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Abstract 

Background Differentiating between Crohn’s disease (CD) and intestinal tuberculosis (ITB) with endoscopy is chal-
lenging. We aim to perform more accurate endoscopic diagnosis between CD and ITB by building a trustworthy AI 
differential diagnosis application.

Methods A total of 1271 electronic health record (EHR) patients who had undergone colonoscopies at Peking Union 
Medical College Hospital (PUMCH) and were clinically diagnosed with CD (n = 875) or ITB (n = 396) were used in this 
study. We build a workflow to make diagnoses with EHRs and mine differential diagnosis features; this involves fine-
tuning the pretrained language models, distilling them into a light and efficient TextCNN model, interpreting the neu-
ral network and selecting differential attribution features, and then adopting manual feature checking and carrying 
out debias training.

Results The accuracy of debiased TextCNN on differential diagnosis between CD and ITB is 0.83 (CR F1: 0.87, ITB F1: 
0.77), which is the best among the baselines. On the noisy validation set, its accuracy was 0.70 (CR F1: 0.87, ITB: 0.69), 
which was significantly higher than that of models without debias. We also find that the debiased model more easily 
mines the diagnostically significant features. The debiased TextCNN unearthed 39 diagnostic features in the form 
of phrases, 17 of which were key diagnostic features recognized by the guidelines.

Conclusion We build a trustworthy AI differential diagnosis application for differentiating between CD and ITB focus-
ing on accuracy, interpretability and robustness. The classifiers perform well, and the features which had statistical 
significance were in agreement with clinical guidelines.

Keywords Neural network, Integrated gradients, Knowledge distillation, Crohn’s disease, Intestinal tuberculosis

Background
Crohn’s disease (CD) is a chronic and idiopathic inflam-
matory disease that usually has a disease course with 
repeating remission-relapses. Intestinal tuberculosis 
(ITB) is an infectious intestinal disease caused by Myco-
bacterium tuberculosis. The treatment, progression, and 
prognosis of CD and ITB are different, and the initial cor-
rect diagnosis and differentiation between CD and ITB 
are of critical importance.

Although make different diagnosis between CD and 
ITB relies on multi-dimension analysis of different 
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examinations (e.g. endoscopy, medical history, radiologi-
cal findings, molecular tests such as PCR/NGS) endos-
copy is an important and essential examination for a 
timely and accurate diagnosis and is always conducted 
first [1]. However, the differential diagnosis between CD 
and ITB can be challenging because the two diseases 
have a very similar endoscopic appearance. Therefore, 
diagnosis relies heavily on the experience of the clini-
cian who conducts the examination. This situation often 
causes incorrect endoscopic diagnosis and results in 
delayed treatment.

This study aims to facilitate correct interpretation of 
endoscopic reports and differentiation between CD and 
ITB using natural language processing. Furthermore, we 
aim to provide a workflow for obtaining trustworthy neu-
ral network classifiers using texts, particularly unstruc-
tured texts, such as electronic health records (EHRs). We 
define a trustworthy neural network as a neural network 
that can be explained with human understandable phrase 
features that allow doctors to understand how the model 
reaches a certain conclusion.

Artificial intelligence (AI) is widely used in the medical 
field and has been applied to differentiate CD and ITB. 
However, as the model becomes increasingly complex, 
the inability of AI users to interpret the decision pro-
cess has become problematic. Classical AI models, such 
as support vector machines, random forests and neural 
networks, are commonly described as “black boxes” due 
to the lack of interpretability. The interpretability of the 
AI model in the medical field is an important metric 
for the following reasons: 1) clinicians should be able to 
judge if the prediction of the model is reasonable; 2) new 
interpretable features found by the model can be further 
verified through clinical studies so that guidelines of the 
disease can be updated; and 3) clinicians are profession-
ally conservative, and an interpretable model will be 
more readily accepted than a black-box model.

Recently, research on explanation methods in deep 
learning has emerged. The integrated gradient (IG) 
method has the property of being model agnostic and 
can be derived everywhere for the model parameters. 
Compared with other methods, the computational cost 
of IG is relatively small, and therefore it is selected as 
the interpretation method in our work. Sundararajan 
et  al. [2] show the explanatory effect of IG in the fields 
of text classification and question answering. In addition, 
because IG has a small computational cost and derivabil-
ity in all cases, it is also used to integrate prior knowl-
edge or to correct bias as described by Liu et al. [3] The 
attribution method represented by IG often means that 
it can obtain interpretability at the token level, which is 
still challenging to understand. Chen et al. [4] and Singh 
et  al. [5] proposed a hierarchical interpretation method 

based on contextual decomposition to solve this prob-
lem. They obtained the interpretability of the model for 
features of different scales. All of these works inspire us 
to build an interpretable deep learning AI diagnosis sys-
tem. However, all of the results in the previous works are 
based on a corpus in English. Few methods and experi-
ments focus on interpreting neural networks with IG in 
Chinese corpora.

