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Abstract 

Background  Large-scale medical equipment, which is extensively implemented in medical services, is of vital impor-
tance for diagnosis but vulnerable to various anomalies and failures. Most hospitals that conduct regular maintenance 
have been suffering from medical equipment-related incidents for years. Currently, the Internet of Medical Things 
(IoMT) has emerged as a crucial tool in monitoring the real-time status of the medical equipment. In this paper, we 
develop an IoMT system of Computed Tomography (CT) equipment in the West China Hospital, Sichuan University 
and collected the system status time-series data. Novel multivariate time-series classification models and frameworks 
are proposed to predict the anomalies of CT equipment. The important features that are closely related to the equip-
ment anomalies are identified with the model.

Methods  We extracted the real-time CT equipment status time-series data of 11 equipment between May 19, 2020 
and May 19, 2021 from the IoMT, which includes the equipment oil temperature, anode voltage, etc. The arcs are 
identified as labels of anomalies due to their relationship with decreased imaging quality and CT equipment failures. 
To improve prediction accuracy, the statistics and transformations of the raw historical time-series data segment 
in the sliding time window are used to construct new features. Due to the particularity of time-series data, two frame-
works are proposed for splitting the training and test sets. Then the Decision Tree, Support Vector Machine, Logistic 
Regression, Naive Bayesian, and K-Nearest Neighbor classification models are used to classify the system status. We 
also compare our model to state-of-the-art models.

Results  The results show that the anomaly prediction accuracy and recall of our method are 79% and 77%, respec-
tively. The oil temperature and anode voltage are identified as the decisive features that may lead to anomalies. The 
proposed model outperforms the others when predicting the anomalies of the CT equipment based on our dataset.

Conclusions  The proposed method could predict the state of CT equipment and be used as a reference for practi-
cal maintenance, where unexpected anomalies of medical equipment could be reduced. It also brings new insights 
into how to handle non-uniform and imbalanced time series data in practical cases.
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Background
Currently, various medical equipment has been exten-
sively implemented in all aspects of medical services, 
including disease diagnosis, patient condition monitor-
ing and rehabilitation. Particularly, the large-scale digi-
tal radiology equipment such as Computed Tomography 
(CT), allowing for clear cross-sectional images of internal 
organs through X-rays, is of vital importance for medical 
facilities to treat patients. However, the CT equipment, 
which embeds sophisticated operating systems, is vul-
nerable to various types of damages during its operation. 
Anomalies such as failures of components and system 
outage, which occur unexpectedly during the equipment 
operation, have long plagued the hospitals as a problem. 
The equipment anomalies could result in low quality 
radiographic images, unexpected delays in patient care, 
costly maintenance services, and even serious patient 
incidents. According to the Joint Commission (TJC) [1], 
the safety accidents such as premature deaths, severe 
injuries and disability accidents, are closely related to 
the medical equipment failures [2]. It was reported that 
there were a total of 176 medical equipment-related inci-
dents in the US, accounting for 2.9% of the total number 
of 6093 activities collected from 8 hospitals during the 
period 2004–2011 [3]. Therefore, medical facilities such 
as hospitals and healthcare organizations must ensure 
high-level reliability of medical equipment to avoid oper-
ation disruptions and guarantee the patients’ safety.

To date, the maintenance strategies including Cor-
rective Maintenance (CM) [4], Preventive Maintenance 
(PvM) [5–10] and Predictive Maintenance (PdM) [11–
14], etc. have been widely applied to various fields such 
as mechanical engineering [15, 16], nuclear engineering 
[17], management science [18, 19], etc., which greatly 
improved the management level of those systems. How-
ever, the applications of maintenance models have not 
been thoroughly addressed on the medical equipment. 
Generally, most medical facilities perform equipment 
maintenance by following the manufacturer’s recom-
mendations. The manufacturer establishes maintenance 
schedules and provides maintenance guidance for the 
equipment. This type of routine maintenance scheduling 
does improve the reliability and reduces the failure risks 
of medical equipment to some extent, but fails to predict 
and avoid the anomalies or sudden failures [20].

