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Abstract 

Addressing the current complexities, costs, and adherence issues in the detection of forward head posture (FHP), 
our study conducted an exhaustive epidemiologic investigation, incorporating a comprehensive posture screen-
ing process for each participant in China. This research introduces an avant-garde, machine learning-based non-
contact method for the accurate discernment of FHP. Our approach elevates detection accuracy by leveraging body 
landmarks identified from human images, followed by the application of a genetic algorithm for precise feature 
identification and posture estimation. Observational data corroborates the superior efficacy of the Extra Tree Classi-
fier technique in FHP detection, attaining an accuracy of 82.4%, a specificity of 85.5%, and a positive predictive value 
of 90.2%. Our model affords a rapid, effective solution for FHP identification, spotlighting the transformative potential 
of the convergence of feature point recognition and genetic algorithms in non-contact posture detection. The expan-
sive potential and paramount importance of these applications in this niche field are therefore underscored.
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Introduction
Forward Head Posture (FHP) is a pervasive phenom-
enon, generally characterized as an anterior cervical 
posture [1], where the cranium juts forward of the sag-
ittal plane and appears to be positioned anterior to the 
body’s central alignment [2–7]. This abnormal carriage 
triggers muscular tension and shortening [8], which 
impedes the range of motion in the cervical spine, fos-
tering the emergence of muscle imbalances, discom-
fort, and fatigue [9]. Furthermore, as the upper cervical 
spine extends, alterations also manifest within the lum-
bar spine, impacting the postural alignment of the entire 
upper torso [10]. The potential repercussions of these 
changes are manifold and irreversible. For instance, poor 
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posture is a potent predictor of musculoskeletal disor-
ders, especially as we age [1]. These adaptations could 
diminish the diaphragm’s mobility and strength, disrupt 
typical respiratory mechanics and fundamentally trans-
form the respiratory mechanism [11–16], even more 
serious outcomes, like dysphagia [17, 18] and lifelong dis-
ability [5, 19]. Unfortunately, the ubiquity of electronic 
screen usage in learning and work environments has led 
to a surge in FHP cases, exhibiting a positive correlation 
with age [20]. Alarmingly, FHP onset often occurs in 
childhood, with a reported prevalence rate of up to 63% 
among adolescents aged 12-16 [10]. Therefore, early rec-
ognition of the occurrence of FHP among adolescents is 
crucial to provide targeted treatment and intervention as 
early as possible.

Traditional clinical diagnosis predominantly relies on 
digital head posture measurement systems to verify the 
presence of FHP [19]. More researchers are trying to 
develop head posture measurement devices and tech-
nologies such as Head-mounted motion trackers, Nin-
tendo Wiimotes (Nintendo Co., Kyoto, Japan) [21] and 
Microsoft’s Face-Tracking Software Development Kit 
[22], which have been utilized to implement head pose 
measurements. However, these tools, which range from 
head-mounted motion trackers to advanced software 
development kits, remain prohibitively costly for wide-
scale clinical applications, are often inaccessible in many 
regions, or may be unsuitable for non-compliant patient 
groups.

In the wake of rapid advancements in deep learning, 
the potential to automatically detect and filter task-rele-
vant features without direct human expert intervention 
presents more objective and cost-effective alternatives 
[23]. Several models, including Hope Net [24] and Open-
Pose [25], have demonstrated proficiency in head pose 
detection. Nonetheless, there remains a notable absence 
of models dedicated to FHP classification, which could 
aid clinicians in reducing workload and enhancing diag-
nostic accuracy. Consequently, the central question 
arises: how can we exploit these models more effectively 
for FHP prediction?

Accordingly, this study collated FHP data from the Chi-
nese adolescent population, and developed an end-to-
end early prediction model for FHP. In this investigation, 
we aim to explore potential methodologies and strate-
gies for maximizing the utility of deep learning models 
in FHP prediction. Our goal is not only to contribute to 
the body of knowledge in this specific domain, but also to 
provide practical tools and recommendations that can be 
directly implemented in clinical settings. By addressing 
this central question, we hope to facilitate more accurate 
and efficient FHP detection, promoting better patient 
outcomes and advancing the field of posture correction.

Materials and methods
This research, approved by the Northeast Normal Uni-
versity Ethics Committee (NC2020112102), used photo-
grammetry for FHP diagnosis, employing the ’ex-body’ 
apparatus and manual image annotation. Key features 
relating to FHP were identified using OpenPose, and 
genetic algorithms optimized feature selection. The data 
informed the training of three machine learning and 
deep learning models, considering sample imbalance and 
implementing cross-validation. Performance metrics, 
assessed with the Clopper-Pearson method, provided sta-
tistical analysis of the model’s accuracy.

