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Abstract
Objectives  Anti-thrombotic therapy is the basis of thrombosis prevention and treatment. Bleeding is the main 
adverse event of anti-thrombosis. Existing laboratory indicators cannot accurately reflect the real-time coagulation 
function. It is necessary to develop tools to dynamically evaluate the risk and benefits of anti-thrombosis to prescribe 
accurate anti-thrombotic therapy.

Methods  The prediction model,daily prediction of bleeding risk in ICU patients treated with anti-thrombotic therapy, 
was built using deep learning algorithm recurrent neural networks, and the model results and performance were 
compared with clinicians.

Results  There was no significant statistical discrepancy in the baseline. ROC curves of the four models in the 
validation and test set were drawn, respectively. One-layer GRU of the validation set had a larger AUC (0.9462; 95%CI, 
0.9147–0.9778). Analysis was conducted in the test set, and the ROC curve showed the superiority of two layers LSTM 
over one-layer GRU, while the former AUC was 0.8391(95%CI, 0.7786–0.8997). One-layer GRU in the test set possessed 
a better specificity (sensitivity 0.5942; specificity 0.9300). The Fleiss’ k of junior clinicians, senior clinicians, and machine 
learning classifiers is 0.0984, 0.4562, and 0.8012, respectively.

Conclusions  Recurrent neural networks were first applied for daily prediction of bleeding risk in ICU patients treated 
with anti-thrombotic therapy. Deep learning classifiers are more reliable and consistent than human classifiers. The 
machine learning classifier suggested strong reliability. The deep learning algorithm significantly outperformed 
human classifiers in prediction time.
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Introduction
Coagulopathy caused by excessive activation of the 
coagulation system is a vital mechanism of organ failure 
[1, 2]. High risk factors of coagulation activation were 
found in critically ill patients, such as atrial fibrillation, 
unstable coronary heart disease, tumor, long diaphysis 
fracture surgery, medical device implantation, etc. Anti-
thrombosis guarantees the administration of life and 
organ support techniques such as blood purification and 
extracorporeal membrane oxygenation. Anti-thrombotic 
therapy is the basis of thrombosis prevention and treat-
ment [3–5]. Therefore, anti-thrombosis is widely applied 
to critically ill patients.

Bleeding is the main adverse event of anti-thrombosis 
[6]. Coagulation monitoring and evaluation are compli-
cated. There are many differences among each patient, 
including etiology, host response, organ function, and 
clinical interventions [7]. The existing laboratory exami-
nations of clotting function are neither able to reflect 
coagulation nor to predict haemorrhage. Some specific 
diseases, such as severe liver dysfunction [8], will lead to 
significant abnormalities in coagulation test results, dif-
ferent from the actual state of hyper-coagulable [9–11]. 
Once a bleeding event occurs in patients treated with 
anti-thrombotic therapy, it is usually severe [12]. It gen-
erally led to prolonged hospitalization and life-threat-
ening events. Mortality rates can be increased by 1.5-5 
times [13], especially when intracranial haemorrhage 
occurs [13, 14]. Therefore, anti-thrombotic therapy 
requires daily assessment and timely adjustment. Criti-
cal patients will experience different pathophysiological 
changes, such as acidosis, hypothermia, shock, hypox-
emia, hypoproteinemia, etc. These changes and other 
factors, such as the dosage of anticoagulant drugs, the 
patient’s weight, and hepatic and renal function, have 
an impact on anticoagulant therapy. The technologies of 
organ support, which may activate coagulation, cannot 
be separated from anticoagulants. Evaluation is chal-
lenging since existing laboratory indicators cannot accu-
rately reflect the real-time coagulation function. Existing 
anti-thrombotic therapy guidelines, such as Anti-throm-
botic Therapy and Prevention of Thrombosis, 9th ed: 
American College of Chest Physicians Evidence-Based 
Clinical Practice Guidelines [15] and American Gastro-
enterological Association-Canadian Association of Gas-
troenterology Clinical Practice Guidelines: Management 
of Anticoagulants and Anti-platelet Agents During Acute 
Gastrointestinal Bleeding and Endoscopy [16], are not 
applicable to ICU patients. Therefore, it is necessary to 
develop tools to dynamically evaluate the risk and ben-
efit of anti-thrombosis in line with the pathophysiological 
and pharmacokinetic characteristics of ICU patients, to 
prescribe accurate anti-thrombotic therapy.