As various monitoring tools and technologies have 
been developed in the last few decades, it was announced 
that the combination of preventive maintenance with 
monitoring data along with data analysis techniques 
would be the appropriate approach to predict equipment 
anomalies [21]. The Internet of Things (IoT), which inte-
grates the status information of machine components 
through the Internet, has emerged as a crucial technology 

to monitor the real-time status of targeted equipment 
[22]. Particularly, the Internet of Medical Things (IoMT), 
which obtains the real-time healthcare data from wear-
able devices and sensors [23], has received extensive 
attention. Currently, the development of IoMT is still at 
its early stage and most of the existing IoMT systems are 
focusing on improving the level of diagnosis related to 
the human body, rather than the medical equipment [24].

Many supervised ML algorithms have been applied to 
PdM, including Support Vector Machines (SVM) [25, 26], 
Ensemble Learning (EL) [27], and Deep Learning (DL) 
[28, 29] etc. However, these models are limited as fol-
lows. The data-driven model based on DL has high per-
formance, but there are still many problems when dealing 
with small data, and it requires excessive time for train-
ing. The data-driven model based on EL also performed 
well, but its computation is still time-consuming. In 
addition, the current models based on SVM and EL lack 
time dependence. The current state of the equipment is 
affected by the state of the past period. Therefore, it is 
inappropriate to consider only a single record or record 
that is only in a relatively short time for each anomaly 
observation. To dealing with small data in practical appli-
cation, building a time-dependent ML-based data-driven 
model with interpretability is necessary.

The IoMT architecture of West China Hospital is a ser-
vice architecture based on Edge Computing, as shown 
in Fig.  1. The most significant improvement of this 
architecture is the use of the locally deployed Structure 
Analysis Node to complete the computing tasks which 
were originally performed by the Cloud Computing. 
Computing, storage, applications, communications, and 
other services are all deployed locally, which can ensure 
information security and faster network response. The 
data is managed by the Medical Engineering Department 
of West China Hospital and stored in the Data Center. 
The data can be accessed under strict scrutiny. Besides, 
data transfer, storage, model download and update from 
the cloud are also conducted automatically rather than 
manually. The involved protocols include FTP, SSH, SMB, 
HTTP, and HTTPS. The details of this architecture are as 
follows:

A)	Medical equipment usually has sufficient sensors 
(including temperature sensor, voltage sensor, etc.) 
in the original design and the sensor data are stored 
in the log files. The IoMT of West China Hospital 
collect log files from equipment through IoT Collec-
tion Nodes and sends them to Structured Analysis 
Node. Data-driven models obtained from the Cloud 
in Structured Analysis Nodes are used to analyze the 
data extracted from the server (deployed in the Data 
Center). The data and the analyzed results are stored 
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on the server and displayed to the end user through 
the user interface. The data transmission uses two-
way financial encryption transmission based on AES 
256-bit, which effectively reduces the possibility of 
information leakage, interception, or tampering dur-
ing data transmission. The data collection box in the 
IoT Collection Nodes has passed the China Com-
pulsory Certification, the ISO9001 certification, and 
the ISO27001 certification and conforms to China’s 
national confidentiality standards.

B)	The data-driven model is continuously optimized 
through the statistical results of public computing 
services to ensure the improvement of model accu-
racy. Besides, the Cloud provides 7 × 24  h services 
for equipment to provide real-time updated models. 
Before the analysis, the Structured Analysis Node 
sends a model (such as anomaly prediction model) 
request connection through the Security Gateway 
and Front-End Processor to obtain the updated 
model from the cloud. The deployment of the Secu-
rity Gateway and Front-End Processor greatly pro-
tects information security. The Front-End Processor, 
which has information interaction with the server, is 
deployed in the Demilitarized Zone of the hospital. 
To ensure data security, the Public Network Zone 

and Intranet Zone only conduct limited necessary 
path information exchange approved by the informa-
tion regulatory authority.