Participants
In collaboration with both primary and secondary edu-
cational institutions within Changchun, China, four 
distinct schools generously consented to partake in our 
investigative study. These included the Dong’an Experi-
mental Middle School and Dong’an Experimental Pri-
mary School of Northeast Normal University, along with 
Changchun Nanhu Experimental Middle School and 
Yangpu Middle School.

We instituted specific criteria to delineate the subjects 
appropriate for inclusion within our research scope. The 
inclusion parameters demanded that the subjects be 
within the age bracket of 10 and 19 years, without any 
communicative impairments. However, after collecting 
the data, we found that the maximum age of the subjects 
included in this study was 15 years and the minimum 
age was ten years. Inversely, our exclusion guidelines 
determined the omission of any subject suffering from 
significant physical illnesses, congenital anomalies, or 
skeletal-related ailments. Subjects who had experienced 
hospitalization or had undergone any form of medical 
treatment within the prior three-month period were also 
systematically excluded from the study.

Data collection
We utilized a photogrammetric methodology character-
ized by substantial inter-rater reliability, to determine 
the incidence of FHP within the study sample [26]. The 
postural evaluation was facilitated using an apparatus 
known as ’ex-body’ (Lantian Medical Equipment Co. 
Ltd., Beijing, China), engineered for diagnosing subjects 
presenting FHP. This system comprises a grid-integrated 
monitor, imaging apparatus, and a computer system 
designed to mark anatomical landmarks. It enables the 
evaluator to denote bodily landmarks of the subjects 
meticulously, enhancing the precision of the assessment.

The assessment environment necessitated a dimly lit 
room, with an approximate distance of 3 meters sepa-
rating the camera from the screen. The evaluator was 
equipped with a computer terminal to administer the 
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imaging procedure, with the resultant data stored as 
image files within the computer system. The data acqui-
sition was carried out entirely via online means, with 
subsequent image data analyses conducted offline. 
Subject preparation required attire consisting of snug-
fitting shorts and short-sleeved tops, and a stand-
ing position with the sagittal plane orthogonal to the 
screen. They were instructed to stand barefoot, placing 
their left shoulder adjacent to the screen at a distance 
of 10 cm, adopting a relaxed stance with arms folded 
across the abdomen. Upon subject alignment with the 
prescribed position, researchers operated the system 
to capture the necessary images, with each assessment 
session enduring approximately 30 seconds.

For image analysis, both standard head postures and 
occurrences of FHP were considered. Three expert pos-
tural assessors were employed to manually annotate the 
images. The definitive annotation adhered to the major-
ity rule, and this consensus formed the basis for the 
final labeling.

Body landmarks recognition
The dataset procured for this investigation consisted 
of images that necessitated additional refinement pro-
cesses. To facilitate this, the open-source initiative 
OpenPose [25] was utilized. Recognized for its exem-
plary in the realm of human pose identification, this 
utility is undergirded by “Two-Branch Multi-Stage 
Convolutional Neural Network”, effectively bifurcates 
the algorithm into two distinctive branches. The first 
is harnessed to generate Confidence Maps (S), whilst 
the second is engaged to produce Part Affinity Fields 
(L). The former corresponds to heatmaps, while the 
latter aligns with vectormaps. Here, S = (S1, S2, . . . , Sj) 
is indicative of the heatmap, where ’j’ represents the 
count of skeletal points targeted for detection. In par-
allel, L = (L1, L2, . . . , LC) symbolizes the vector map, 
where ’C’ epitomizes the logarithm of the joint that is 
subject to examination.

OpenPose performs commendably in both singular 
and plural 2-D pose estimation contexts, capabilities 
encompass the detection of thirteen critical landmarks 
integral to the human skeletal structure: the nose (0), 
neck (1), right shoulder (2), right elbow (3), right wrist 
(4), left shoulder (5), left elbow (6), left wrist (7), right 
hip (8), right knee (9), right ankle (10), left hip (11), 
left knee (12), left ankle (13), right eye (14), left eye 
(15), right ear (16), and left ear (17). To optimize the 
visual clarity of each detected bodily landmark follow-
ing their recognition, a frontal viewpoint of the subject 
was adopted. This is depicted through a representative 
image in Fig. 1.