Several works also use neural networks to explain or 
obtain medical concepts in the medical image processing 
field. Graziani et al. [6] propose a framework that shifts 
the attribution focus from pixel values to user-defined 
images. Experts can explain and trust the network out-
put by checking whether specific diagnostic measures 
are present in the learned representations. Hu et  al. [7] 
construct a diagnosis model for COVID-19 with CT 
images and weakly supervised lesion localization with 
IG. Preuer et al. [8] employed IG to identify the most rel-
evant components of a compound for network prediction 
of molecular properties and bioactivities. Lauritsen et al. 
[9] present the Xai EWS—an explainable AI early warn-
ing score (EWS) system for predicting acute critical ill-
ness using EHRs. Sayres et al. [10] investigate the effect of 
2 types of visualization models to indicate diabetic retin-
opathy scores and expansion heatmaps on the accuracy, 
speed, and confidence of readers. However, there are few 
works on building a trustworthy diagnosis application 
with text data.

Present work
We introduce a workflow to build a trustworthy AI differ-
ential diagnosis system for Crohn’s disease and intestinal 
tuberculosis. And we also analyze significant diagnostic 
features we mined. Figure 1 illustrates the whole process 
of the proposed workflow. From our perspective, a trust-
worthy AI diagnosis system should have the properties of 
correctness, interpretability, and robustness. More spe-
cifically, correctness means that the classifier is expected 
to have acceptable accuracy in differential diagnosis; 
interpretability indicates that doctors know how the clas-
sifier works to achieve the diagnosis; robustness indicates 
that the classifier should not overfit meaningless features 
in the data and is expected to be mining features with 
medical significance. This work proposes a 6-step work-
flow to build a trustworthy differential diagnosis system 
for Crohn’s disease and intestinal tuberculosis:

1. Finetune. In the first step, we finetune a pretrained 
language model with text description as a classifica-
tion problem.

2. Distill. We distill the finetuned pretrained language 
model into a TextCNN model.
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3. Interpret. We use Integrated Gradients method to 
obtain local interpretation of all samples. Then, hierar-
chical phrase features are selected and filtered by sta-
tistical significance as differential diagnosis features.

4. Manually Check. Medical doctors label the differen-
tial diagnosis features with medical guidelines and 
professional knowledge. A set of features that are 
meaningless or apparent are selected into a blacklist.

5. Debias. We do a debias training by adding an attri-
bution penalty to the loss function. After debias 
training, the TextCNN model has zero attributes on 
meaningless features in the blacklist.

6. Deploy. Finally, we deploy this model as a web ser-
vice. Doctors can query with text descriptions and 
obtain classification results and visualization of attri-
bution.

To summarize, this study aims to make endoscopic 
diagnosis of CD and ITB more accurate with the help of 
natural language processing (NLP) and statistical analy-
sis and builds a trustworthy diagnosis application. The 
novelty of this workflow is that it employs high preci-
sion neural networks and cutting-edge interpretation 
methods to significantly reduce workloads of clinicians 
in human-in-loop data mining. Clinicians can only check 
features instead of predictions to debias the model and 
make it provide trustworthy results. The workflow can 
improve the diagnostic accuracy between CD and ITB 

with fewer risks in clinical application. The codes used in 
this work are provided on Github.1

Methods
Notations
We define D as a labeled text dataset with N  samples: 
D = {(t i, yi)}

N
i=1 , where t i is the token sequence of the 

i-th endoscopy report. The granularity and the tokeniza-
tion method are determined by the downstream model. 
In the pretrained model, the granularity of the token is 
character-level; yi and ŷi are the actual and predicted d
-dimensional one-hot vectors, where d is the number of 
categories. The model aims to predict ŷi from t i and fur-
ther obtain a sequence FT = {(ti,bk , ti,bk+1, . . . , ti,ek )}

K
k=1 

that represents the features used by the model when con-
ducting the classification task, and bk and ek are the start 
and end indices of the k-th feature. The FT  set is impor-
tant for the differential diagnosis between CD and ITB.

Methods
This section introduces the development steps of our sys-
tem. The PTM is first finetuned with labeled training data 
to obtain a classification model with good diagnostic per-
formance. Then, this large model is distilled into a light 

Fig. 1 The workflow of building a text-based trustworthy diagnosis model

1 https:// github. com/ Lukem ing- tsing hua/ Inter preta ble- NN- for- IBD- diagn 
osis

https://github.com/Lukeming-tsinghua/Interpretable-NN-for-IBD-diagnosis
https://github.com/Lukeming-tsinghua/Interpretable-NN-for-IBD-diagnosis
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TextCNN model. After that, we interpret the distilled 
TextCNN model with IG and design an analysis method 
to extract differential attribution features, including hier-
archical feature set extraction and a feature selection 
pipeline.