In this paper, we develop a data-driven model to pre-
dict CT equipment anomalies based on the real-time 
status data of CT equipment obtained from the IoMT 
in West China Hospital, Sichuan University. The CT 
status parameters that are related to its condition, such 
as oil temperature, anode voltage, daily arcing time and 
daily scan time, etc. are continuously monitored. Our 
research can significantly minimize the stagnation and 
losses and improve the maintenance management. To the 
best knowledge of the authors, this is the first time that 
a sophisticated IoMT on large-scale medical equipment 
is developed and meanwhile, to be applied to investigate 
the anomaly of the medical equipment. Meanwhile, it is 
fairly new to combine the state-of-art machine learning 
models with the advanced monitoring tools in the medi-
cal field.

The rest of this paper is organized as follows: 
Sect.  "  The CT equipment and IoMT data" describes a 
typical CT system and the dataset we obtained from the 
IoMT of the West China Hospital, Sichuan University; 
Sect.  "  Methods" introduces our research procedures; 

Fig. 1  The IoMT architecture of West China Hospital
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Sect.  "  Results and analysis" shows the results; conclu-
sions, discussions and future research directions are 
given in Sect. " Discussion".

The CT equipment and IoMT data
The CT Equipment
Figure  2 shows the diagram of a typical CT equipment. 
CT equipment usually operates at the maximum power 
rate in order to obtain the best image quality [30]. In a 
scan process, the fan-shaped beam of X-rays emitted 
from the CT tube passes through the patient onto a num-
ber of digital detectors, which receive the X-rays and 
convert them into medical images. During this process, 
the X-ray tube generates a large amount of heat while 
only about 1% of electrical energy is effectively converted 
into X-rays [31].

The overheating caused by varies reason such as over-
load operation of the CT tube may cause damage [31].
Firstly, the cathode and anode evaporate at high tem-
perature, resulting in glass metallization, which will lead 

to arcing generation [32]. Secondly, the sublimation of 
tungsten wire caused by high temperature will cause 
tungsten particles to be emitted into the vacuum area to 
form impurities [30, 33]. The class cracks caused by high 
temperatures during exposure may allow air to enter 
the vacuum tube [30, 32]. However, the X-ray tube that 
works at high voltages requires a high-vacuum environ-
ment inside the tube. Arcing occurs when the required 
vacuum environment is broken and a conductive bridge 
between the cathode and the impurities is formed [34]. 
As shown in Fig. 3, the cooling system is used to dissipate 
heat, and the cooling oil can reflect the tube temperature. 
Besides, arcing may be generated when the operation of 
the equipment is at the maximum power rate for a rela-
tively long time in a fixed period [30]. In addition, poor 
sealing of the vacuum tube will cause air to enter slowly 
and damage the vacuum environment as the tube age 
increases. Moreover, the voltage and current of the X-ray 
tube are also key factors that are related to the arcing of 
the tube [32].

Fig. 2  A typical CT equipment and a scan process

Fig. 3  The working mechanism of a CT tube
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Arcing not only could result in low-quality radio-
graphic images, but also is closely related to the unsta-
ble performance of CT or breakdown of the tube [34, 
35]. Arcing can cause artifacts that are seen as near-
parallel and equidistant streak patterns or “horizontal” 
hypodense bands in images, which can reduce the qual-
ity of images and affect the clinical diagnosis [33, 35]. In 
addition, although various anomalies of X-ray tubes have 
been discussed in the literature, tube arcing is generally 
considered as the most typical and dangerous early sign 
of a CT equipment failure, indicating the end of the life 
expectancy of the X-ray tube [30, 32]. X-ray tubes are 
very sensitive to electronic breakdown caused by arcing, 
which may directly damage the tube insulation layer, thus 
causing irreversible damage [34]. The tube damage will 
make the equipment unusable and even cause the patient 
to die due to exposure to radiation. Therefore, arcing is 
worthy of attention as it is closely related to image quality 
and CT failure.