Feature extraction
The prominent characteristic of FHP is a diminished 
anterior cervical tilt consequent to the forward motion 
of the head. Given that OpenPose operates as a 2D 
human pose estimation algorithm, we observed that the 
left shoulder, neck, and right shoulder tend to overlap 
when OpenPose is employed for body landmarks rec-
ognization in a subject’s side view. Therefore, in light of 
the attributes of FHP patients and the completion of all 
assessments via side view, we extracted multiple angles 
akin to the cranial vertebral angle utilizing the subject’s 
right shoulder as the vertex to construct the features. 
Finally, our study designates four anatomical points: the 
Right Acromion Point (RAP), the highest point of the 
shoulder at the outer edge, as marked by the acromion 
process of the scapula (coordinates x0, y0); the Nasal 
Point (NP) (coordinates x1, y1); the Right Pupil Centre 
Point (RPCP), representing the eye’s center (coordi-
nates x2, y2); and the Right External Auditory Meatus 
Point (REAMP) (coordinates x3, y3).

Subsequent to their identification, these points facili-
tate the computation of multiple angles, indicative of 
the forward extension of the head, with the RAP serv-
ing as the apex: 

1)	 Nasal-Acromion-Horizontal Angle (NAH). This 
angle is formed at the intersection of a line connect-
ing the NP and the RAP and a horizontal line passing 
through the RAP.

Fig. 1  Schematic diagram of body landmarks after recognized 
with OpenPose (Frontal View)
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2)	 Ear-Nasal-Acromion Angle (ENA). The angle 
between the line connecting the REAMP and the 
RAP and the line connecting the NP and the RAP is 
defined as the ENA.

3)	 Pupil-Acromion-Horizontal Angle (PAH). Similar to 
the NAH, the PAH is the angle between the line con-
necting the RPCP and the RAP and a horizontal line 
through the RAP.

4)	 Ear-Acromion-Horizontal Angle (EAH). The EAH 
is defined as the angle formed between the line con-
necting the REAMP and the RAP and the horizontal 
line passing through the RAP.

Each angle was determined utilizing the cosine theorem, 
where A denotes the angle of the triangle and a, b, and c 
represent its sides. The resultant cosine formula for each 
angle can be depicted as in Eq. (1):

Thus, the specific values of NAH, ENA, PAH, and 
EAH, which are of primary interest to our study, can be 
discerned from their corresponding cosine values. In 
addition, recognizing that individual variations in ear, 
nose, and eye positions can potentially influence the four 
aforementioned angles, we also computed vertical dis-
tances from the NP to the RAP (d1), from the RPCP to 
the RAP (d2), and from the REAMP to the RAP (d3). Fig-
ure 2 presents a visual illustration of the feature extrac-
tion process, with body landmarks identified employing 
OpenPose for accurate landmark detection.

Feature selection based on genetic algorithm
Feature selection represents a critical step in model train-
ing, which is designed to refine the input feature set. This 
process aims to decrease model complexity, augment 
generalization, mitigate overfitting risk, and boost model 
efficiency. By focusing on a narrower range of features, 
the model is better equipped to manage unfamiliar data 
by suppressing noise and unnecessary information.

The genetic algorithm, an optimization technique 
inspired by natural selection and genetic processes, pre-
sents an innovative solution to intricate problems through 
the simulation of biological evolution [27]. The genetic 
algorithm generates a population from a potential feature 
subset, utilizing the fitness function f(x) to guarantee the 
chosen feature subset’s high fitness value, thereby maxi-
mizing their influence on model performance. The opti-
mal feature subset, as determined by this process, aims to 
contain the minimum number of features to decrease rec-
ognition costs and enhance the speed of model inference. 
The formula for the fitness function is as Eq 2:

(1)cos(A) =
b2 + c2 − a2

2bc
,

where, Xi denotes the subset of possible features; xi 
denotes the feature term, which is recorded as 1 if 
included in the feature subset and 0 if excluded; k denotes 
the number of features in the feature subset; C denotes 
the scale factor, which is utilized to limit the fitness; P 
denotes the total number of features; N (xi) denotes the 
number of times a feature is repeated in the solution 
process; logn− logm denotes the contribution of the cur-
rent feature subset to the model performance, n is the 
total number of a category in the labels, m is the total 
number of correct predictions of a label in the training 
set; k

i=1 xi is the number of features in the current fea-
ture subset. In this study, we leverage genetic algorithms 
to derive a subset of pertinent features, incorporating 
basic subject characteristics (gender, age, height, weight, 
and BMI) as well as anatomical features extracted based 
on OpenPose (NAH, ENA, PAH, EAH, d1, d2, and d3). 
Specifically, at first, we took the data containing all the 
features and employed the ’Pycaret’ library in python 
to select the top three models in terms of performance. 
Then, we employed the data containing all the features 
to select features for the three models in sequence using 
genetic algorithm. Through the above process, we deter-
mined the best combination of features and the best 
model.