Finetuning pretrained language model
Language model pretraining is an effective approach 
for improving many natural language processing tasks. 
RoBERTa-wwm-ext [11] is a state-of-the-art model for 
conducting text classification in Chinese. This model was 
trained on Chinese texts with the same architecture of 
RoBERTa using the whole word masking (wwm) strat-
egy that replaced tokens with mask labels after Chinese 
tokenization when conducting the masking strategy used 
in BERT [12]. We chose RoBERTa-wwm-ext for its excel-
lent effect on multiclassification tasks on Chinese text. 
RoBERTa-wwm-ext can be replaced by other BERT-like 
models; thus, we refer to RoBERTa-wwm-ext as the pre-
trained model (PTM) in this article.

The input text is segmented to tokens ti by the Chinese 
word segmentation tool LAC [13]. Special markers are 
added to ti for the PTM, and the input tokens become 
t̂ i = {[CLS], ti,1, ti,2, . . . , ti,n, [SEP]} , where [CLS] and 
[SEP] are the reserved special tokens for identifying the 
beginning and end of sentences. For each input text, we 
use the hidden vector of [CLS] as the embedding of the 
input. The softmax result after the linear layer was used 
as the probability for classification:

where hCLSi ∈ Rdh is the representation of the output of 
the PTM; dh is the dimension of the hidden layer; and W  
and b are trainable parameters of the linear layer. pi ∈ Rd 
is the probability for classification. Due to the extremely 
unbalanced samples in the research, we used the focal 
loss [14] as the loss function:

where αk is the weight of each classification, γ is the bal-
ance factor, and yi,k is the true label.

Distilling the PTM into TextCNN
TextCNN is a convolutional neural network for text clas-
sification proposed by Kim et  al. [15] The input of the 
model is a sentence, represented as a sequence of word 
vectors. Let xi be the word vector corresponding to the 

hCLSi = PTM(t̂ i),

pi = softmax WhCLSi + b ,

L =
∑

i∈D

d∑

k=1

−αkyi,k(1− pi,k)
γ log

(
pi,k

)
,

i-th word in the sentence with length n. The input can be 
defined as the concatenation of all of the word vectors:

where the union symbol denotes vector concatenation 
and x1:n denotes the concatenation of the word vectors 
between the 1st word and the n-th word. A convolution 
filter matrix w is applied to a window of h words to obtain 
the new feature:

where ci is a new feature, b is a bias term and f  is a non-
linear activation function. This filter is applied to all pos-
sible windows in the sentences to obtain a feature list 
c = [c1, c2, . . . , cn−h+1] . Then, a max pooling operation 
is employed on this feature list to obtain the feature cor-
responding to this filter ĉ = max(c) . All max features of 
various filters are combined as h , and the logit is obtained 
with a linear layer:

We distill the finetuned model into TextCNN for two 
purposes. First, prediction in RoBERTa-wwm-ext is time-
consuming and will result in low efficiency. A helpful 
method is to distill RoBERTa-wwm-ext into TextCNN, 
which is a significantly faster model. Second, TextCNN is 
a neural network with word-level features that is easier 
to interpret. The distillation procedure in our methods 
follows Hinton et al. [16]. We use ft and fs to denote the 
PTM model and the TextCNN model, respectively. Log-
its of each sample are first calculated according to:

where xi denotes the i-th sample in the training set. Then, 
a Kullback–Leibler divergence between the softmax log-
its of the teacher and student models is calculated as the 
distillation loss function:

where T  is a temperature constant. The training loss may 
also include classification loss as the hard labels, but we 
only use the distillation loss since this knowledge distilla-
tion loss achieves better performance in our work.

Differential attribution analysis
Differential attribution analysis aims to identify under-
standable N-gram features that have significant differ-
ences in attribution between different diseases. These 

x1:n =

n⋃

i=1

xi,

ci = f (w · xi:i+h−1 + b),

z = f (W · h+ b)

zt = ft(xi), zs = fs(xi),

L = T 2
∑

i

exp
(
zt
T

)
∑

j exp
(
zt
T

) log
(

exp
(
zs
T

)
∑

j exp
(
zs
T

)
)
,
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differential attribution features are the differential diag-
nosis features of the neural network models.

