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Abstract
Background Early identification of dementia is crucial for prompt intervention for high-risk individuals in the 
general population. External validation studies on prognostic models for dementia have highlighted the need for 
updated models. The use of machine learning in dementia prediction is in its infancy and may improve predictive 
performance. The current study aimed to explore the difference in performance of machine learning algorithms 
compared to traditional statistical techniques, such as logistic and Cox regression, for prediction of all-cause dementia. 
Our secondary aim was to assess the feasibility of only using clinically accessible predictors rather than MRI predictors.

Methods Data are from 4,793 participants in the population-based AGES-Reykjavik Study without dementia or mild 
cognitive impairment at baseline (mean age: 76 years, % female: 59%). Cognitive, biometric, and MRI assessments 
(total: 59 variables) were collected at baseline, with follow-up of incident dementia diagnoses for a maximum of 
12 years. Machine learning algorithms included elastic net regression, random forest, support vector machine, and 
elastic net Cox regression. Traditional statistical methods for comparison were logistic and Cox regression. Model 1 
was fit using all variables and model 2 was after feature selection using the Boruta package. A third model explored 
performance when leaving out neuroimaging markers (clinically accessible model). Ten-fold cross-validation, 
repeated ten times, was implemented during training. Upsampling was used to account for imbalanced data. Tuning 
parameters were optimized for recalibration automatically using the caret package in R.

Results 19% of participants developed all-cause dementia. Machine learning algorithms were comparable in 
performance to logistic regression in all three models. However, a slight added performance was observed in the 
elastic net Cox regression in the third model (c = 0.78, 95% CI: 0.78–0.78) compared to the traditional Cox regression 
(c = 0.75, 95% CI: 0.74–0.77).

Conclusions Supervised machine learning only showed added benefit when using survival techniques. Removing 
MRI markers did not significantly worsen our model’s performance. Further, we presented the use of a nomogram 
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Introduction
Dementia is characterized by debilitating cognitive 
impairment that increases the risk of mortality [1], while 
quality of life decreases for both the patient and his or her 
caregivers. Currently, 50 million people in the world have 
dementia, which is expected to triple by 2050 [2]. While 
much research has been done on the risk factors for 
dementia, no effective treatment is available [3]. Further, 
by the time of diagnosis, the brain has already substan-
tially declined in function [4]. Thus, early classification is 
crucial for prompt intervention and better outcomes for 
high-risk individuals. Many prognostic models for inci-
dent dementia have been developed using ‘traditional’ 
statistical techniques, such as logistic or Cox regres-
sion [5–8]. However, external validation of these models 
showed poor calibration and performance [9, 10], high-
lighting the need for updated models for prognostication 
of dementia. The recent increased application of machine 
learning for disease prediction offers the possibility to 
improve dementia prognostic models. Machine learning 
can aid in unraveling complex relationships between pre-
dictors, taking into account nonlinear relationships and 
interactions, while additionally using that information to 
increase a model’s predictive performance [11].

Research thus far using machine learning for dementia 
prediction is in its infancy and current models primar-
ily focus on magnetic resonance imaging (MRI) for pre-
diction (please see these recent reviews for an overview 
[12–14]). Some studies have explored demographic fac-
tors [15, 16] and plasma proteomic data [17–19], but no 
studies have yet also explored some commonly assessed 
biomarkers (e.g., glucose, cholesterol, blood pressure) 
along with demographic and lifestyle information in 
dementia prediction using machine learning classifiers 
[12]. A recent review also highlighted the need for the 
development of new prognostic models for dementia 
that focus on clinical variables over imaging variables 
[12]. An emphasis on predictors that are more clinically 
accessible than MRI is crucial for the potential future use 
of prognostic models for dementia in clinical practice. 
Focusing on accessible predictors will allow for wider 
generalizability of the assessment of high-risk individuals 
for dementia into the general population. It follows the 
order and flow of the diagnostic process, by focusing first 
on cheaper, less invasive, and potentially more accessible 
predictors in a general practice setting, the starting point 
for a patient, as opposed to in a memory clinic.