With the rapid development of artificial intelligence(AI) 
neural networks, there have been a number of studies 
applying traditional machine learning or deep learning 
algorithms to predict bleeding events, including predict-
ing their risk based on the least absolute shrinkage and 
selection operator (LASSO) algorithm [17], using clas-
sification regression trees (CART) and other algorithms 
to predict the bleeding risk of anti-thrombotic therapy 
in patients with deep vein thrombosis [18] and so on. At 
present, there are a lot of long-term bleeding prediction 
models for single disease, such as new oral anticoagu-
lant atrial fibrillation patients bleeding prediction model 
[19], but there is no daily predictive model for complex 
multifactorial concurrent antithrombotic therapy in ICU 
patients, so comparisons cannot be made. This study 
intends to use the deep learning algorithm of the recur-
rent neural network(RNN), RNNs can retain a hidden 
state or memory at each time step, passing information 
from previous time steps to the current time step, allow-
ing for a better understanding and prediction of changes 
and trends in time series data [20], algorithm to develop 
a dynamic prediction model for adverse events of criti-
cally ill patients based on the Medical Information Mart 
for Intensive Care (MIMIC) dataset. In order to apply the 
new AI deep learning technology to establish a dynamic 
and individualized anti-thrombotic therapy for critically 
ill patients, to guide ICU physicians to timely implement 
anti-thrombotic measures, to reduce the incidence of 
adverse events such as bleeding and to improve clinical 
efficacy.

Methods
Database
This study was a retrospective study, all data were col-
lected from the Medical Information Mart for Intensive 
Care III (MIMIC-III)(https://physionet.org/content/
mimiciii/1.4/), which is a large, open-source, single-cen-
ter critical care database that collected more than 50,000 
patients’ information from Beth Israel Deaconess Medi-
cal Centre in Massachusetts, USA, from 2001 to 2012 [21, 
22]. All experiments were performed in accordance with 
relevant guidelines and regulations (Declaration of Hel-
sinki). This database includes patients’ basic information 
without names, diagnosis, laboratory test results, and 
other helpful information. The ethics committees of the 
Massachusetts Institute of Technology and Beth Israel 
Deaconess Medical Centre have approved the implemen-
tation of the project. Requirements for individual patient 
consent and an ethical approval statement were waived 
in Shanghai General Hospital because the project do no 
harm to humans, there’s no commercial interest, and did 
not impact clinical care and the data used in this database 
was anonymous. Researchers can apply for permission 
for free. The users, must pass a test to qualify to register 

https://physionet.org/content/mimiciii/1.4/
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for the database and be approved by MIMIC-III database 
administration staff. After passing a training course “Pro-
tecting Human Research Participants” on the website of 
National Institutes of Health (NIH), an author (Daonan 
Chen) was approved to extract data from this database 
for research purposes (certifcation number: 38,314,451). 
Since the latest MIMIC-IV database had no medical text 
content until the completion of this research and the 
medical text was necessary to diagnose bleeding in this 
study, the database version used in this research was 
MIMIC-III v1.4.

Study population
Patients in the MIMIC-III database treated with anti-
platelet or anti-coagulant drugs were included in this 
study. Anti-platelet and anti-coagulant drugs included 
aspirin, clopidogrel, ticagrelor, warfarin, rivaroxaban, 
dabigatran, heparin, enoxaparin, and fondaparinux. 
Patients who used these drugs for less than two days or 
had bleeding events on the first day of administration 
were excluded, and the remaining patients were included 
in the final study.

Outcome definition
We used the bleeding events of medical text and the dis-
continued events of anti-platelet or anti-coagulant drugs 
to determine whether the patients were bleeding. For the 
bleeding events of the medical text, we referred to the 
judging criteria provided by Taggart’s article [23]. There 
were two situations considered bleeding events, includ-
ing medical text on the day of drug withdrawal and on 
the day before. The time of bleeding events in the medical 
text was regarded as the final bleeding time.

