12-lead ECG. For this 
paper, the main contributions were as follows:

1. Proposing a 12-lead ECG delineation model using 
CNN for feature extraction and BiLSTM as a classi-
fier. The convolution layer of CNN can generate local 
features of the ECG signal sequence to recognize 
regional patterns in the convolution window, and 
BiLSTM appropriates for sequential data processing 
based on forward and backward time steps;

2. Classifying ECG waveforms (i.e., P-wave, QRS-com-
plex, T-wave, and isoelectric line) in two scenarios 
using beat-based and patient-based for 200 record-
ings (patients) with total 14,588 beats;

3. Training, validating and testing the ECG waveforms 
by lead-to-lead with total of 12-lead ECG using beat-
based and patient-based segmentation approach.

Materials and methods
12‑lead ECG
The 12-lead ECG is a standard non-invasive test in cardi-
ology clinical practice [25]. The 12-lead ECG represents 
the recorded electrical activity of the heart from 10 elec-
trodes on the body surface. An electrode is a conductive 
pad that is attached to the skin to record electrical activ-
ity, which is placed on different parts of limb and chest 
of patient. The 12-lead ECG consists of six limb leads (I, 
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II, III, aVR, aVL, and aVF) and six chest leads (V1, V2, 
V3, V4, V5, and V6) [26]. Each of the 12 leads graphically 
describes the electrical activity of the heart. It represents 
a particular orientation in space (right arm, RA; left arm, 
LA; left foot, LL). Table 1 lists the 12-lead ECG electrical 
activity based on the anatomical relations view.

Data preparation
The proposed algorithm was evaluated on the 
Lobachevsky University database (LUDB) of ECG signals, 
which contained 200 records from 200 subjects (healthy 
volunteers and patients with various heart abnormalities) 
[29, 30]. The LUDB had a 10-s 12-lead ECG (I, II, III, aVR, 
aVL, aVF, V1, V2, V3, V4, V5, and V6) digitized at 500 
samples per second. The total of 58,429 annotated waves 
consisted of 16,797 P-waves, 21,966 QRS-complexes, and 
19,666  T-waves. The boundaries and peaks of the ECG 
waveform were manually annotated by two certified and 
practicing cardiologists. The sample plot of 12-lead ECG 
signals is presented in Fig. 1.

Noise removal
Changes in ECG waveforms indicate a cardiac illness 
that may occur for any reason. ECG signals are enhanced 
by eliminating various kinds of noise and artifacts. This 
study proposed discrete wavelet transform, which is a 
frequently used denoising technique that offers a valuable 
option for denoising ECG signals [31, 32]. Some wavelet 
families for ECG signal, such as symlets (sym), daubechies 

(db), and bior, were implemented to identify and analyze 
the type of wavelet that will obtain the best signal denois-
ing result. Increasing the signal-to-noise ratio (SNR) to 
train the DL model is critical. A higher SNR implies bet-
ter and more trustworthy ECG data. Based on the highest 
SNR results, bior wavelet or Bior6.8, was the best wavelet 
function and was chosen for ECG signal denoising. The 
SNR value obtained was 8.44 dB.

Segmentation
The ECG waveforms were segmented beat to beat in sim-
ple way, the process is cutting the ECG signal based on 
the window size and sampling frequency. For each seg-
mented time window, it contains one heartbeat and has 
a length of 512 nodes. Each window size has a start of 
P-wave1 to the start of P-wave2. If one heartbeat is less 
than 512 nodes, we perform zero padding technique by 
adding the value 0 (zero) until the signal has a length of 
512 nodes. The LUDB provided the label annotation 
(ground truth) as waveform onset “(” and offset “)” anno-
tations for P-wave, QRS-complex, and T-wave, respec-
tively. If the annotation doesn’t provide the label onset 
“(” and offset “)”, the beats segmentation are excluded. A 
total of 58,429 annotated waves were selected to generate 
the DL model as ground truth.

Deep learning model
In our previous study [3], we generated the stacked con-
volutional layer and BiLSTM model for single-lead ECG 

Table 1 The 12-lead ECG electrical activity [27, 28]

Lead Electrical activity Anatomical relations 
view

I LA-RA Lateral surface

II LL-RA Inferior surface of heart. 
P-wave mostly clear, 
and commonly used 
to observe the rhythm 
strip.