Previous studies using machine learning methods have 
mostly used the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) cohort for algorithm testing [12], with 
relatively limited sample sizes (i.e., less than 1,000 par-
ticipants). Discrimination has focused on differentiating 
mild cognitive impairment [15] from Alzheimer’s disease 
[12], the leading cause of dementia. Further, most stud-
ies that implemented machine learning methods did not 
take class imbalance into account [12], which focuses 
on negative predictive value over positive predictive 
value and introduces possible bias. As previous studies 
have also focused on cohorts that have more cases than 
controls, the possible generalizability of the prognostic 
model decreases [14]. Therefore, there is a current gap in 
developing a dementia risk model using machine learn-
ing for the general population, using a large sample size.

Our research questions were the following: (1) What is 
the added performance of machine learning algorithms 
(i.e., elastic net regression, random forest, support vector 
machine) for dementia prognosis compared to traditional 
statistical techniques (e.g., logistic and Cox regression) in 
a large, population-based cohort from Reykjavik, Iceland 
of almost 5,000 individuals without dementia or mild 
cognitive impairment (average age: 76 years, 69% female, 
29% with college/university level education)? (2) What 
is the difference in performance when focusing only on 
clinically accessible predictors? (3) What is the differ-
ence in performance when assessing women and men 
separately?

Methods
This study was reported following the Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis (TRIPOD) Statement [20].

Study sample
Data originated from the Age, Gene/Environment Sus-
ceptibility (AGES)-Reykjavik Study, a community-based 
cohort study of individuals 65 years or older living in the 
Reykjavik area. More details are provided elsewhere [21]. 
In brief, participants from the AGES-Reykjavik Study 
stem from the Reykjavik study, initiated in 1967 by the 
Icelandic Heart Association. Between 2002 and 2006, 
5,764 individuals randomly selected from survivors of 
the Reykjavik Study were included. Baseline cognitive, 
biometric, and MRI assessments were done at the Reyk-
javik research center. Individuals with dementia or mild 
cognitive impairment at baseline were excluded from the 

using machine learning methods, showing transportability for the use of machine learning models in clinical practice. 
External validation is needed to assess the use of this model in other populations. Identifying high-risk individuals will 
amplify prevention efforts and selection for clinical trials.
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current analysis, leaving 4,793 individuals in the analyti-
cal sample. Cognitive, biometric, and MRI assessments 
were done at baseline between 2002 and 2006, with fol-
low-up of incident dementia diagnoses for a maximum 
of 12 years. Written informed consent was obtained from 
all participants. The Icelandic National Bioethics Com-
mittee (VSN: 00–0063), the Icelandic Data Protection 
Authority, and the Institutional Review Board for the 
National Institute on Aging, NIH approved this study.

Dementia assessment
Details regarding the procedure for dementia ascertain-
ment can be found elsewhere [22–24]. In brief, a three-
step procedure based on international guidelines [21] 
was used. First, all participants underwent neuropsycho-
logical testing of cognition using the Mini-Mental State 
Examination (MMSE) and the Digit Symbol Substitu-
tion Test [23], with the next step in those who screened 
positive undergoing further neuropsychological exami-
nation. In the third step, in those who screened positive 
on the neuropsychological examinations, further proxy 
and diagnostic assessments were performed regarding 
the Activities of Daily Living (ADL), as well as social and 
cognitive functioning. Then, a multidisciplinary panel 
including a neurologist, geriatrician, neuroradiologist, 
and neuropsychologist performed a consensus diagno-
sis that included exam measures and brain MRI [24]. 
Additional dementia cases were also obtained through 
medical and nursing home records as well as in death 
certificates. Dementia cases obtained through nursing 
homes were collected following a standardized proto-
col in Icelandic nursing homes [25]. The current study 
focused on all-cause dementia only.

Demographics
Age (continuous), sex (dichotomous), education (cate-
gorical; categorized as primary school, secondary school, 
college, or university), and current marital status (mar-
ried/living together, widowed, divorced, single) were col-
lected by questionnaire at baseline.