Data extraction
We collected clinical and laboratory indicators of all 
patients from MIMIC-III database(https://physionet.
org/content/mimiciii/1.4/) to build the model, includ-
ing basic information (age, gender, comorbidities), vital 
signs (respiratory rate, blood pressure, heart rate, body 
temperature, pulse oxygen saturation), laboratory data 
(blood gas analysis, routine blood test, liver, and kidney 
function results, coagulation test and so on), and the type 
of anti-platelet and anti-coagulant drugs. In this study, we 
referred to Darzi et al.‘s review [24] and related research 
for the selection of relevant features and weights, which 
will help avoid selection bias and improve the robust-
ness and generalization ability of the model. The weight 
of the indicators was divided into four levels: the first 
level: clotting time indicators, TEG, platelets, the dosage 
and route of use of anti-thrombotic drugs, etc.; The sec-
ond level (physiological indicators that might affect the 
coagulation function and the metabolism and effects of 
anti-thrombotic drugs): liver and kidney function results, 

blood gas analysis, fluid load, albumin, et.; The third level 
(other risk-factor indicators in traditional prediction 
models): age, gender, past history, hormonal drugs use, 
etc.; The fourth level: other remaining indicators [25].

Statistical analysis
We used Python (3.6), R (3.6), and PyTorch (1.7) for 
model building and analysis. Deepwise & Beckman Coul-
ter DxAI platform (https://dxonline.deepwise.com) was 
used for analysis. Because continuous variables were not 
normally distributed, we used the median and interquar-
tile range to express them in order to compare the basic 
information of different datasets. Categorical variables 
were expressed as the number of events and the percent-
age of events to the total events, using the Chi-square test 
to compare different datasets. Since the previous analy-
sis showed that the proportion of bleeding events and 
non-bleeding ones was too small, we selected patients 
from the bleeding group who had non-bleeding events 
for at least one day before bleeding events and randomly 
selected 1,000 patients from the non-bleeding group for 
the final study. In the non-bleeding group, patients were 
randomly divided into the training set, validation set, 
and testing set according to the ratio of 8:1:1 for model 
construction. In the bleeding group, the patients were 
randomly divided into training: validation: testing set 
at the ratio of 8:1:1. In this research, each case corre-
sponded to a unique icustay_id, and each icustay_id was 
distinct, representing a single ICU admission record for a 
patient. The training, validation, and testing datasets for 
the model were kept separate, and there was no overlap 
between them.

For bleeding patients, we used the data from the begin-
ning of the drug use to the day before bleeding to train 
the model to predict whether there was bleeding on the 
next day. For non-bleeding patients, we used the data 
from the beginning of the drug use to the day before the 
drug withdrawal to train the model. We hoped that the 
final model could use the data from the previous few days 
to predict whether the patient would bleed the next day 
in order to implement antithrombotic measures (Fig. 1).

We conducted explorations with various RNN 
methods, eventually utilizing Long Short-Term 
Memory (LSTM) and Gated Recurrent Unit (GRU) 
architectures to build our model. Our model consists of 
a deep sequence model, which includes one or two layers 
of LSTM or GRU, and a linear layer. Patient clinical infor-
mation, collected over multiple dates, was normalized 
using Z-score normalization and then fed into the model. 
The Z-score normalization is defined as z = (x − µ) /σ , 
where x  represents the raw feature values, µ  is the mean 
value of x , and σ  is the standard deviation of x . Given 
that the number of patient visits was not consistent, 
we adjusted sequences to a consistent length of 80. For 

https://physionet.org/content/mimiciii/1.4/
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sequences with fewer than 80 data points, we employed 
zero padding to reach this length. For sequences exceed-
ing 80 data points, we truncated the sequence to fit the 
specified length.

The data was first passed through LSTM or GRU to 
generate 128-dimensional features, which were then 
inputted into the linear layer to output the probability of 
patient bleeding. The model’s parameters were updated 
through binary cross-entropy loss and the Adam opti-
mizer. During the model training process, we determined 
the optimal hyperparameters (specifically, learning rate 
and batch size) via grid search, using the Area Under the 
Curve (AUC) metric on the validation set for verification. 
The final model was trained over 10 epochs with a batch 
size of 32 and a learning rate of 1e-3. Additionally, we 
masked the gradient at padding value positions to pre-
vent missing data from contributing to model training.