III LL-LA Inferior surface of heart

aVR RA-average of (LA + LL) Right atrium and left 
ventricle cavity

aVL LA-average of (RA + LL) Lateral surface

aVF LL-average of (LA + RA) Inferior surface of heart

V1 V1 - average of (LA + RA + LL) Anterior surface, right 
atrium and left ventricle 
cavity

V2 V2 - average of (LA + RA + LL) Anterior surface

V3 V3 - average of (LA + RA + LL) Anterior surface

V4 V4 - average of (LA + RA + LL) Anterior surface

V5 V5 - average of (LA + RA + LL) Lateral surface

V6 V6 - average of (LA + RA + LL) Lateral surface
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delineation using the QT database. In the current study, 
we adjusted the model for the 12-lead ECG signal using 
LUDB. The convolution layers can extract deep features 
from ECG signal data points, and BiLSTM with forward 
and backward schemes help us learn from future and 
previous representations. We have trained the all beats 
from the start of P-wave1 to the start of P-wave2 for each 

lead (lead-by-lead). The rectified linear unit function 
(ReLU) was adopted with the convolution layer (8, 16, 
32, 64, 128, 256, 512, 1024, and 2048 filters). We gen-
erated the 13 DL models using the convolution layers, 
LSTM and BiLSTM. Each fine-tuned hyperparameter of 
the 13 models is listed in Table  2. We fine-tuned—fol-
lowed by applying varying convolution layers, from 1 

Fig. 1 Samples of sinus rhythm in 12-lead ECG signals of LUDB

Table 2 Hyperparameter tuning of models

Model Hyperparameters

Layer Batch Size Learning rate

1 Convolution 8 × 3, strides = 1 + ReLU - LSTM 8 10–5

2 Convolution 8 × 3, 16 × 3, strides = 1 + ReLU - LSTM

3 Convolution 8 × 3, 16 × 3, 32 × 3, strides = 1 + ReLU - LSTM

4 Convolution 8 × 3, 16 × 3, 32 × 3, 64 × 3, strides = 1 + ReLU - LSTM

5 Convolution 8 × 3, strides = 1 + ReLU - BiLSTM

6 Convolution 8 × 3, 16 × 3, strides = 1 + ReLU - BiLSTM

7 Convolution 8 × 3, 16 × 3, 32 × 3, strides = 1 + ReLU - BiLSTM

8 Convolution 8 × 3, 16 × 3, 32 × 3, 64 × 3, strides = 1 + ReLU - BiLSTM

9 Convolution 8 × 3, 16 × 3, 32 × 3, 64 × 3, 128 × 3, strides = 1 + ReLU - BiLSTM

10 Convolution 8 × 3, 16 × 3, 32 × 3, 64 × 3, 128 × 3, 256 × 3, strides = 1 + ReLU - BiLSTM

11 Convolution 8 × 3, 16 × 3, 32 × 3, 64 × 3, 128 × 3, 256 × 3, 512 × 3, strides = 1 + ReLU - BiLSTM

12 Convolution 8 × 3, 16 × 3, 32 × 3, 64 × 3, 128 × 3, 256 × 3, 512 × 3, 1024 × 3, strides = 1 + ReLU - BiLSTM

13 Convolution 8 × 3, 16 × 3, 32 × 3, 64 × 3, 128 × 3, 256 × 3, 512 × 3, 1024 × 3, 2048 × 3, strides = 1 + ReLU - BiLSTM
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to 4 with the LSTM classifier (Models 1–4) and 1 to 9 
with the BiLSTM classifier (Models 5–13). All models 
were trained over 300 epochs, with a batch size of 8, a 
learning rate of  10–5, and categorical cross-entropy as 
the loss metric.

Among the hyperparameter-tuned models, the best 
model was Model 11. The pseudocode algorithm of 
the best model can be seen in Algorithm 1. The seven 
convolution layers and BiLSTM architecture were pro-
posed as the ECG waveform classification model. The 
model takes the ECG signals as input and output multi-
class classification (P-wave, QRS-complex, T-wave, and 
isoelectric line). The proposed network architecture is 

represented in Fig.  2. As shown in Fig.  2, the network 
consisted of seven convolution layers with varying filter 
numbers (8, 16, 32, 64, 128, 256, and 512 filters) and a 
kernel size of 3 to extract features. Convolution layers 
were used to automatically extract features and gen-
erate feature maps [33]. Feature maps were convolved 
by a trained kernel or filter and represent the intensity 
of ECG waveform features. A waveform with a similar 
intensity can be classified into the same class. Rectified 
linear unit layers performed nonlinear activation. The 
softmax function returns a probability of class mem-
bership for each class label, attempting to best approxi-
mate the predicted target for each input.