Clinical variables
A wide range of clinical variables were used, including 
metabolic, lipid, and inflammatory levels, as well as med-
ical diagnoses (more information in Supplementary Info 
1).

Medication use
Medication use was treated as dichotomous (yes/no) for 
benzodiazepines, beta-adrenergic blockers, glucocorti-
coids, psycholeptics, or anti-depressants.

Lifestyle variables
We included the following continuous variables: alcohol 
consumption, mental leisure activity (days per month), 
social leisure activity (days per month), number of close 
friends, and number of living close relatives. The categor-
ical variables we included are as follows: smoking status 
(current, former, never), physical activity within the last 
12 months (never, rarely, occasionally, moderate, high), 
difficulty in walking 2 km (very easy, somewhat easy, not 
that easy), difficulty in walking 500 m (very easy, some-
what easy, not that easy), and how often fish is consumed 
as the main meal (never, less than once a week, 1–2 times 
a week, 3–4 times a week, 5–6 times a week, daily, more 
than once a day).

Cognitive assessment
The raw total score of the test of global cognitive func-
tion, the MMSE, was the only variable used to assess 
cognition.

Neuroimaging variables
MR images were collected using 1.5T brain MRI (Signa 
TwinSpeed; General Electric Medical Systems). For more 
information on the MRI protocol, refer to [26–28]. Log-
transformed white matter lesion volume and hippocam-
pal volume, as well as the ratio of gray matter/intracranial 
volume (to account for correlation), and the number of 
cerebral microbleeds were entered as continuous predic-
tors. The presence of infarcts (yes/no) was entered as a 
dichotomous variable.

Statistical analyses
All analyses were performed in R (v 4.0.3). Before begin-
ning the analyses, data were split into a two-thirds 
(proportion: 0.66) training set and a one-third test set, 
ensuring for balanced incident dementia cases in the 
train/test sets by using the split_df() function in R.

Sample size calculations
We performed a post-hoc sample size calculation using 
pmsampsize package in R to calculate the number of 
events/cases required using logistic regression as best-
case-scenario [29]. If all predictors are included, the 
required sample size is at least 1,691, which is less than 
the current sample of 4,793.

Missing data
Half of the individuals (55%) had at least one miss-
ing value on predictors (max: 27% missing on ability to 
walk 2  km or 500  m). There were no missing values on 
the outcome (i.e., dementia). Missing data were handled 
with multiple imputation using the mice package in R 
separately in the training and test sets using ten imputed 
datasets. The predictor matrix for the training set was 
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used for imputation in the test set. All predictors as well 
as the outcome were used in the imputation process. A 
random imputed dataset from a total of ten was selected 
for further analyses for both the training and test sets as 
pooling methods for machine learning prognostic models 
have yet to be validated. See Supplementary Table 1 for 
an overview of predictors and outcome in both training 
and test sets.

Model building
The caret package in R [30] was used for all prediction 
models, i.e. elastic net regression, random forest, support 
vector machine, and logistic regression. To take time-to-
event and censoring into account, we also performed a 
regular Cox regression using the glmnet package [31] and 
elastic net Cox regression using the hdnom package [32] 
in R. For the support vector machine classifier, a radial 
kernel was used to allow for nonlinear separations of the 
data. Hyperparameter tuning was performed automati-
cally by caret. Pseudocode can be found in Supplemen-
tary Code 1. The models were first fitted with all features 
(model 1). Then, models were fit after feature selection 
using the Boruta package in R [33] for more parsimoni-
ous models (model 2). In short, Boruta uses a random 
forest classifier and applies mean decrease accuracy to 
evaluate each feature’s importance based on 99 iterations. 
Tentative features were not included. Lastly, to evalu-
ate a clinically accessible model (i.e., one that does not 
include MRI features), models were fit only with features 
selected from Boruta that were not MRI (model 3). Tun-
ing parameters were optimized for recalibration and var-
ied across all three models (Supplementary Table 2).