(2)f (Xi) = f (x1, x2, . . . , xk ) = C

∑k
i=1 N (xi)

P + (logn − logm)
∑k

i=1 xi
,

Fig. 2  Process of feature extraction based on OpenPose. NAH: 
Nasal-Acromion-Horizontal Angle; ENA: Ear-Nasal-Acromion Angle; 
PAH: Pupil-Acromion-Horizontal Angle; EAH: Ear-Acromion-Horizontal 
Angle
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Classification with classic models
To construct the dataset, we employed features ascer-
tained through a robust process of feature selection and 
evaluation, with the ultimate goal of identifying an opti-
mally performant machine learning model capable of 
FHP detection with high precision. Due to the issue of 
sample imbalance, we balanced the dataset and employed 
a ten-fold cross-validation strategy. The training data 
was subsequently fed into three distinct machine learn-
ing models: Extra Tree Classifier (ETC), Gradient Boost-
ing Classifier (GBC), and XGBoost Classifier (XGB). The 
models’ performance was then assessed using a separate 
testing dataset.

To evaluate the diagnostic efficacy of the models, we 
computed a suite of performance metrics including accu-
racy, sensitivity, specificity, positive predictive value, and 
negative predictive value based on the prediction results.

The experiments were carried out by means of the 
PyCharm development tool. The employed computa-
tional hardware consisted of an Intel(R) Core i9 central 
processing unit, a NVIDIA GeForce RTX 3080 GPU, and 
10 GB of random-access memory.

Statistical analyses
The uncertainty inherent in statistical estimates can be 
quantified using confidence intervals, providing a valu-
able tool for more dependable statistical inferences and 
decision-making processes by researchers. The Clopper-
Pearson method, founded on the binomial distribution’s 
cumulative distribution function, considers the prob-
ability mass at the confidence interval’s extremities and 
thus, can provide an exact confidence interval. Hence, 
we utilized the Clopper-Pearson approach to compute 
95% confidence intervals for the metrics of sensitivity, 
accuracy, specificity, positive predictive value, and nega-
tive predictive value. These calculations were performed 
using python 3.8.

Results
Subjects
Table  1 presents the demographic variables of the par-
ticipants. A total of 1891 participants were initially 
recruited, from which 1651 samples were gathered after 
excluding data of inferior quality due to factors such as 
inadequate lighting and non-standard standing postures. 
The resultant dataset comprised 627 normal samples and 
1024 abnormal samples. Given the presence of sample 
imbalance, we employed oversampling to balance the 
data. For model training, we allocated 90% of the sam-
ples, reserving the remaining 10% as a test set to evaluate 
the model’s performance. This test set encompassed 165 
adolescents, among which 103 (62.4%) were diagnosed 
with FHP. As depicted in Fig.  3, the features extracted 

were consistent with the head and neck features observed 
in FHP patients.

Comparison of models
Body landmarks and genetic algorithm-based data were 
subjected to three separate machine learning models 
while emphasizing the pivotal role of body key point 
recognition methods in our investigation. Concurrently, 
three distinct deep-learning models were trained using 
raw image data and their corresponding labels. Detailed 
performance indicators of each model using the test set 
are delineated in Table  2. Our findings designate the 
Extra Tree Classifier algorithm as the leading performer 
across multiple metrics. In the context of FHP prediction, 
the Extra Tree Classifier model achieved an accuracy of 
82.4% (95% CI, 75.7% - 87.9%), sensitivity of 80.6% (95% 
CI, 71.6% - 87.7%), specificity of 85.5% (95% CI, 74.2% - 
93.1%), positive predictive value of 90.2% (95% CI, 82.2% 
- 95.4%) and negative predictive value of 72.6% (95% CI, 
60.9% - 82.4%).