Fig. 2 The proposed methodology of the 12-lead ECG delineation model
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Algorithm 1. The pseudocode of CNN-BiLSTM

Results and discussion
For this experiment, we segmented the waveform by 
beat-to-beat (start of P-wave1 to start of P-wave2) for 
each lead ECG. For the segmentation of beats, we have 
experimented based on two approaches: beat-based and 
patient-based. In this study, both approaches have be 
done to analyze the consistency of the performance set 
(training, validation and testing (unseen)) to avoid data 
leakage problems. The total of 200 records have randomly 
segmented (beat-to-beat segmentation). The total beat 
was 14,588 beats. For beat-based segmentation, the total 
of beats are consisting of 11,666 beats for training, 1,749 
beats for validation, and 1,173 beats for testing (refer to 

Table 3). In addition, for patient-based segmentation, the 
total of beats are consisting of 13,331 beats for training, 
645 beats for validation, and 621 beats for testing (refer 
to Table 4). We have used patients 1–180 as training set, 
patients 181–190 as validation set, and patients 191–200 
as testing set. We have trained, validated and tested all 
beats for each lead (lead-by-lead).

The testing set was used as an unseen set because it 
showed model data that had never been seen before. The 
total number of beats segmentation is different due to 
only ground truth that provided the annotations wave-
form onset “(” and offset “)” are included. There are some 
unannotated waves. Also, some abnormal morpholo-
gies changes of ECG waveform, such as only upwards, 
only downwards, biphasic negative-positive, or biphasic 
positive-negative have affected the bias of total number 
of beats segmentation. For ECG waveform classification 
for 12-lead ECG signal, we used some performance met-
rics, such as accuracy (ACC), sensitivity (SEN), specific-
ity (SPE), precision (PRE), and F1-Score (F1). As stated 
before, this study used 13 deep learning models for clas-
sification tasks.

Beat‑based segmentation
To generate the best model, we firstly experimented a 
beat-based segmentation approach and implemented 
the ACC, SEN, SPE, PRE, and F1 for the results of the 
13 models (Table  5). Table  5 presents the performance 
results of 13 models with different hyperparameters. As 
shown in Table 5, the results of ACC, SEN, SPE, PRE, and 
F1 became higher as the convolution layers increased. 
LSTM was implemented in Models 1–4, and the highest 

Table 3 The total of P-wave1 to start of P-wave2 beat-based segmentation from 12-lead ECG signals

Data Total number of beats segmentation

I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Training set 976 973 978 975 976 975 967 965 970 967 973 971

Validation set 147 146 147 146 146 146 145 145 145 145 146 145

Testing set 98 98 98 98 98 98 97 97 98 97 98 98

Total Beats 1221 1217 1223 1219 1220 1219 1209 1207 1213 1209 1217 1214

Table 4 The total of P-wave1 to start of P-wave2 patient-based segmentation from 12-lead ECG signals

Data Total number of beats segmentation

I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Training set (patients 1 - 180) 1116 1112 1118 1114 1115 1114 1104 1102 1108 1104 1113 1111

Validation set (patients 181 – 190) 54 54 54 54 54 54 54 54 54 54 53 52

Testing set (patients 191 – 200) 51 51 51 51 51 51 51 51 51 51 51 51

Total Beats 1221 1217 1223 1219 1220 1219 1209 1207 1213 1209 1217 1214
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ACC and PRE obtained were 98.05% and 93.06%, respec-
tively. However, when the classifier was modified to BiL-
STM, the highest results, 98.82% for ACC and 95.94% 
for PRE, were achieved (Model 11). The results seemed 
slightly insignificant when the eight and nine convolution 
layers were added (Models 12 and 13). Therefore, we pro-
posed Model 11 as the best model for 12-lead ECG wave-
form classification in this study.

Figure 3 shows the 12-lead ECG performance results of 
Model 11 (the best model). As shown in Fig. 3a, we tested 
the best model with validation data (1749 beats) and 
found that the performance results of each lead showed 

no significant difference (above 93%). However, the high-
est precision and accuracy were achieved by the chest 
lead and lead V3 (99.03% and 96.53%, respectively). Also, 
lead V3 had good performance in all metrics. The good 
performance of lead V3 shows a nonspecific sign that a 
wide variety of ECG abnormalities, such as right bundle 
branch block due to inverted T-waves, could occur. Com-
monly, lead V3 is placed diagonally between leads V2 and 
V4. The ECG morphology of lead V3 observes the ante-
rior wall of the left ventricle and is therefore named the 
anterior lead.