Algorithm 1 Differential attribution analysis

Local explanation with IG We calculate the attribu-
tion of input with the IG method to identify the most 
important features for classification. IG is an attribu-
tion method for neural networks. Attributions are con-
tributions of inputs to the prediction. Formally, suppose 
a function F : Rn → [0, 1] represents the classification 
function of the PTM, and the token embedding of the 
input is denoted as Hi = (hi,1, . . . , hi,l) ∈ Rl×de . de is the 
dim of token embeddings. An attribution of the predic-
tion at input Hi relative to a baseline input H ′ is a vec-
tor AF (Hi,H ′) = (ai,1, . . . , ai,l) ∈ Rl×de , where ai,k is the 
contribution of hi,k to the prediction F(x) . In our work, 
we use token embedding of the padding token as the ref-
erence baseline input. The IG method conforms to the 
two axioms of attribution methods namely sensitivity 
and implementation invariance of the gradient, requires 
no modification on the neural network architecture and 
is simple to implement. Therefore, we choose IG as the 
attribution method in this work.

Hierarchical feature set extraction Words and N-gram 
phrases are more explainable to humans than individual 

Chinese characters. Therefore, after obtaining the attri-
butions of the input character tokens, we further derive a 
hierarchical feature set of words and phrases along with 
their attributions. Denoting the sample as a Chinese 
character sequence t = {t1, . . . , tl} with attributions 
a = {a1, . . . , al} , we can segment this sequence with Chi-
nese word segmentation and obtain word-level tokens 
w = {w1, . . . ,wm} with attributions aw = {aw1, . . . , awm} , 
which are calculated by awi =

∑
tj∈wi

aj . Then, we form a 
set of phrases p = {{wp11 , . . . ,wp1k }, . . . , {wpn1 , . . . ,wpnk }} 
that are successive words whose attribution wpij is larger 
than the 0.9 quantile of aw . Then, N-grams (up to 3 
words) are generated from each phrase in p . The feature 
set will be the union of N-gram sets obtained from each 
sample. This N-gram feature set is the set of candidates 
for differential features.

After collecting the set of N-gram candidate features, the 
attributions of each feature in all training samples are cal-
culated and arranged as an attribution matrix A ∈ RN×K  , 
where N  is the size of the training set and K  is the num-
ber of candidate features (Fig. 2).

Statistical feature selection After obtaining the hierar-
chical feature set and calculating the attribution matrix 
A , we further analyze this matrix and perform feature 
selection to obtain the differential diagnosis features. 
A feature can be represented by an attribution vector 
ak ∈ R1×N in the attribution matrix. The i-th value in ak 
is the attribution of feature k in the i-th sample. We rank 
the variance of {ak}Kk=1 and select 50 features with the 
largest variance.

Then, we use a t-test to further select the features with 
significantly different attributes between the classes. We 
denote the class labels as C . When selecting a feature that 
is highly attributed in the samples of class c and shows 
relevantly low attribution in other classes, a t-test is 
employed to calculate the statistical significance. Let I(c) 
represent the index set of samples with class c . The t sta-
tistic is calculated as

The p value pk , k = 1, 2, . . . ,K  can be obtained for each 
feature, and we rank p values as p1 ≤ p2 ≤ · · · ≤ pK  . 
Since this is a multiple comparison, we employed the 
Benjamini–Hochberg method to control the false dis-
covery rate (FDR) at 0.01. This adjustment begins with 
qK = pK  and sequentially calculates qk from the largest 
index by the following rules:

tk =

1
|I(c)|

∑
j∈I(c) aj −

1

n−|I(c)|

∑
j /∈I(c) aj√∑

j∈I(c) (aj−
1

|I(c)|

∑
j∈I(c) aj)

2

|I(c)|2
+

∑
j /∈I(c) (aj−

1
n−|I(c)|

∑
j /∈I(c) aj)

2

n−|I(c)|2



Page 6 of 13Lu et al. BMC Medical Informatics and Decision Making          (2023) 23:160 

The features with qk ≤ 0.01 will be selected and ranked by 
difference d = 1

|I(c)|

∑
j∈I(c) aj −

1
n−|I(c)|

∑
j /∈I(c) aj . These 

features are differential attribution features of class c.

Debias finetuning by attribution penalty
Differential attribution analysis proposes a method 
to identify readable diagnosis features that the neu-
ral networks rely on. However, we find that the features 
extracted by the above methods indicate that neural 
networks make classifications with inappropriate and 
unwanted features. Therefore, we include a debias fine-
tuning processing in our workflow that allows clinical 
doctors to adjust model performance using their profes-
sional knowledge.

First, a blacklist of unwanted features of each disease is 
manually selected from differential attribution features. 
For example, a blacklist containing disease names them-
selves is as follows.