We evaluated different models using the receiver oper-
ating characteristic (ROC) curve and area under the 
curve (AUC). We also used survival curves to compare 
the prognosis of bleeding and non-bleeding patients. 
Additionally, we compared the performance of each 
trained deep learning model with human evaluations 
on different metrics: accuracy, F1-score, precision, and 
recall. Accuracy and corresponding 95% CI were also 
compared. Inter-rater reliability (IRR) was carried out to 
measure to what extent different classifiers have the same 
result. Reliability does not measure whether classification 
matches the ground truth, only whether different clas-
sifiers agree on the same classification. k > 0.4 is a weak 
agreement, k > 0.6 is a moderate agreement, and k > 0.8 is 
a strong or almost perfect agreement [26]. In this study, 
p < 0.05 was considered statistically significant.

Results
Baseline characteristics
61,531 ICU patients were screened from the MIMIC-III 
database in this research. 30,270 patients treated with 
anticoagulant and anti-platelet agents remained after 

exclusion of less than 24-hour ICU stays and bleeding on 
the first day of admission. There were 29,332 non-bleed-
ing patients (96.9%) and 938 bleeding patients (3.01%). All 
of the 938 patients were incorporated into the study, and 
at the meantime, 1000 non-bleeding patients were ran-
domly extracted. Totally, 1938 patients of the two groups 
were eventually brought into the study. 800 patients were 
respectively selected from the two groups to establish a 
training set, and the rest 338 patients were divided into 
a test and validation set at the ratio of 1:1(Fig. 2). There 
was no significant statistical discrepancy among the three 
sets in baseline, which included gender, age, underlying 
diseases, and so on (Table 1).

60- day and 90-day mortality rate
The number of death patients in non-bleeding and bleed-
ing groups was respectively 427 and 4156 (14.17% vs. 
45.52%), and the number of death patients in 90-day was 
454 and 4757 (16.22% vs. 48.40%). Kaplan-Meier was 
used to draw the survival curve in 60 and 90 days, and the 
graph showed the mortality of both in the bleeding group 
is remarkably higher than that in non-bleeding group 
(Fig. 3).

Model performance comparisons
Clinical parameters from the beginning of anti-throm-
botic drugs administration to bleed, transfer, and dis-
charge of all patients were collected, and RNN was used 
to establish haemorrhage prediction model of anti-
thrombotic therapy. The model was composed of a lin-
ear layer and a deep sequence model, including 1 or 2 
layers of LSTM or GRU. To be specific, the clinical data 
sequence, which included the clinical test data for mul-
tiple days of the patients, was input into the model. The 
data were first passed through LSTM or GRU to gener-
ate 128-dimensional features and then were input into 
the linear layer to output the probability value of bleed-
ing. Cross-entropy loss was adopted in the model, and 
the learning rate algorithm was optimized with Adam. 

Fig. 1  Dynamic prediction of bleeding event model: when the patient starts using anticoagulant or anti-platelet drugs, the model will predict and evalu-
ate the risk of bleeding the next day based on daily indicators. If the patient has a bleeding event and the drugs are withdrawing, the model will stop, and 
when the treatment restarts, the prediction will be restarted
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The ratio of prediction probability to the pre-determined 
probability of bleeding was 0.5, and it was predicted to 
bleed when the ratio was over 0.5 (Fig. 4).

ROC curves of the four models in the validation set and 
test set were drawn, respectively (Fig. 5). One-layer GRU 
in the validation set possessed a larger AUC (0.9462; 
95%CI, 0.9147–0.9778), and the sensitivity and specificity 

of the prediction model were 0.8261 and 0.9100, respec-
tively. Analysis was conducted among the 169 patients in 
the test set, and the ROC curve showed that two-layer 
LSTM was superior to one-layer GRU. The AUC of the 
former was 0.8391 (95%CI, 0.7786–0.8997), and the 
sensitivity and specificity were, respectively, 0.6232 and 
0.9100. However, one-layer GRU had higher specificity 

Fig. 3  Survival curves at 60 and 90 days in patients with and without bleeding

 

Fig. 2  Flowchart of dataset construction
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(sensitivity 0.5942, specificity 0.9300), and the AUC was 
0.8196 (95%CI, 0.7551–0.8840). The sensitivity and speci-
ficity of the four prediction models were summarized in 
Table 2.