Furthermore, the worst performance result of the 
12-lead ECG was lead III. The sensitivity and preci-
sion were only 93.84% and 94.78%, respectively. We had 
a challenge observing lead III, as its morphology was 
inverted almost the entire length of the ECG recording 
(refer to Fig. 1). Lead III kept track of the inferior aspect 
of the left ventricle. Figure 3b shows that model 11 was 
also tested using testing data (unseen). A total of 1173 
beats were tested as unseen data. Like the results of the 
validation data, the testing data results showed no dif-
ference, and the performance result was above 93%. The 
best performance was also achieved by the chest lead 
(V3–V5), while the worst was lead III. Since the results 
of the chest lead outperformed the limb lead, this may 
reveal posterior ST-segment elevation myocardial infarc-
tion (STEMI).

The confusion matrix (CM) has visualized to measure 
the performance of actual and predicted values (refer to 
Fig.  4). Each diagonal element of CM represents a suc-
cessfully classified result. The off diagonals of the CM 
show the misclassified results. In light of this, the ideal 
classifier will have a CM with just diagonal members and 

Table 5 The performance results of 13 hyperparameters tuning 
models (beat-based segmentation)

Model Performance (%)

ACC SEN SPE PRE F1

1 97.43 90.99 98.29 90.95 90.95

2 97.77 91.80 98.51 91.96 91.85

3 97.92 92.11 98.60 92.63 92.34

4 98.05 92.73 98.70 93.06 92.86

5 98.23 93.64 98.80 93.98 93.80

6 98.31 94.01 98.86 94.20 94.10

7 98.47 94.66 98.98 94.69 94.67

8 98.59 95.11 99.06 95.06 95.07

9 98.70 95.33 99.12 95.56 95.44

10 98.78 95.65 99.18 95.84 95.74

11 98.82 95.93 99.21 95.94 95.93

12 98.74 95.63 99.16 95.52 95.56

13 98.70 95.33 99.12 95.56 95.44

Fig. 3 The performance results of 12-lead ECG from the best model to the validation and testing set (beat-based)
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all other values set to 0. Figure 4 shows the most misclas-
sified occurs in isoelectric line, which falsely classified as 
P-wave, QRS-complex and T-wave and vice versa. How-
ever, among the P-wave and QRS-complex, the T-wave 
has the highest misclassified in all ECG 12-lead. The 
detection of T-wave is arduous due to the low amplitude, 
varying morphology (inverted, upwards, downwards, or 
biphasic T-wave) and its overlapping with P-wave. The 
minimal error of T-wave classification occurs mostly in 
lead I, II, and V2 – V5. T-wave represent the ventricular 

repolarization, and normal T-waves are upright in those 
leads.

To present the performance results of each ECG wave-
form class (i.e., P-wave, QRS-complex, T-wave, and iso-
electric line), we used the boxplot (also called a box and 
whisker plot) to display the distribution of the results 
based on the minimum, first quartile (Q1/25th percen-
tile), median (the second quartile, Q2/50th percentile), 
third quartile (Q3/75th percentile), interquartile range 
(IQR), and maximum. Figure  5 shows that the values 

Fig. 4 The confusion matrix of the best model in the ECG 12-lead performance
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in the performance results were spread out. Leads I–
III were achieved around a minimum of 86% PRE, and 
around 91% PRE in leads aVR, aVL, and avF. In chest 
leads (V1–V6), the performance changes were signifi-
cant, with a minimum of 95% PRE. All boxplots of each 
lead do not suspect any anomalies due to errors in data 

collection. To reduce or remove outliers, the whisker on 
the appropriate side was drawn to 1.5 IQR rather than 
the data minimum or maximum.

The result of the best model that shows the ground 
truth and the proposed CNN-BiLSTM model in testing 
data (unseen) is presented in Fig. 6. The ground truth is 

Fig. 5 The boxplot of P-wave, QRS-complex, T-wave, and isoelectric line performance in 12-lead ECG
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the ECG boundary of LUDB annotation from two car-
diologists. Figure  6 shows that the error of delineation 
tends to be T-wave (yellow color) misclassified. T-wave 
represents ventricles repolarization and, basically, is dif-
ficult to detect, which is why a rather comprehensive dis-
cussion is needed. The P-wave (red color) indicates atrial 

depolarization and is mostly clear in lead II. In addition, 
QRS-complex (blue color) shows outstanding perfor-
mance in almost all chest leads.