Data Description
In this study, the continuously monitored real-time CT 
equipment status data from the IoMT of the West China 
Hospital is used to predict the anomaly of the CT equip-
ment. This dataset contains the operational status data 
of 11 CT equipment. The features of the dataset include: 
Oil Temperature ( OT  ), Anode Voltage ( AV  ), Cumulative 
Tube Scanning Time ( TST  ) and Cumulative Consump-
tion of the Electrical Energy ( CE ). The appearance of 
arcing in the tube, which is closely related to image qual-
ity and CT failure as previously explained in Sect.  " The 
CT Equipment", is treated as labels. As the arcing data 
of only 3 CT equipment are available, we only consider 
the data of these 3 equipment (CT1, CT2, CT3) in this 
project. The details of the dataset are shown in Table 1. 
As shown in the Gantt chart in the table, missing data 
appears from time to time in the dataset due to IoMT 
system malfunction. There are a total of 33 observations 
in the arcing class, which is significantly smaller than that 
of 733 in the non-arcing class, the dataset is imbalanced. 
This will be considered in the model development.

Methods
Data preprocessing and features construction
As shown in Fig. 4, the raw observations from different 
IoMT sensors were obtained at a non-uniform frequency. 
We average the original observations of each sensor 
for that day and get the daily average data. In this way, 
the following features are obtained: the Daily Average 
Oil Temperature ( AOT  ), Daily Average Anode Voltage 
( AAV  ), Daily Average Cumulative Tube Scanning Time 
( ATST  ), and Daily Average Cumulative Consumption of 
Electrical Energy ( ACE).

To further distinguish the arcing generation from other 
situations, new features are constructed and considered 
in the model. The new features including Daily Tube 
Scanning Time ( DTST  ) and Daily Consumption of Elec-
trical Energy ( DCE ) are obtained by taking the first-order 
difference of TST  and CE data. In addition, as the CT tube 
anomaly is closely related to the equipment operating 
current (tube current is considered here, which is direct 
current [36]), the equipment current is obtained as a new 
feature Current ( I ) based on the following equation:

The CT equipment health state is also related to its idle 
time due to the cold emission phenomenon [9] which 
leads to the ionization and arcing inside the idle X-ray 
tube. Based on this phenomenon, the new feature IDLE 
is created, which indicates whether the X-ray tube is 
idled in the past n days. Besides, in order to improve the 
accuracy of the model, the derivation of the AOT  , AAV  , 
DTST  , DCE , and I data are obtained and denoted as 
AOTd , AAVd , DTSTd , DCEd , Id [37].

The Sliding Window algorithm is a method that has 
been widely implemented to predict future values, which 
constructs new features using the historical data in the 
previous days. In constructing the sliding window fea-
tures, we follow these two rules:

(1)	 Extract the maximum or average values in the time 
window.

(2)	 Based on (1), if the value meets a certain condition, 
it is marked as 1. Otherwise, it is marked as 0.

Based on 3.1, the following features are obtained as 
shown in Table  2. Note that the Z-Score Normalization 
technique is used to normalize the features when apply-
ing rule 1.

Training and testing dataset construction
According to Sect.  "  Data Preprocessing and Features 
Construction", the new instance is formed by extract-
ing the statistical values of the past period and marking 
the labels transformed by the time window. We compare 
the performance metrics using fivefold cross-validation 
for each parameter combination to fully use data, which 
can guarantee the reliability of the results. Data are split 
into five datasets, where one of them is used as the test 
set and the rest are used as the training set. However, the 
positive instances are concentrated over a small period of 
several months. If an equipment is split into five datasets 
in chronological order, some datasets will have no posi-
tive instances. Therefore, we choose to arrange the nega-
tive instances in chronological order and split them into 

(1)I=
DCE

AAV · DTST
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five datasets. For positive instances, we choose to bundle 
them from adjacent days and randomly split them into 
five datasets.

As the positive observations are mainly from CT1, two 
frameworks are proposed to construct the training and 

test datasets. As shown in Fig.  5, framework 1 uses the 
data from all the three equipment and split it into train-
ing and test set, while framework 2 only uses data from 
equipment CT1, split it into the training and test set 
and then add the positive instances from the other two 

Table 1  The details of the CT dataset from the IoMT
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equipment training set. Random oversampling is used to 
increase the size of the minority class [38].