Compared with manual verification
Here we demonstrate the effectiveness of deep learning 
in the daily prediction of bleeding in ICU patients treated 

with anti-thrombotic drugs. Using the GRU model 
trained on general bleeding classification, we match the 
performance of at least 5 doctors in the ICU tested. Reli-
ability measures are suggested to measure whether differ-
ent classifiers agree on the same classification result. It is 
measured by Fleiss’ k as our data contains more than 2 
classifiers per set. K has an upper limit of 1, and negative 
values of k imply disagreement beyond what would be 
expected by chance alone. Kappa is suggested to evaluate 
the interrater reliability with the following scale: k > 0.4 is 
a weak agreement, k > 0.6 is a moderate agreement, and 
k > 0.8 is a strong or almost perfect agreement.

The Fleiss’ k of junior clinicians, senior clinicians, and 
deep learning classifiers is 0.0984, 0.4562, 0.8012, respec-
tively (Table 3). Junior doctors refer to resident doctors, 
who are still in the stage of standardized training for resi-
dent physicians and specialist physicians. Senior doctors 
refer to doctors who are capable of independently han-
dling their specialty and who guide the work of junior 
doctors. The clinicians involved, who did not participate 
in the performance review, individually judged all data 
consistent with the machine-validated dataset to deter-
mine whether there was bleeding. The reliability results 
indicate that deep learning classifiers are more reliable 
than human classifiers.

The time that each classifier used was also compared. 
The Junior clinicians utilized an average of 77.50  min; 
the senior clinicians spent an average of 53 min classify-
ing the events. All the deep learning classifiers generated 
prediction results within 1 min.

The accuracy of all deep learning classifiers is above 
0.7, which is significantly higher than that of senior clini-
cians (0.6488) and junior clinicians (0.5595) (Fig. 6). The 
confidence intervals of junior clinicians and deep learn-
ing classifiers do not overlap. Figure 7 illustrates the over-
all performance of deep learning classifiers versus human 
detection of bleeding events. Among the classifiers, the 
deep learning classifiers outperformed human classifiers 

Table 1  Demographic data of patients
Training 
set
(N = 1600)

Valida-
tion set
(N = 169)

Testing 
set
(N = 169)

P 
value

Age (median [IQR]) 68.69 
[55.50, 
79.05]

71.38 
[59.00, 
79.76]

69.13 
[57.76, 
78.33]

0.442

Male (%) 918 (57.4) 98 (58.0) 88 (52. 1) 0.400
Congestive heart failure 
(%)

58 (3.6) 8 (4.7) 6 (3.6) 0.764

Cardiac arrhythmias (%) 6 (0.4) 0 (0.0) 0 (0.0) 0.530
Valvular disease (%) 59 (3.7) 10 (5.9) 2 (1.2) 0.068
Peripheral vascular 
disease (%)

57 (3.6) 8 (4.7) 1 (0.6) 0.078

Other neurological 
disease (%)

15 (0.9) 1 (0.6) 4 (2.4) 0.182

Hypertension (%) 8 (0.5) 0 (0.0) 1 (0.6) 0.640
Chronic pulmonary 
disease (%)

11 (0.7) 0 (0.0) 3 (1.8) 0.145

Diabetes uncomplicated 
(%)

6 (0.4) 0 (0.0) 0 (0.0) 0.530

Hypothyroidism (%) 1 (0.1) 0 (0.0) 0 (0.0) 0.900
Renal failure (%) 2 (0.1) 0 (0.0) 0 (0.0) 0.809
Liver disease (%) 18 (1.1) 0 (0.0) 0 (0.0) 0.147
Peptic ulcer (%) 1 (0.1) 0 (0.0) 0 (0.0) 0.900
AIDS (%) 7 (0.4) 2 (1.2) 0 (0.0) 0.259
Lymphoma (%) 9 (0.6) 0 (0.0) 0 (0.0) 0.385
Solid tumor (%) 55 (3.4) 8 (4.7) 3 (1.8) 0.320
Rheumatoid arthritis (%) 4 (0.2) 0 (0.0) 0 (0.0) 0.655
Coagulopathy (%) 1 (0.1) 0 (0.0) 0 (0.0) 0.900
Alcohol abuse (%) 3 (0.2) 1 (0.6) 1 (0.6) 0.412

Fig. 4  Schematic illustration of model development
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in accuracy, F1-score and precision, and obtained a simi-
lar recall.