Internal validation
Using cross-validation, more variability is introduced 
into the training of each classifier. Ten-fold cross-valida-
tion, repeated ten times, for a total of 100 times, was used 
in training each machine learning algorithm. The training 
data are divided into ten folds, with the given classifier 
trained on nine folds, using the tenth for testing. This is 
repeated until each of the ten folds is held back for test-
ing. The performance metrics are then averaged across 
all repetitions. Further, upsampling was performed to 
handle imbalanced data and was implemented during 
cross-validation. This is done by resampling with replace-
ment our class with incident dementia (i.e., the minority 
class) to be the same size as those who do not develop 
dementia (i.e., the majority class). If models failed to con-
verge with upsampling, downsampling was used, which 
deletes samples from the majority class (i.e., those who 
do not develop dementia). Additionally, we tested differ-
ent thresholds for classification other than 0.5, ranging 
from 0.10 to 0.90 by steps of 0.02.

Performance metrics
The following performance measures were used to assess 
the models: area under the receiver operating charac-
teristic (ROC) curve (AUC), sensitivity, specificity, posi-
tive predictive value, and negative predictive value. The 
model with the highest AUC was then used for the test 
set. For the survival models, the c-statistic was used. 
C-statistics and AUC values are comparable to assess 
performance. The MLeval package in R was used to cal-
culate 95% confidence intervals. Bootstrapping using the 
hdnom package was done to calculate 95% confidence 
intervals in the elastic net Cox regression models. The 
hdnom package was used to create calibration plots for 
the elastic net Cox regression as well as to create a clini-
cally relevant nomogram.

Sensitivity analysis
To assess if the prognostic model has similar perfor-
mance in men and women, the trained model in both 
sexes was tested on men and women separately.

Results
During an average of 9 ± 3 years of follow-up, 892 (n = 750 
from nursing homes) individuals developed dementia. 
Mean (SD) age at baseline for all participants was 76 
[6] years and 59% were female. Demographic and clini-
cal information for the full study sample on all predictor 
variables and the outcome are shown in Table 1.

Model performance
Logistic regression (AUC = 0.73, 95% CI: 0.71–0.75) had 
a similar AUC to the elastic net regression (AUC = 0.74, 
95% CI: 0.72–0.76) and random forest classifiers 
(AUC = 0.74, 95% CI: 0.72–0.76) in model 1 (i.e., the full 
model), as well as in the model after feature selection and 
after removal of neuroimaging variables (Table  2). Sup-
port vector machine showed lower performance com-
pared to all other machine learning classifiers and the 
logistic regression. Both logistic regression and the elas-
tic net regression had the same performance in model 
3 without neuroimaging variables (AUC = 0.71, 95% CI: 
0.68–0.74) (Table 2).