Results of ablation study
To ascertain the robustness of the selected features and to 
identify the most optimal feature combination for supe-
rior model performance, we conducted an ablation study 
on the top-performing model, the Extra Tree Classifier, 
employing the following four features: Neck Axis Height 
(NAH), Ear-Neck Angle (ENA), Posterior Axis Height 
(PAH), and Ear-Axis Height (EAH). The optimal com-
bination of features, comprising “NAH, ENA, PAH, and 
EAH”, was selected as the benchmark for comparing the 
effect of feature elimination on the model’s performance. 
Furthermore, we have specifically included All Features 
(gender, age, height, weight, BMI, NAH, ENA, PAH, 
EAH, d1, d2, and d3) to demonstrate the effectiveness of 
the genetic algorithm. Results from this ablation study 
are delineated in Table 3. The analysis reveals that NAH 
and ENA considerably influence model performance, 
whereas the impact of PAH and EAH is less significant. 

Table 1  Demographic characteristics of subjects

a  FHP denotes forward head posture

Items FHP a (n = 1024) Normal (n = 627)

Gender (Female/Male) 542/482 331/296

singleton (Yes/No) 773/251 296/332

Age (years old) 12.08 ± 1.15 12.09 ± 1.17

Height (cm) 160.38 ± 9.22 158.18 ± 11.09

Mass (kg) 55.48 ± 16.16 54.18 ± 15.43

Muscle Mass (kg) 39.68 ± 8.96 38.58 ± 8.54

Fat-Free Mass (kg) 42.49 ± 9.37 41.31 ± 8.95

Skeletal Muscle Mass (kg) 23.81 ± 5.38 23.15 ± 5.12
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Even when PAH and EAH are excluded, the combination 
of NAH and ENA still demonstrates improved model 
performance.

Intriguingly, when all features were incorporated as 
input, the model’s accuracy was limited to 76.4%. A 6% 
improvement in model accuracy was observed following 
feature selection, underscoring the efficacy of utilizing 
genetic algorithms for this purpose.

Discussion
To our knowledge, the evaluation model presented in this 
study is the inaugural model capable of distinguishing 
between adolescents with and without FHP. Our results 
demonstrate that the machine learning model, designed 
for the automated detection of FHP, demonstrates high 
predictive accuracy when applied to an independent ado-
lescent sample from China. Moreover, the findings sug-
gest that directly employing a deep learning model with 
the original image as input to predict FHP for adolescents 
is less efficacious than utilizing a machine learning model 
trained on features extracted from human body land-
marks as input.

The amalgamation of computer vision, as embod-
ied by Openpose, with the computational robustness of 
genetic algorithms, paves the way for a sophisticated, 
high-precision posture detection modality. The distribu-
tion of distinct angular features among FHP and non-
FHP subjects, as illustrated in Fig. 3, emphasizes that the 
features extracted correspond accurately to the head and 
neck characteristics of FHP patients. This correspond-
ence lends credence to the identified features’ valid-
ity. The deployment of this approach offers compelling 
advantages over existing methodologies, most notably by 
enhancing detection accuracy while obviating the need 
for physical contact or intrusive measures. As such, our 
findings not only reify the effectiveness of a OpenPose-
based approach but also underscore its superiority in 
performance relative to conventional posture detection 
methods.

Decision tree and tree-based ensemble learning 
methods like random forest classifier have been widely 
used in disease prediction like cardiovascular dis-
ease [28], chronic kidney disease [29], heart-disease 
[30], coronary artery disease [31], and shows great 

Fig. 3  Comparison of each angle of FHP subjects and non-FHP subjects. The FHP patients showed a smaller angle compared with the normal. NAH: 
Nasal-Acromion-Horizontal Angle; ENA: Ear-Nasal-Acromion Angle; PAH: Pupil-Acromion-Horizontal Angle; EAH: Ear-Acromion-Horizontal Angle

Table 2  Results of performance comparison of classification modules

a  PPV denotes positive predictive value; b NPV denotes negative predictive value; c Gradient Boosting Classifier; d Extra Tree Classifier

Modules Accuracy (%, 95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI) PPVa (%, 95% CI) NPVb (%, 95% CI)

XGBoost 78.2 (71.1, 84.2) 81.6 (72.7, 88.5) 72.6 (59.8, 83.1) 83.2 (74.4, 89.9) 70.3 (57.6, 81.1)

GBC c 81.2 (74.4, 86.9) 78.6 (69.5, 86.1) 85.4 (74.2, 93.1) 90.0 (81.9, 95.3) 70.7 (59.0, 80.6)