Multivariate time series classification models
Models including Decision Tree (DT), SVM, Logistic 
Regression (LR), Naive Bayesian (NB), and K-Nearest 
Neighbor (KNN) are used in the prediction of anomalies 
in the multivariate time series dataset. The performance 

of those models are compared and the optimal one is 
selected. The optimal window size parameters in Table 2 
are obtained, which result in the best model perfor-
mance. The model is then compared with several state-
of-the-art time series classification models, including 
BOSS [39], CIF [40], DrCIF [41], TDE [42] and DTW 
[43]. The model is also compared with the ML-based 
PdM model which lacks time dependence.

Fig. 4  An example of the raw time series data of a CT equipment

Table 2  Features description

Feature Description Window size Time lag

AOTMax Maximum AOT  data in the time window n1 1

AAVMax Maximum AAV  data in the time window n2 1

IMax Maximum I  data in the time window n3 1

IDLE IDLE = 1 if there is at least one day IoMT receives no data from the equipment in the time window. Otherwise, 
IDLE = 0

n4 1

AOTdMax AOTdMax = 1 If the maximum absolute value of AOTd is greater than a threshold a in time window. Otherwise, 
AOTdMax = 0

n5 1

AAVdMax AAVdMax = 1 If the maximum absolute value of AAVd is greater than a threshold b in time window. Otherwise, 
AAVdMax = 0

n6 1

IdMax IdMax = 1 If the maximum absolute value of Id is greater than a threshold c in time window. Otherwise, IdMax = 0 n7 1

Arcingw Arcingw = 1 if there is at least one day IoMT receives the observation of arcs in the tube from the equipment 
in the time window. Otherwise, Arcingw = 0

n8 1
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Performance evaluation
Accuracy (Acc), Recall (Rec), Precision (Pre), and 
F1-score (F1) are used as the performance metrics of 
the classification models. Acc is calculated by Eq.  (2) to 
reflect the overall classification ability. Rec is calculated 
by Eq.  (3), which is the fraction of true anomalies that 
are predicted as anomalies. Pre is calculated by Eq.  (4), 
which is the fraction of predicted as anomalies that are 
the true anomalies. F1 is calculated by Eq.  (5), which is 
the performance metric that considers both Rec and 
Pre simultaneously. We also draw the receiver operating 
characteristic (ROC) curve and calculate the area under 
the curves (AUC) to evaluate the performance of the 
classification model.

(2)Acc =
TP + TN

TP + TN + FP + FN

(3)Rec =
TP

TP + FN

(4)Pre =
TP

TP + FP

(5)F1 = 2 ∗
Rec ∗ Pre

Rec+ Pre

where TP is true positive, TN is true negative, FP is false 
positive and FN is false negative.

However, the label in the training and test set has been 
transformed by the time window. The explanation of the 
performance matrix is modified according to the actual 
situation. For example, Acc is the probability of correctly 
predicting whether arcing will occur in the next few days.

Results and analysis
The windows system with an 8-core CPU, the program-
ming language Python (version 3.9), and the software 
tool Spyder (version 5.1) are used to read the data and 
build the model. Table 3 and Fig. 6 show the performance 
metrics of the 5 models under the two frameworks with 
the optimal parameters. The overall performance of the 
models under framework 2 are better than those under 
framework 1. Particularly, the performance metrics of 
NB model and KNN model under framework 2 are the 
best. The NB model has higher Acc, Pre, and AUC, indi-
cating that the model has a lower false alarm rate. On 
the contrary, the KNN model has higher Rec and F1, 
indicating that the model has a higher ability to alarm 
on anomalies. In addition, DT models also perform well. 
The ROC curves and the AUC values of the three models 
under framework 2 are obtained as shown in Fig. 7. It is 
observed that the NB model, with the highest (0.88) AUC 
value, has the best overall classification performance. 
The training time of DT, NB and KNN model under 

Fig. 5  Schematic diagram of the two training and test dataset construction frameworks
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framework 2 is 0.671, 0.679 and 0.837  h respectively. 
Table 4 shows the optimal parameters of DT, NB, KNN 
model under framework 2.

The two most important features identified by the 
three models under framework 2 are shown in Table  5. 
The results show that AOTMax and AAVMax are the most 
important features in models DT and KNN, while IdMax 
and AOTMax are the most important features in model 
NB. This suggests that the raw features OT  and AV  are of 
primary importance in predicting the anomalies. Mean-
while, it also indicates that the reliability can be improved 
by properly operating the CT equipment, e.g., adjust the 
anode voltage slowly rather than quickly.