When taking time-to-event into account with the elas-
tic net Cox model, the c-statistic was high (c = 0.80, 95% 
CI: 0.79–0.80) in model 1 and higher than the tradi-
tional Cox model (c = 0.78, 95% CI: 0.77–0.79). The same 
c-statistics and confidence intervals were seen in model 
2. Performance slightly lowered in model 3, but the elas-
tic net Cox regression still showed higher c-statistics 
(c = 0.78, 95% CI: 0.78–0.78, model 3) compared to the 
traditional Cox model (c = 0.75, 95% CI: 0.74–0.77). The 
results of the elastic net Cox regression for model 3 are 
presented as a nomogram in Fig.  1 for 12-year overall 
risk. To predict the patient’s risk for dementia, one can 
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Mean (SD) or n (%) % missing per variable
Demographics
Age (years)* + 76 (6) 0%
Sex (female)* + 2822 (59%) 0%
Education (college + university) 1392 (29%) 6%
Neuroimaging variables
Log-transformed white matter lesion volume (ml)* 13.5 (2.5) 18%
Hippocampal volume (ml)* 5.6 (0.7) 17%
Number of microbleeds* 0.3 (1.6) 17%
Presence of infarcts 1491 (31%) 16%
Gray matter volume (ml)* 676 (63) 18%
Intracranial volume (ml)* 1501 (148) 18%
Clinical variables
Abdominal circumference (cm) 101 (12) 1%
Carotid intima-media thickness test (CIMT) 1 (0.1) 10%
High-density lipoprotein (mmol/L) 1.6 (0.5) < 1%
Low-density lipoprotein (mmol/L) 3.5 (1.0) < 1%
Triglycerides (mmol/L) 1.2 (0.7) < 1%
Fasting glucose (mmol/L) 5.8 (1.2) < 1%
B-hemoglobin A1c (g/dl) 0.5 (0.1) 8%
High-sensitive c-reactive protein (mg/L) 3.8 (6.7) < 1%
Systolic blood pressure (mmHg) 142 (21) 1%
Diastolic blood pressure (mmHg) 74 (10) 1%
Hypertension 3855 (80%) 1%
Coronary artery disease 842 (18%) 0%
Diabetes mellitus 591 (12%) 0%
Metabolic syndrome 1499 (31%) 1%
Stroke/blood clot in the brain 297 (6%) 2%
History of cancer 753 (16%) 1%
Experienced a head trauma or lost consciousness 416 (9%) 5%
Subjective memory decline*+ 1431 (30%) 3%
Often forget the names of a friend 1522 (32%) 5%
Often forget where items are*+ 2083 (44%) 5%
Difficulty finding the right words 1517 (32%) 5%
Difficulty finding the way to familiar places*+ 385 (8%) 5%
Inability in managing money*+ 132 (3%) 4%
Inability in dressing oneself*+ 29 (1%) 6%
Intermit claudication in legs 227 (5%) 5%
Insomnia 1438 (30%) 3%
Poor health status 276 (6%) 1%
ADL score, full dependence on all items*+ 52 (1%) 6%
Morning salivary cortisol (nmol/L) 19.8 (13.3) 9%
Evening salivary cortisol (nmol/L) 3.8 (6.6) 9%
GDS-15 sum score*+ 2.3 (2.1) 6%
All anxiety questions ‘yes’ 40 (1%) 1%
Diagnosis of current GAD, social phobia, panic disorder, or agoraphobia 98 (2%) 5%
Current/past diagnosis of major depressive disorder 248 (5%) 5%
Medication use
Benzodiazepines 396 (8%) 0%
Beta-adrenergic blockers 1660 (35%) 0%
Glucocorticoids 171 (4%) 0%
Psycholeptics 818 (17%) 0%
Anti-depressants 662 (14%) 0%
Lifestyle variables

Table 1 Characteristics of the predictors in the study sample (n = 4793)
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draw a vertical line to the top given each variable to get 
the number of points per that variable. The points from 
each variable are then summed and the total number of 
points is used to give a patient’s overall 12-year risk.

When testing different thresholds, all classifiers dem-
onstrated optimal sensitivity and specificity at 0.50.

Regarding resampling, up-sampling was used for all 
models except for all support vector machine models. 
Down-sampling was used instead for model convergence.

Table 2 Summary of cross-validated prediction models on trained data (n = 3473)
Model AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Model 1
Logistic regression 0.73

[0.71–0.75]
64
[60–68]

70
[68–71]

32
[30–35]

89
[88–91]

Elastic net 0.74
[0.72–0.76]

68
[64–71]

69
[67–71]

33
[31–36]

90
[89–92]

Random forest 0.74
[0.72–0.76]

6
[4–8]

99
[99–99]

60
[47–71]

82
[81–83]

SVM 0.65
[0.62–0.68]

49
[45–53]

73
[71–74]

29
[27–32]

86
[85–88]

Model 2
Logistic regression 0.74

[0.72–0.76]
67
[63–70]

70
[68–72]

34
[31–36]

90
[89–91]

Elastic net 0.74
[0.72–0.76]

67
[63–70]

69
[67–71]

33
[30–36]

90
[89–91]

Random forest 0.74
[0.72–0.76]

47
[43–51]

84
[82–85]

40
[36–44]

88
[86–89]

SVM 0.73
[0.71–0.75]

72
[69–76]

63
[61–65]

31
[28–33]

91
[89–92]

Model 3
Logistic regression 0.71

[0.68–0.74]
64
[60–68]

68
[66–70]

31
[29–34]

89
[88–91]

Elastic net 0.71
[0.68–0.74]

64
[60–67]

67
[65–69]