The above blacklist means that when the model classi-
fies a real CD sample in fine tuning, the word “Crohn’s 
disease” is expected to be a neutral feature. To achieve 
that, we add an attribution penalty to the classification 
loss and fine tune the model.

qk =






pk ×
m
k

, pk ×
m
k
≤ qk+1

qk+1 , pk ×
m
k
≥ qk+1

1 , pk ×
m
k
≥ 1

, k = 1, 2, . . . , K

Blacklist = {CD : [Crohn′s disease], ITB : [intestinal tuberculosis]}

� is a hyperparameter determined by cross-valida-
tion, and li denotes the length of the i-th sentence in the 
token. targetij is defined as a tokenwise label. If a token is 
included in the blacklist, this label equals 0. Otherwise, 
targetij equals the attribution of this token. The attribu-
tion penalty will lead the model to ignore the blacklisted 
tokens during classification.

Data and experimental setup
Dataset
A total of 1271 electronic health records of successive 
patients who had undergone colonoscopies at Peking 
Union Medical College Hospital (PUMCH) and were 
clinically diagnosed with CD (n = 875) or ITB (n = 396) 
from January 2008 to November 2018 were included 
in this study. Research approval was obtained from 
Peking Union Medical College Hospital’s Ethics Com-
mittee (approval no. S-K894). All the patients had given 
informed consent. We separated 80% of the data into the 
training set and 20% of the data into the test set for train-
ing models and analysis.

The clinical diagnoses of CD were made via endoscopic 
results, medical history, pathological features, and treat-
ment follow-up based on the Chinese consensus of IBD 

Loss =
1

n

n∑

i=1

FocalLoss(yi , ŷi)+ �×
1

li

li∑

j=1

(aij − targetij)
2

targetij =

{
aij , tokenij /∈ Blacklist[yi]
0 , tokenij ∈ Blacklist[yi]

Fig. 2 A case demonstration of hierarchical feature set extraction: words or characters in the sentence with positive attribution scores are 
highlighted with a green background. The extraction process constructs an N-gram hierarchical feature set from bottom (word or character level) 
to top
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(2018) by IBD specialists in this hospital. The clinical 
diagnoses of ITB were confirmed by the presence of at 
least one criterion from the following: 1) positive acid-fast 
bacilli on histological examination, 2) positive M. tubercu-
losis culture, 3) radiologically or colonoscopically proven 
TB, and 4) full response to anti-TB therapy. Colonoscopies 
were performed with Olympus CF-Q260 or H260 colono-
scopes and were conducted by well-trained endoscopists 
at PUMCH. Based on the well-established terminology 
used by endoscopists to describe colonoscopic images, 
we extracted descriptions of colonoscopic images of the 
patients’ index colonoscopy in the form of free text. Clini-
cally confirmed diagnoses extracted from the hospital 
information system (HIS) were used as labels (Table 1).

Results
Table  2 displays the classification performance of the 
various models. The standard dataset refers to the origi-
nal data. The distilled TextCNN gave the highest over-
all accuracy of 0.84 and the highest F1 score of CD of 
0.88. By contrast, the standard TextCNN obtained the 
lowest overall accuracy of 0.81, which is 3 percentage 
points lower than that of distilled TextCNN. The Robust 

TextCNN gave the highest recall rate of 0.87 in CD and 
the highest F1 score of 0.77 in ITB. PTM did not show 
advantages in any task. In the noisy dataset, the distilled 
TextCNN performed poorly, with an overall accuracy of 
0.50. The Robust TextCNN thoroughly outperformed the 
distilled TextCNN that gave an overall accuracy of 0.70.

Table  3 shows the differential diagnosis features from 
each model. For CD, all the classifiers gave ulcer, linear, 
and  anastomosis. Notably, only robust TextCNN gave 
the feature cobblestone-like that was unique and set as a 
specific diagnostic feature in CD. Other features found by 
the classifiers included hyperemic, edematous, and steno-
sis. In addition, PTM gave much fewer features than the 
other three classifiers. For ITB, all four models gave simi-
lar features, including  ileocecal valve, polyp, and remain 
opened. PTM model found protruding lesions, while the 
Robust TextCNN model found round lesions.

To be noticed, the terms shown in Table  3 are those 
that computationally contributed to the classification, 
but they alone are not decisive. For example, in the 
model, the occurrence of polyps contributes positively to 
classifying as ITB, but the final prediction could be either 
ITB or CD according to the presence of other features. 