The performance metrics of the proposed model are 
compared with other state-of-the-art models. We apply 
each model to the dataset under the two frameworks 
as described in Fig.  5, and show the performance met-
rics of the one with the best performance in Table  6. It 
is observed that the proposed model has the best perfor-
mance among all the models in this situation.

The performance metrics of the proposed model were 
compared with the model lacking time dependence. DT, 
SVM, LR, NB, and KNN algorithms are used to represent 
ML-based models, and Random Forests (RFs) algorithms 
are used to represent EL-based models. However, the 
DL-based model is not considered here because the data 
size is insufficient. Two frameworks are used to train and 
test the performance of the time-independent models. 
Table 7 shows that our proposed model has higher per-
formance in our situation.

In order to show the prediction ability of the model 
more intuitively, part of the data is selected as the test 
set, and the remaining data is used as the training set to 
train the model and make the prediction. Figure 8 shows 
the real arcing, the real arcing transformed by using the 
time window, and the prediction results of the three 
best models from December 13, 2020, to December 25, 

2020 in equipment CT1. The lightning mark in the figure 
represents the generation of the real arcing and the real 
arcing transformed by using the time window. The excla-
mation mark in the figure represents the result predicted 
by the three best models using historical data. The results 
show that our model has the ability to predict the arcing 
accurately.

In order to verify whether the dataset size can guaran-
tee the model’s reliability, the training sets with different 
instance combinations are used to train the model and 
the cross-entropy loss of the test set is calculated. Firstly, 
the instances are divided into training and test set. Then 
the training set is split into several bins with equal-size 
of instances. In the first iteration, a bin is selected from 
the candidate training set as the training set of the model, 
and the average cross-entropy loss of the test set is cal-
culated. For each iteration, add a bin to the training set 
and calculate the average cross-entropy loss of the test 
set again. The fivefold cross-validation is used to repeat 
the above step and calculate the average loss. Take the 
NB model under framework 2 as an example as shown in 
Fig. 9. It is observed that with the increase of the data size 
in the training set, the cross-entropy loss of the test set 
decreases quickly at first and then maintains at a stable 
state. The increase of data size stop reducing the average 
loss of test sets after several iterations. Therefore, it is evi-
dent that the proposed models are reliable based on the 
current data.

Discussion
Given the losses of hospitals and patients that may 
result from the anomalies of medical equipment, 
predicting those anomalies in advance is of vital 
importance. In our work, a data-driven model that pre-
processes and analyzes time series status data obtained 
from the IoMT is proposed to predict the anomalies 
of the CT equipment. Specifically, seven new features 

Table 3  Performance metrics of the classification models

Models Acc Rec Pre F1 AUC​

framework 1 DT 0.83 0.54 0.30 0.34 0.69

SVM 0.94 0.12 0.60 0.18 0.56

LR 0.65 0.74 0.25 0.33 0.73

NB 0.70 0.88 0.34 0.42 0.82

KNN 0.72 0.76 0.24 0.32 0.72

framework 2 DT 0.78 0.78 0.40 0.51 0.78

SVM 0.86 0.16 0.68 0.24 0.71

LR 0.71 0.82 0.34 0.46 0.81

NB 0.79 0.77 0.45 0.51 0.88
KNN 0.76 0.83 0.42 0.54 0.80
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Fig. 6  Performance metrics of the classification models
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are constructed through the sliding time window based 
on the failure mechanism of CT equipment. Based on 
random oversampling, two methods of splitting train-
ing and test sets are proposed to deal with imbalanced 
data.