Discussion
To our knowledge, this is the first attempt to apply neu-
ral network models for the daily prediction of bleeding 
in ICU patients treated with anti-thrombotic drugs. Our 
study developed four variants of dynamic neural network 
models, providing an accurate predictive tool for bleed-
ing prediction in ICU patients during anti-thrombotic 
therapy. In our study, we reconfirmed that bleeding 
events worsen the clinical outcomes of patients treated 
with anti-thrombotic therapy in ICU. According to the 
MIMIC-III database, the incidence of haemorrhage in 
patients with anti-coagulation therapy during the stay of 

Table 2  Performance of the final models in validation and text set
Model Validation set (MIMIC-III) Testing set (MIMIC-III)

AUC Youden Sensitivity Specificity AUC Youden Sensitivity Specificity
One layer LSTM 0.9380 0.7641 0.8841 0.8800 0.8225 0.5177 0.6377 0.8800
Two layer LSTM 0.9387 0.7361 0.8261 0.9100 0.8391 0.5332 0.6232 0.9100
One layer GRU 0.9462 0.7641 0.8841 0.8800 0.8196 0.5242 0.5942 0.9300
Two layer GRU 0.9533 0.7841 0.8841 0.9000 0.8345 0.5812 0.6812 0.9000

Table 3  The inter-rater reliability
k 95% CI

Junior Clinicians 0.0984 (-0.0528, 0.2496)
Senior Clinicians 0.4562 (0.3689, 0.5435)
Machine Learning Classifiers 0.8012 (0.7395, 0.8629)

Fig. 6  The accuracy of the model and clinicians

 

Fig. 5  Model performance in different patient cohorts. A: ROC curve of the validation set. B: ROC curve of the test set
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ICU was 4.77%. As shown in Fig. 4, the bleeding events 
can lead to a higher mortality rate (both 60-day and 
90-day), and longer length of hospital/ICU stay. As a 
result, early identification of bleeding risks during anti-
thrombotic therapy is of great importance.

ICUs treat a heterogeneous group of patients whose 
risk of bleeding can vary widely and change quickly. 
Hence the early identification of haemorrhage can be 
quite difficult. Currently, there is a lack of reliable tools 
for the dynamic prediction of bleeding among these 
patients. Our study demonstrated that the family of 
RNN, such as LSTM and GRU, can predict bleeding with 
high accuracy.

After we weighed the input values according to clini-
cal practice, GRU was applied to build models on time-
updated data. RNNs are called recurrent because they 
perform the same task for every element of a sequence, 
with the output being dependent on the previous com-
putations. Another way to think about RNNs is that they 
have a “memory” that captures information about what 
has been calculated so far. Theoretically, RNNs can use 
information in arbitrarily long sequences, but in prac-
tice, they are limited to looking back only a few steps. 
RNNs employing either of these recurrent units have 
been shown to perform well in tasks that require cap-
turing long-term dependencies [27]. Thus, we used the 
RNNs for training dynamic models to identify trends 
in patients’ conditions and predict bleeding events. The 
most used type of RNNs is LSTM, which can be useful 
for clinical measurements because they carefully tune 
the information passed between subsequent time itera-
tions of the model. Advantages of LSTM over regression 
models include the ability to generate multiple predic-
tions with the first data input and the ability to combine 

features in more complex ways to model changes over 
time [28]. Another type of recurrent unit, which we refer 
to as a gated recurrent unit (GRU), was proposed to 
make each recurrent unit adaptively capture dependen-
cies of different time scales. Similarly to the LSTM unit, 
the GRU has gating units that modulate the flow of infor-
mation inside the unit, however, without having a sepa-
rate memory cell [27].