Table 1 Some examples of the collected and analyzed samples

Text sample Diagnosis

Chinese description 钩拉法循腔插镜至回盲部。回盲部巨大不规则溃疡, 周边结节样隆起, 回盲瓣显示不清, 局部活检6块, 质硬, 送
病理及抗酸染色; 余所见结肠、直肠粘膜光滑, 血管纹理清晰, 无充血、糜烂、溃疡及新生物。

CD

Translation The colonoscope was introduced into the rectum and advanced to the terminal ileum using the Pull method. Large 
irregular ulcer(s) in the terminal ileum, with peripheral nodule(s). The ileocecal valve was not well seen. Biopsy of 6 
pieces, which were firm, for pathological investigation and acid-fast stain test. Other findings: smooth colorectal 
mucosa, normal vascular pattern, no hemorrhage, no erosion and ulcer, no neoplasm

Chinese description 肠道准备欠佳循腔进镜至回肠末段约15 cm,进镜顺利, 末段回肠粘膜可见多发溃疡, 形态欠规则, 约0.5–1.5 cm
大小, 中心凹陷, 周边粘膜肿胀隆起, 表覆灰白苔, 取活检共3块, 质韧。回盲瓣呈唇形,阑尾开口看不清楚,所见
全结肠、直肠粘膜光滑,血管纹理清,半月襞完整,未见糜烂、溃疡及新生物。

ITB

Translation Poor bowel preparation. The colonoscope was introduced into the rectum and advanced to 15 cm from terminal 
ileum. Multiple cratered ulcers of 0.5–1.5 cm in the mucosa of terminal ileum, with peripheral edematous mucosa, 
covered by gray and white fur. Biopsy of 3 pieces, which were tough. Lip-shaped ileocecal valve. The vermix opening 
was not well seen. Findings: smooth colorectal mucosa, normal vascular pattern, normal semilunar folds, no erosion 
and ulcer, no neoplasm

Table 2 Classification results between CD and ITB

Dataset Model CD ITB Overall 
Accuracy

precision recall F1 Precision recall F1

Standard TextCNN 0.92 0.81 0.86 0.62 0.81 0.70 0.81

PTM 0.87 0.86 0.87 0.75 0.77 0.76 0.83

TextCNN(distill) 0.92 0.84 0.88 0.70 0.83 0.76 0.84
TextCNN(Robust) 0.87 0.87 0.87 0.77 0.77 0.77 0.83

Noisy TextCNN(distill) 0.60 0.61 0.61 0.33 0.32 0.32 0.50

TextCNN(Robust) 0.82 0.83 0.87 0.83 0.71 0.69 0.70
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Table 3 Differential diagnosis features selected by the attribution analysis (both original terms displayed in Chinese and their 
translation) are listed. Features supported by clinical guidance are in bold

Model CD ITB

TextCNN 循腔 进镜 至
The colonoscope was introduced into the rectum and
advanced to
进镜 至
advanced to
溃疡
ulcer
纵行
linear
吻合口
anastomosis
可见
findings
循腔 进镜
The colonoscope was introduced into the rectum
进镜
The colonoscope was introduced
进镜 至 回肠
advanced to ileum
至
to
充血
hyperemic
糜烂 溃疡
erosion and ulcer
距 肛门
xx cm from anus
至 回肠 末段
to terminal ileum
纵行 溃疡
linear ulcer
克罗恩病
Crohn’s disease
乙状结肠
sigmoid colon
至 回肠
to ileum
肛门
anus
溃疡 及
ulcer and
水肿
edematous
狭窄
stenosis

回盲瓣
ileocecal valve
盲肠
Cecum
盲袋
pouch
余
other
余 所见
other
息肉
polyps
回盲瓣 变形
ileocecal valve 
deformity
回盲瓣 呈
ileocecal valve
取 活检
biopsy
检查所见
findings
阑尾 开口
vermix opening
循腔 进 镜达
The colonoscope 
was introduced 
into the rectum 
and advanced to
盲袋 结构
pouch
取
tissue submitted
呈
was
病理
pathological
变形
deformity
未见异常
normal
进 镜达
The colonoscope 
was introduced 
into the rectum 
and advanced to
送 病理
biopsy from
皱襞 光 整
smooth folds
活检 4块
biopsy of 4 pieces



Page 9 of 13Lu et al. BMC Medical Informatics and Decision Making          (2023) 23:160  

Table 3 (continued)

Model CD ITB

TextCNN
(distill)

循腔 进镜 至
The colonoscope was introduced into the rectum 
and advanced to
纵行
linear
进镜 至
advanced to
吻合口
anastomosis
克罗恩病
Crohn’s disease
可见
findings
溃疡
ulcer
循腔 进镜
The colonoscope was introduced into the rectum 
and advanced to
距 肛门
xx cm from anus
纵行 溃疡
linear ulcer
乙状结肠
sigmoid colon
进镜
The colonoscope was introduced into the rectum 
and advanced to
进镜 至 回肠
advanced to ileum
水肿
edematous
至 回肠 末段
to terminal ileum
肛门
anus
充血
hyperemic
糜烂 溃疡
erosion ulcer
克罗恩病 治疗后
after treatment for Crohn’s disease
至 回肠
to ileum
克罗恩病 治疗后 复查
reexamination after treatment for Crohn’s disease
降结肠 乙状结肠
descending colon and sigmoid colon
散 在
diffuse