31
[28–33]

89
[88–90]

Random forest 0.71
[0.68–0.74]

55
[51–59]

75
[73–77]

34
[31–37]

88
[87–89]

SVM 0.70
[0.67–0.73]

69
[65–73]

61
[59–63]

29
[27–31]

90
[88–91]

AUC = area under the ROC curve. SVM = support vector machine

Mean (SD) or n (%) % missing per variable
Current smoker, % 582 (12%) 4%
Alcohol consumption (g/week) 16 (33) 4%
Moderate/high physical activity 1509 (31%) 7%
Mental leisure activity (days per month) 7 (6) 6%
Social leisure activity (days per month) 4 (4) 6%
Single marital status, % 288 (6%) 6%
Number of close friends 4 (4) 6%
Not that easy to walk 2 km*+ 960 (20%) 27%
Not that easy to walk 500 m*+ 233 (5%) 27%
Number of living close relatives 7 (4) 6%
Never fish consumption, % 26 (1%) 6%
Cognitive assessment
MMSE total score*+ 27 (3) 1%
Outcome
Incident dementia 892 (19%) 0%
Follow-up time (years) 9 (3) 0%
* marks variables entered in model 2. + marks variables entered in model 3. GAD = generalized anxiety disorder. GDS-15 = Geriatric Depression Scale-15. 
CVLT = California Verbal Learning Test

Table 1 (continued) 
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Feature selection
For feature selection, Boruta ranked the following vari-
ables as most important: age, hippocampal volume, log-
transformed white matter lesion volume, gray matter/
intracranial volume ratio, MMSE score, difficulty finding 
the way to familiar places, difficulty in dressing oneself, 
subjective memory decline, the ADL score, forgetting 
where items are, number of microbleeds, the sum score 
of the Geriatric Depression Scale-15, how difficult it is 
to walk 500 m, sex, inability to manage money, and how 
difficult it is to walk 2 km (Supplementary Fig. 1). These 
variables were then used as the predictors in the parsi-
monious model (model 2), and then the MRI variables 
were removed for the clinically accessible model (model 
3).

Variable importance slightly differed per algorithm in 
model 3. The least amount of variables used were in the 
elastic net regression (Supplementary Fig.  2). As there 
is no built-in variable importance for support vector 
machine, the AUC is shown instead on the x-axis.

Internal validation
As the elastic net model performed the best regarding 
AUC, sensitivity, and specificity, it was chosen as the clas-
sifier to be used on the test data. The AUC was the same 
for both models 1 and 2 (AUC = 0.73; 95% CI: 0.70–0.76) 
and slightly decreased in model 3 when MRI variables 
were removed (AUC = 0.72; 95% CI: 0.69–0.75) (Table 3). 
Sensitivity was the same in all models (Sensitivity = 61%; 
95% CI: 56–66%), and specificity was highest in model 
2 (Specificity = 71%; 95% CI: 69–74%) (Table  3). For the 
elastic net Cox model, c-statistics were comparable for all 
three models (model 3: c = 0.77; 95% CI: 0.77–0.78).

Calibration
Calibration was assessed for all models. All models 
showed overfitting, which was resolved after re-calibra-
tion (Fig. 2). Re-calibration was performed by training a 
logistic regression using the uncalibrated probabilities as 
a predictor. In the elastic net Cox regression, calibration 
was optimal in both our training (internal calibration) 
and testing sets (external calibration) (Fig. 3).

Fig. 1 Predictive nomogram for 12-year overall risk for incident dementia in the elastic net Cox regression for model 3. To predict the patient’s risk for 
dementia, one can draw a vertical line to the top given each variable to get the number of points per that variable. The points from each variable are then 
summed and the total number of points represents a patient’s overall 12-year risk
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Sex stratification
Models were also tested on women only and men only 
to assess possible differences in predictive accuracy 
when stratified by sex. Across all models using elastic net 
regression, men and women had similar AUCs. Sensitiv-
ity was slightly higher in men, whereas specificity was 
slightly higher in women (Table 3). However, confidence 
intervals overlapped. In the elastic net Cox regression 
model, men (c = 0.86, 95% CI: 0.85–0.87, model 3) had 
higher c-statistics than women (c = 0.73, 95% CI: 0.72–
0.74, model 3) in all three models.