In this study, we developed four variants of RNN mod-
els that can identify patients with a high risk of bleed-
ing and help the clinical decision-makers to adjust 
anti-thrombotic drugs. As shown in Fig. 3 and Table II, 
our models had equally predictive performance, demon-
strating that RNN models based on big data have good 
generalization capability. The neural network models 
were compared with manual verification. The Fleiss’ k of 
junior clinicians, senior clinicians, and machine learn-
ing classifiers is 0.0984, 0.4562, 0.8012, respectively. The 
time used to generate the prediction results using a deep 
learning classifier is significantly lower than clinicians, 
which generated results within one minute.

We envision the future of care for all patients with 
anti-thrombotic therapy in ICU to be enhanced by cus-
tomized machine learning decision support tools that 
will provide both initial risk stratification and ongoing 
risk assessment to adjust treatment at the right time for 
the right patient. By using a dynamic risk assessment, 
bleeding events could be identified early and prevented 
as early as possible, which reduced the risk of mortality 
in these patients. It is necessary to improve the positive 
predictive rate. There are also such studies, the EPIC 
sepsis model has been deployed in hundreds of hospitals 
in the United States, but the positive predictive value is 
12% [29], long-term false positive prediction alarms can 

Fig. 7  The overall performance of deep learning classifiers versus human detection on the bleeding events
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lead to alarm fatigue. How to improve the positive pre-
dictive value of the model is also a problem that we need 
to solve further. Suitable alarms can better serve patients 
[30]. With the advancement of mathematical algorithms, 
it may also further optimize our model. We need to con-
stantly learn, update and iterate. For example, using an 
unaligned method based on multiple convolutional neu-
ral networks (CNN) and position-specific scoring matrix 
(PSSM) contours to identify coiled-coil protein models 
to further improve prediction accuracy [31].The most 
important thing is that the model needs to be deployed 
to the electronic medical record system, and the doctor 
should be notified after the alarm is triggered, so that 
the doctor can evaluate and adjust the treatment plan 
[32]. The optimized model applied to clinical practice 
can remind clinical doctors to pay attention to high-risk 
bleeding patients after antithrombotic therapy, discover 
abnormalities as early as possible, and adjust medica-
tion in time. We hope to improve patient outcomes in the 
future.

Several limitations of this study should be considered. 
Firstly, due to the limited number of bleeding patients 
in the database, additional iterations are required to 
enhance accuracy. Secondly, the MIMIC-III database 
lacks certain indicators. As such, it will be necessary in 
future studies to establish a prospective dataset of anti-
thrombotic therapy in ICU patients. Thirdly, At pres-
ent, our model is being conducted such a preliminary 
exploratory study. Subsequently, based on this model, 
further external validation, training and optimization of 
the model will be carried out with a large sample size. 
The prediction of bleeding outcomes in patients may 
vary among different populations and genders. There-
fore, we need a larger dataset to avoid data bias. External 
validation work similar to the one reported in this litera-
ture, such as a prediction model for avoiding the occur-
rence of adverse reactions when drugs and food are used 
together [33]. Finally, the interpretability of recurrent 
neural networks can be challenging due to their inherent 
complexity, particularly in relation to time step folding. 
In our future work, we aim to explore potential methods 
to improve model interpretability. These may include the 
application of the DeepLIFT algorithm [34] to rank the 
feature importance of the 2-layer LSTM, or the imple-
mentation of a simpler linear model, such as logistic 
regression, to model the input and output of the LSTM 
and explain the feature contribution.

Due to the small number of bleeding patients in the 
database, iterations are needed to improve accuracy. 
Some indicators are missing from the MIMIC-III data-
base. In the future, it is necessary to establish a prospec-
tive data set of anti-thrombotic therapy in ICU patients. 
In addition, the model needs to be further verified in 
external data.

Conclusions
In conclusion, we present the first application of recur-
rent neural networks for the daily prediction of bleeding 
risk in ICU patients treated with anti-thrombotic therapy 
using the MIMIC-III database. Deep learning classifiers 
are more reliable and consistent than human classifiers. 
The machine learning classifier suggested strong reli-
ability. The deep learning algorithm significantly outper-
formed human classifiers in prediction time.
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