回盲瓣
ileocecal valve
盲肠
cecum
余
other
盲袋
pouch
余 所见
other
息肉
polyps
检查所见
findings
取 活检
biopsy
回盲瓣 呈
ileocecal valve was
腔 进 镜达
The colonoscope 
was introduced 
into the rectum 
and advanced to
取
tissue submitted
回盲瓣 变形
ileocecal valve 
deformity
进 镜达
The colonoscope 
was introduced 
into the rectum 
and advanced to
呈
was
皱襞 光 整
smooth folds
病理
pathological
皱襞
fold
变形
deformity
环形
round
阑尾 开口
vermix opening
皱襞 光
smooth folds
未见异常
normal
持续 开放
remain opened
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Table 3 (continued)

Model CD ITB

PTM 溃疡
ulcer
克罗恩病
Crohn’s disease
吻合口
anastomosis
克罗恩病 治疗后
after treatment for Crohn’s disease
纵行 溃疡
linear ulcer
肛门
anus
距 肛门
xx cm from anus
肛门 口
anus

块
piece
隆起
protruding lesions
循腔
The colonoscope 
was introduced 
into the rectum 
and advanced to
改变
lesion
息肉样 隆起
polyps-like protruding 
lesions
回盲瓣
ileocecal valve
样 改变
lesion
样 隆起
protruding lesions
活检 1 块
biopsy of 1 piece
1 块
1 piece
余 所见
other
至
to
回盲瓣 呈
ileocecal valve was
至 回肠 末段
to terminal ileum
软
soft
阑尾 开口
vermix opening
光 整
smooth
糜烂
erosion
至 回肠
to ileum
质 软
soft
活检 4块
biopsy of 4 pieces
3 块
3 pieces
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Indeed, real diagnosis should also consider other exami-
nations and lab tests, as differential diagnosis between 
CD and ITB is very difficult. The terms in boldface are 
clinically meaningful ones (the rest involve computa-
tional noise) and can be used to highlight the text input 
to provide supporting evidence for the prediction, thus 
adding interpretability to the model. These highlighted 
terms can also guide inexperience physicians to pay 
attention to key features that may help the differentiation.

Discussion
Corresponding to the definition of trustworthy AI we 
proposed before, we discuss the contributions of this 
work from three aspects: accuracy, interpretability and 
robustness. For each aspect, we analyzed our contribu-
tions both from the perspective of the techniques and the 
perspective of clinical medicine.

In addition, we would like to further emphasize that 
our method is task-agnostic, which means it can be 

generalized to other challenging differential diagnosis 
tasks taking free text as input. Although our model can-
not solve the differential diagnosis between CD and ITB 
solely based on free-text, it could potentially being used 
as an auxiliary tool for clinicians.

Accuracy of differential diagnosis
For clinical medicine, this research provided a new pos-
sible approach for differentiating CD and ITB. Differen-
tial diagnosis of CD and ITB has long been a challenging 
and essential problem. Retrospective Chinese studies 
show that approximately 65% of CD patients have been 
misdiagnosed with ITB at least once [17]. At the same 
time, another study indicated that more than 40% of CD 
patients had received tentative anti-TB treatments due 
to ambiguous diagnoses. Traditional histologic or path-
ologic evidence, such as caseating granuloma or posi-
tive acid-fasting staining, was considered to be the gold 

Table 3 (continued)

Model CD ITB

TextCNN
(Robust)

纵行
linear
吻合口
anastomosis
纵行 溃疡
linear ulcer
可见
findings
充血
hyperemic
散 在
diffuse
铺路 石样
cobblestone-like
水肿
edematous
狭窄
stenosis
距 肛门
xx cm from anus
轻度 充血
moderately hyperemic
治疗后 复查
reexamination after treatment
轻度
moderate
肠道准备
bowel preparation
局部
localized
铺路 石样 改变
cobblestone-like
复查
reexamination
小溃疡
small ulcer
乙状结肠
sigmoid colon

回盲瓣
ileocecal valve
回盲瓣 呈
ileocecal valve was
取 活检
biopsy
回盲瓣 变形
ileocecal valve 
deformity
检查所见
findings
盲肠
cecum
息肉
polyps
余
other
环形
round
余 所见
other
活检 4块
biopsy of 4 pieces
取 活检 4块
biopsy of 4 pieces
循腔 进 镜达
The colonoscope 
was introduced 
into the rectum 
and advanced to
持续 开放
remain opened
4块
4 pieces
皱襞
fold
进 镜达
advanced to
瘢痕形成
scarring
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standard with high specificity. However, these examina-
tions are time-consuming and have a sensitivity lower 
than 50%. Thus, an immediate differential diagnosis with 
high sensitivity and specificity is valuable.