Discussion
The current study aimed to explore the difference in 
performance between machine learning algorithms and 
traditional statistical methods for a prognostic model 
for dementia. We further aimed to assess the feasibility 
of only using clinically accessible predictors compared 
to including structural brain MRI, as well as exploring 
model performance when stratifying by sex. Machine 
learning only showed benefit over traditional statistical 
methods when using survival methods. When remov-
ing imaging variables from the prediction model, AUC 
and c-statistic values slightly lowered but remained 
high. Models performed similarly in men and women 
in the elastic net regression; however, in the elastic net 
Cox regression, men had higher c-statistics compared to 
women.

The current study explored the difference in perfor-
mance when using machine learning methods compared 
to traditional statistical techniques. Previous prediction 

models using machine learning yielded high perfor-
mance accuracy when using only MRI variables [34], yet 
systematic reviews have highlighted the lack of explo-
ration on other, more clinically accessible variables for 
dementia prediction [12, 35]. Machine learning showed 
added benefit only when using survival techniques, as 
our elastic net Cox regression outperformed the regular 
Cox regression. A recent comparative study on various 
machine learning survival models and Cox regression for 
dementia prediction also found similar accuracy across 
techniques [36], which is also in line with previous stud-
ies assessing possible performance differences between 
conventional regression techniques and machine learn-
ing [37, 38]. Further, a study predicting two-year inci-
dent dementia also found similar performance across 
traditional techniques (i.e., logistic regression) and 
machine learning algorithms, with a slight added benefit 
of machine learning models regarding positive predic-
tive value [39]. The current study found a slight advan-
tage over elastic net regression, which was also found in 
a simulation study [38]. To note, elastic net reduces the 
risk of overfitting by penalizing the estimates. This also 
increases comprehensibility of the prognostic model by 
decreasing the number of required variables. We were 
also able to build a nomogram from our elastic net Cox 
regression, highlighting the feasibility and explainability 
of using machine learning in clinical settings [40]. This 
study highlights the importance of censoring in risk pre-
diction as well as the use of algorithms that can capture 
interactions and high-dimensional relationships within 
predictors, such as with machine learning [41]. Further, 

Table 3 Summary of the elastic net models on test data (n = 1870), as well as stratified by sex
AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Model 1 0.73
[0.70–0.76]

61
[55–66]

71
[69–73]

33
[29–37]

89
[87–91]

Women 0.74
[0.70–0.78]

60
[53–67]

70
[67–73]

35
[30–40]

87
[84–89]

Men 0.73
[0.67–0.79]

64
[55–73]

71
[67–75]

29
[23–35]

92
[89–94]

Model 2 0.73
[0.70–0.76]

61
[56–66]

71
[69–74]

33
[29–37]

89
[87–91]

Women 0.73
[0.69–0.77]

59
[52–66]

71
[67–74]

35
[30–40]

87
[84–89]

Men 0.73
[0.67–0.79]

63
[54–72]

72
[68–76]

29
[24–36]

92
[89–94]

Model 3 0.72
[0.69–0.75]

61
[56–66]

69
[66–71]

31
[28–35]

89
[86–90]

Women 0.71
[0.67–0.75]

59
[52–65]

69
[66–72]

33
[29–38]

86
[84–89]

Men 0.72
[0.66–0.78]

66
[57–75]

67
[63–71]

27
[22–33]

92
[89–94]

AUC = area under the ROC curve; PPV = positive predictive value; NPV = negative predictive value
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when removing neuroimaging markers, the performance 
of all models, including those using traditional statistical 
techniques, lowered, but remained high overall.