As seen in Fig.  6, the classification of ECG waveform 
boundary in 12-lead ECG is a challenging task. The 
morphological characteristic of each lead affects the 

Fig. 6 The comparison ECG waveform classification between ground truth and proposed CNN-BiLSTM model based on testing data (beat-based 
segmentation)
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delineation performance. Each lead represents the dif-
ference in electrical potentials measured at two points in 
space. Leads I, II, III, aVR, aVL, and aVF provide the 12 
perspectives of the activity of the heart through the fron-
tal plane, while the rest of the leads record the voltages of 
the heart onto the horizontal plane. The degree of mor-
phological changes is determined by the ECG lead, the 
amount of the shift, the direction of displacement, and 
the ECG segment chosen for analysis.

Patient‑based segmentation
The hyperparameters tuning of Model 11 have 
retrained and experimented to a patient-based seg-
mentation. With the same hyperparameters tuning, 
the performance results of patient-based segmenta-
tion can be presented in Fig. 7. Figure 7 presented the 
results of ACC, SEN, SPE, PRE and F1 from patient-
based segmentation. Compared to the performance 
results of beat-based, beat-based segmentation out-
performed patient-based segmentation even using the 
same hyperparameters. The average ACC of 12-lead 
achieved 93.72% for testing set, smaller than ACC of 
beat-based segmentation that was achieved 95.89%. 
Also, the performance results of SEN, SPE, PRE and 
F1 were decreased. In clinical practice, the character-
istics of ECG signals in each patient are different. The 
varying ECG morphology of each patient can be con-
sidered, due to LUDB has varying heart rhythm types 
with related to heart disorders. The visualization of 
ECG waveform classification using testing set (unseen) 
can be presented in Fig.  8. Regardless of beat-based 
and patient-based segmentation, the performance 

results are well-performed with the ACC, SEN, SPE, 
PRE and F1 above 93%. We concluded both models can 
be implemented for delineation task. However, from 
the results comparison, the beat-based segmentation 
approach can be proposed in this study.

This investigation compares the proposed CNN-BiL-
STM to other recurrent network algorithms, i.e., gated 
recurrent unit (GRU, bidirectional GRU (BiGRU) and 
unidirectional LSTM. They have been used as classifiers 
for ECG waveform classification in 12-lead ECG. The 
results are presented in Table  6. The varying results of 
all performance results are not significant; they ranged 
between 92.41% to 99.21%. However, the proposed BiL-
STM classifier outperformed other recurrent network 
algorithms (GRU, BiGRU, and LSTM) for this investi-
gation. In some cases, LSTM achieved more powerful 
results if compared to GRU though GRU has a simpler 
architecture with two gates (update and reset gates). It 
can be shown the proposed CNN-BiLSTM is worthy of 
to 12-lead ECG delineation task.

The proposed CNN-BiLSTM model also can be com-
pared to other DL architectures as shown in Table  7. 
Previous studies have implemented a single-lead or 
multiple-leads to classify ECG waveform (i.e., P-wave, 
QRS-complex, and T-wave) using LUDB [34–37]. 
Some studies proposed U-Net architecture for auto-
matic ECG delineation [34, 36]. Chen et  al. [34] pro-
posed U-Net architecture, which the encoder and 
decoder are being the main components of the pro-
posed architecture. They have segmented the P, QRS, 
and T-waves using a single lead and achieved the 
sensitivities 99.88%. Moskalenko et  al. [36] have also 

Fig. 7 The performance results of 12-lead ECG from the best model to the validation and testing set (patient-based)
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experimented U-Net architecture, which used two 
convolution layers and connected sequentially with 
MaxPooling layers. Their work used a lead II (sin-
gle lead), and obtained the average of sensitivity and 
precision for the P, QRS, and T-waves are 99.23% and 
98.99%, respectively.

Liu et  al. [35] have proposed other architecture of 
CNN, ResNet, and hybrid to LSTM for P, QRS, and 
T-waves classification in a single lead. They experi-
mented many kinds of ECG database, such as QTDB, 
LUDB, MITDB and BUT PDB. They used four convo-
lution layers with the varying kernel size (4, 6, and 8). 