The four classifiers all achieved an overall accuracy 
above 80%, demonstrating that artificial intelligence can 
provide satisfactory results in clinical practice. This could 
help clinicians, particularly for inexperienced patients, to 
make a more accurate diagnosis. The distilled TextCNN 
and robust TextCNN provided a balanced precision and 
recall rate, which was also crucial for clinical practice.

It is important to note that knowledge distillation lev-
eraged the language knowledge of PTM and obtained a 
higher classification accuracy. As shown in Table  2, the 
overall accuracy of PTM was 2% higher than that of 
TextCNN. Then, distilled TextCNN achieved an even 
higher overall accuracy (by 1%) than PTM, and its F1 
scores of both diseases also ranked first. In addition, the 
student model is significantly lighter than the teacher 
model. Therefore, knowledge distillation contributed to 
obtaining a better model while requiring less training and 
deployment resources. These advantages make diagnosis 
models more conducive to deployment and adoption.

Interpretability
Our previous study built a classifier for classifying CD and 
ITB using a convolutional neuron network (CNN) [18]. 
However, due to the low interpretability of CNN, the pre-
vious classifier could not explain the basis of the diagnosis 
to doctors, greatly limiting its clinical application (Fig. 4 in 
Additional file 1 illustrate the difference between a black 
box model and an interpretable model). This research 
solved the previous problem. The front end can clearly 
show the classification result and the supporting details, 
based on which clinicians can make further judgments.

Robustness
Debias training is an essential component of this system. 
First, it provides an effective method for doctors to cus-
tomize the diagnosis model with their knowledge. In addi-
tion, debias training restricts the model from attributing 
the classification results to meaningless or unreasonable 
features in the blacklist and achieves significantly bet-
ter results than the baseline model on the noisy dataset. 
Although we restricted the model from learning certain 
significant features in the standard dataset, it still reached 
the same level of accuracy as the models without debias 
training. The optimization of deep neural networks would 
by default exploit and extract any feature whose distribu-
tion in the training data correlates with the class label, and 
the extracted features are not guaranteed to be informa-
tive. Manually labeling the feature blacklist and penaliz-
ing it during training adds an additional regularization to 

the optimization of the neural network, forcing it to avoid 
unreasonable features in the blacklist to find features that 
truly differentiate and diagnose the two diseases.

The differential features for classification found by the 
classifiers were highly consistent with the guidelines. We 
noticed that Robust TextCNN provided more specific fea-
tures, such as cobblestone appearance, while TextCNN 
and distilled TextCNN tended to offer more general fea-
tures. This may occur because patients with these specific 
features comprise only a small portion of the total data set. 
TextCNN and distilled TextCNN tended to ignore these 
features due to the small sample size and correspond-
ing low statistical power. However, Robust TextCNN 
gave these specific features, most likely due to the penalty 
coefficient of the general features. Therefore, in the noisy 
dataset, Robust TextCNN strongly outperformed distilled 
TextCNN. A further discussion of Robust TextCNN is 
given below. In summary, clinicians can use diagnostic evi-
dence from different classifiers to support their judgment.

However, we should note that some patients may not 
be distinguished purely by endoscopy and need further 
examinations due to the similarity of the endoscopic 
results of CD and ITB. Therefore, additional clinical and 
biological research on CD and ITB may be conducted 
to evaluate whether feature extraction by AI can help 
improve the upper limit value of the accuracy while dif-
ferentiating CD and ITB.

Limitations
Our current work is limited in that it only uses the descrip-
tion text of endoscopy reports. It should be noted that a loss 
of information can occur when inexperienced clinicians 
describe the endoscopic findings, and there are also CD and 
ITB cases that are not distinguishable by endoscopy. There-
fore, a combination of other clinical lab examinations(e.g. 
acid-fast staining, PCR based methods) and the text model 
can potentially improve the model’s classification capability 
and requires further research. Additionally, language pat-
terns may differ across institutions. Although the extracted 
differential features appear consistent with clinical experi-
ence and guidelines, the portability of the text model at dif-
ferent institutions requires further testing.

Conclusion
In this work, we developed a differential diagnosis appli-
cation using state-of-the-art natural language process-
ing for differentiating between CD and ITB, focusing on 
the accuracy, interpretability, and robustness aspects of a 
trustworthy AI. The resulting classifier performed well, 
and the extracted differential features that met statistical 
significance conformed with clinical guidelines, proving 
the effectiveness of our human-in-circle workflow.
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