The most important variables for prediction in our final 
elastic net Cox regression included age, subjective mem-
ory complaints, and MMSE score. Subjective memory 
decline has been shown to be present years before mild 
cognitive impairment and later dementia [42], highlight-
ing its possible use in early prediction. Further, variables 
such as ‘forgetting where things are’ or ‘difficulty dressing 

oneself ’ were also present in our final model, which are 
items similar to those being used to create a telephonic 
interview for dementia prediction [43]. Functional limi-
tations were also found in previous studies to be highly 
predictive of later developing dementia [44, 45]. Previ-
ous studies have explored the use of neuropsychological 
assessments for prognostic models of dementia [9, 46], 
however the current study only used the MMSE and still 
showed high performance. To note, the variables with 
most predictive power in our model were used in the 

Fig. 2 Calibration plots for logistic regression, elastic net regression, random forest, and support vector machine in model 3 (clinically accessible model) 
both before and after recalibration. Performance above the diagonal represents under-forecasting and performance below the diagonal represent over-
forecasting. There were no individuals in the bins after 77
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three-step procedure to diagnose dementia during fol-
low-up at the clinic, i.e., the MMSE and the ADL score, 
which may have induced overfitting into our model. 
However, our study focused on the feasibility of using 
machine learning methods for dementia prediction.

One recent study using population-based data from the 
UK Biobank also explored the use of machine learning 
for dementia prediction, with five and ten-year predic-
tions [47]. However, one of the top predictors was APOE 
e4 genotype, making this model less clinically accessible 
due to the need for genotyping. APOE e4 genotype was 
also used in some previous prediction models, focusing 
on individuals already at risk (i.e., those with amnestic 
mild cognitive impairment) [48], and it is also included 
in the well-known Disease State Index (DSI) model [49]. 
The current study focused on the feasibility of using clini-
cally accessible variables; therefore, we aimed to assess if 
performance can remain high for prediction even with-
out genotyping.

While performing sex-stratified validation of pre-
diction models is still quite novel and explorative, our 
study found differences in the elastic net Cox regres-
sion when testing our prediction model in women and 
men separately. As sex differences in dementia have 

been highlighted previously with the push for sex-based 
prognostic models [50, 51], future studies should fur-
ther explore the possible benefit of creating sex-stratified 
prognostic models.

Strengths of the current study include using multiple 
imputation to address missing data and cross-validation 
to increase variability in training of the prediction mod-
els. We additionally address differences between novel 
machine learning classifiers, classical logistic and Cox 
regression, and using a survival-based machine learning 
method (i.e., the elastic net Cox regression). The cur-
rent study also had a large sample size from a well-phe-
notyped, community-based population. We also report 
calibration, which has been highlighted as lacking in pre-
vious prognostic studies [37, 52]. Further, tuning of the 
machine learning classifiers was done for recalibration. 
We also were able to extract a clinically relevant nomo-
gram from our elastic net Cox regression that makes 
our machine learning methods translatable to clinical 
practice. Lastly, we performed resampling and thresh-
old adjustment which further helps address imbalanced 
classification.

The current study also had limitations. The models pre-
sented first need to be externally validated to assess its 

Fig. 3 Calibration plots for the elastic net Cox regression in both the training set (internal calibration) and in the test set (‘external’ calibration). Perfor-
mance above the diagonal represents under-forecasting and performance below the diagonal represents over-forecasting
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transportability to other populations. Further, the ascer-
tainment of dementia was done with a three-step proce-
dure that consisted of the ADL and MMSE, which were 
also used as predictors. Further, the AGES-Reykjavik 
cohort is predominantly White; therefore, it is crucial for 
the validation of this model in marginally underrepre-
sented populations. Further, development of prognostic 
models in systemically minoritized groups should also be 
prioritized for future research. Lastly, we did not assess 
different time-windows for our survival models as we 
solely aimed to assess the comparability of techniques. 
Future studies should assess which models suit best for 
shorter- or longer-term prediction of dementia.

Our results showed that prediction models developed 
using supervised machine learning classifiers are feasible 
and add to the model’s performance, only when using 
survival methods. We also exemplify ways to implement 
machine learning in a classical point-based method using 
a nomogram. Additionally, model performance remained 
high after the removal of MRI variables. As demen-
tia becomes a leading problem in developing countries, 
focusing on clinically accessible variables for the prog-
nostication of dementia is crucial.
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