Fig. 8 The comparison ECG waveform classification between ground truth and proposed CNN-BiLSTM model based on testing data (patient-based 
segmentation)
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LSTM layer is connected to the residual network for 
achieving deep features. The proposed hybrid neural 
network has obtained the average of 99.83% sensitiv-
ity. Jimenez-Perez et  al. [37] have explored the W-Net 
architecture, which it is the application of a second 
U-Net whose input is the output of the first U-Net. They 
have solved the issue of performance and complexity 
trade-off by using the efficient channel attention (ECA) 
mechanism. They experimented the ECG delineation 
task in single and multi-lead approach. For single lead, 
the precision of P, QRS, and T waves achieved 99.27%, 
99.31% and 98.73%, respectively. However, when they 
applied the proposed model in multi-lead, the precision 
decreased to 98.90%, 99.24% and 98.24%, for P, QRS, 
and T-waves, respectively.

These works showed their proposed ECG delinea-
tion model is well-performed, however the scope of 
experimental study limited to the use of single lead ECG 
(mostly lead II). Also, in other perspective of the use of 
CNN in those studies, specifically for the convolution 
layers are excellent for feature extraction. Convolution 
layers may take advantage of any existing spatial and tem-
poral patterns in the data.

Therefore, this study implemented the convolutional 
layers and BiLSTM to classify the 12-lead ECG wave-
form boundary. Also, it can be a preliminary task to 
develop and improve ECG delineation performance in 
cardiology clinical practice. The treatment of ECG sig-
nal processing in single and 12-lead ECG is different. 

The 12-lead ECG delineation is a more challenging task 
due to varying lead morphology. The repolarization and 
depolarization of ECG waveform can be arduous to han-
dling. In this study, we have only experimented a single 
ECG database (LUDB), which has a single frequency 
sampling (FS). The proposed model has not been gener-
alized to other 12-lead ECG databases due to the avail-
ability of data being limited. It can be our limitation for 
a preliminary task to generate the automatic 12-lead 
ECG delineation. The varying 12-lead ECG database can 
be explored for the future, with varying noise-handling 
technique and FS.

Conclusion
The automatic delineation of the ECG main waveform 
in 12-lead ECG poses a challenge due to the charac-
teristics of morphology appearance in each lead. By 
examining changes in ECG signal morphology, cardi-
ologists can observe multiple heart disease processes. 
This study aimed to explore and improve the deline-
ation model using the DL algorithm to classify the 
P-wave, QRS-complex, T-wave, and isoelectric line 
in a standard 12-lead ECG. This study generated the 
13 hyperparameter tuning models and identified the 
best models using convolutional layers and BiLSTM. 
Also, for beat segmentation, we have experimented a 
beat-based and patient-based segmentation. The per-
formance results were achieved above 95% ACC, SEN, 
SPE, PRE, and F1-score for beat-based segmentation. 
In addition, for patient-based segmentation approach, 
the performance results were achieved above 93% 
ACC, SEN, SPE, PRE, and F1-score. The perfor-
mance results of beat-based segmentation outper-
formed the patient-based segmentation. Regardless 
of both performance results, any beat segmentation 
approach can be considered. The results can be pro-
posed for a preliminary task to 12-lead ECG delinea-
tion. ECG examinations might be misinterpreted due 
to inaccuracies in electrode placement and variances 
in interindividual human anatomy. In the future, 
the unsupervised learning approach by training the 

Table 6 The performance results of recurrent network 
algorithms

Algorithms Performance Results (%)

ACC SEN SPE PRE F1

GRU 98.13 93.02 98.82 93.20 93.06

BiGRU 98.53 94.83 99.08 94.38 94.56

LSTM 98.03 92.41 98.75 93.20 92.75

BiLSTM 98.82 95.93 99.21 95.94 95.93

Table 7 Comparison of the results of the delineation model to other DL architectures

Authors Dataset Lead Class Method Performance Results (%)

ACC SEN SPE PRE F1

Chen et al. [34] LUDB 1 4 U-Net - 99.88 - - -

Liu et al. [35] LUDB 1 3 ResNet and LSTM - 99.83 - - -

Moskalenko et al. [36] LUDB 1 3 U-Net - 99.23 - 98.99 99.06

Jimenez-Perez et al. [37] LUDB Multi-lead 3 W-Net - 99.93 - 99.87 -

Proposed study LUDB 12 4 CNN‑BiLSTM 98.82 95.93 99.21 95.94 95.93
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network to remove ECG noise can be explored to 
replace the conventional wavelet transform. Also, the 
standard 12-lead ECG can be generalized for mor-
phological changes diagnosis, not only limited to sin-
gle-lead observation.
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