In this study, we demonstrate the applicability of clas-
sification models to the prediction of anomalies of medi-
cal equipment, which are continuously monitored by 
the IoMT in the hospital. Whenever the sensor collects 
data and stores it in IoMT, the data-driven model will 
use current and past data to predict whether the equip-
ment will be an anomaly in the next few days. It is shown 
that the proposed model is better than existing models in 
this application. In practice, although large-scale medi-
cal equipment such as CT are critical for disease diagno-
ses and are extensively used every day, very few in-depth 

Fig. 7  Average ROC and AUC values of the three models

Table 4  The optimal model parameters

n1 n2 n3 n4 n5 n6 n7 n8 a b c

DT 3 4 3 4 5 4 3 3 5 40 0.216

NB 5 5 5 5 5 5 3 3 5 40 0.180

KNN 5 5 4 5 4 5 4 3 5 50 0.252

Table 5  The two most important features identified by the three 
models under framework 2

DT NB KNN

1 AOTMax IdMax AOTMax

2 AAVMax AOTMax AAVMax

Table 6  The best performance metrics for models

Model Acc Rec Pre F1 AUC​

BOSS 0.54 0.70 0.16 0.26 0.61

CIF 0.62 0.51 0.22 0.29 0.63

DrCIF 0.72 0.50 0.24 0.32 0.60

TDE 0.65 0.49 0.20 0.27 0.63

DTW 0.66 0.52 0.20 0.25 0.61

Our Best Model: NB 0.79 0.77 0.45 0.51 0.88

Our Best Model: KNN 0.76 0.83 0.42 0.54 0.80

Table 7  The best performance metrics for time-independent 
ML-based models

Model Acc Rec Pre F1 AUC​

DT 0.75 0.57 0.31 0.37 0.68

SVM 0.92 0.06 0.24 0.08 0.52

LR 0.68 0.64 0.28 0.36 0.67

NB 0.71 0.41 0.26 0.28 0.60

KNN 0.64 0.75 0.28 0.39 0.69

RFs 0.74 0.63 0.35 0.42 0.70

Our Best Model: NB 0.79 0.77 0.45 0.51 0.88

Our Best Model: KNN 0.76 0.83 0.42 0.54 0.80
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studies have been conducted to ensure its reliability 
during the operation. The ability of the regular mainte-
nance strategies recommended by the manufacturers 
are limited in preventing unexpected failures. To the 
best knowledge of the authors, the work of this paper is 
a pioneering attempt to predict anomalies of large-scale 
medical equipment based on the IoMT data. It enables 
the maintenance team to estimate the reliability of equip-
ment in real-time and make proper maintenance deci-
sions accordingly. In the future, the data-driven methods 
combined with the IoT technology, which are flexible in 
incorporating unexpected failures of equipment, will 
show great potential in ensuring the reliability of equip-
ment in the medical field.

The work has some limitations. First, although 11 CT 
equipment are monitored by the IoMT, the status data 
of only 3 CT equipment are complete and are used for 
model development. In the future work, more high-qual-
ity CT equipment status data should be used for model 
development, training and testing. Second, the feature 
I is slightly different from the real value, because it is 

estimated from the DCE , AAV  , and DTST  . In the future 
work, sensors will be installed on the CT equipment to 
obtain the real-time I data. Third, based on the raw time 
series, more features should be constructed to reflect 
more aspects of the status of the equipment. Fourth, cur-
rently the parameters such as the window sizes and time 
lags are obtained by experiments. In the future work, the 
parameters could be systematically updated to improve 
the performance of the model.

Conclusions
The reliability of large-scale medical equipment has been 
a concern of hospitals and medical institutions. In this 
study, we propose a novel multivariate time-series clas-
sification model that uses the status data from the IoMT 
to predict the CT equipment anomalies. The statistics 
and transformations of the raw historical time-series data 
segment in the sliding time window are used to construct 
new features. The proposed two frameworks for train-
ing and test datasets construction overcome the issues of 
data imbalance. Of the 5 classification models used, NB 

Fig. 8  The arcing and prediction result of three models

Fig. 9  The average cross-entropy loss of each iteration in the NB model
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has the best performance with the Acc and Rec of 0.79 
and 0.77 respectively, which shows the applicability and 
practicability of predicting medical equipment anoma-
lies based on IoMT with data-driven models. The iden-
tified important features may provide instructions to the 
equipment operators to ensure the reliability of the medi-
cal equipment. It is shown that the proposed model is 
better than existing models in this application.
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