ETC d 82.4 (75.7, 87.9) 80.6 (71.6, 87.7) 85.5 (74.2, 93.1) 90.2 (82.2, 95.4) 72.6 (60.9, 82.4)
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performance, but in our study it didn’t outperform the 
extra tree classifier. In order to obtain results faster, we 
kept only the top three models with better performance 
in the phase of model selection. Random forests were 
eliminated, so it does not appear in the results. Reasons 
why the extra tree classifier is better than random for-
est is that in principle, it have more randomness than 
regular random forests. The extra tree classifier ran-
domly selects a subset of features at each segmenta-
tion and then goes for the optimal branching attributes 
and branching thresholds, which outperforms random 
forests with a fixed number of feature subsets. This 
increase in randomness helps to create more decision 
trees that are independent of each other, thus improv-
ing the model performance. In addition, the extra 
tree classifier has better generalization properties and 
therefore gets better results on the test data.

Overall, the amalgamation of genetic algorithm and 
OpenPose algorithm unveils a promising path toward 
an innovative, non-contact approach for assessing head 
forward posture, which in turn has the potential to revo-
lutionize the existing models of human posture evalua-
tion and intervention. Our outcomes, though conclusive, 
invite future investigations to delve into further poten-
tials of non-contact mechanisms, thereby advancing 
the field of human posture assessment and its associ-
ated health implications. The implications of our study 
extend to the fields of ergonomics, physical therapy, and 

computer-aided diagnostics, providing an innovative 
pathway for the detection and mitigation of posture-
related conditions. As we move forward, we encourage 
future researchers to build upon this foundation, refining 
the key point detection-based detection approach and 
exploring its utility in a broader range of applications.

While the methodology proposed in our study has 
delivered promising results, it is imperative to acknowl-
edge certain limitations that accompany these findings. 
Initially, the population under study was comprised of 
adolescent individuals, with the customary age bracket 
for this demographic being between 10 and 19 years. 
However, due to practical constraints related to school 
schedules and the availability of resources, the actual 
age spectrum of the participants was limited to those 
between 11 and 15 years old. Further, we adopted Open-
Pose for the extraction of body landmarks from images, 
yet the work of identifying the relevant features for FHP 
detection demands more extensive research. The cur-
rent study marks a preliminary step in this direction, and 
subsequent investigations must delve deeper into feature 
selection for improved FHP detection. Lastly, OpenPose 
operates as a two-dimensional human pose estimation 
algorithm, which may inadvertently result in the loss of 
some spatial features pertinent to FHP. As we progress 
with our research, we intend to refine our methodology 
by employing a three-dimensional human pose estima-
tion algorithm.

Table 3  Results of ablation study

PPV denotes positive predictive value, NPV denotes negative predictive value, NAH Nasal-Acromion-Horizontal Angle, ENA Ear-Nasal-Acromion Angle, PAH Pupil-
Acromion-Horizontal Angle, EAH Ear-Acromion-Horizontal Angle

Features Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

EAH 55.8 54.4 58.1 68.3 43.4

PAH 61.2 53.4 74.2 77.5 48.9

NAH 71.5 72.8 69.4 79.8 60.6

ENA 75.8 72.8 80.6 86.2 64.1

PAH + EAH 70.9 63.1 83.9 86.7 57.8

NAH + PAH 73.9 71.8 77.4 84.1 62.3

ENA + PAH 77.0 74.8 80.6 86.5 65.8

NAH + ENA 77.0 74.8 80.6 86.5 65.8

NAH + EAH 79.4 78.6 80.6 87.1 69.4

ENA + EAH 80.0 78.6 82.3 88.0 69.9

NAH + PAH + EAH 78.2 77.7 79.0 86.0 68.1

NAH + ENA + EAH 78.8 76.7 82.3 87.8 68.0

ENA + PAH + EAH 78.8 74.8 85.5 89.5 67.1

NAH + ENA + PAH 80.0 79.6 80.6 87.2 70.4

All Features 76.4 72.8 82.3 87.2 64.6

NAH + ENA + PAH + EAH 82.4 80.6 85.5 90.2 72.6
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Conclusion
In the culmination of our investigations, predicated upon 
the utilization of key reference points furnished by the 
Openpose platform, we have ascertained that a technique 
grounded in genetic algorithms demonstrates superior 
efficacy for non-contact diagnosis of a FHP. This research 
illuminates the potential for the integration of genetic 
algorithms in evolving the landscape of non-contact pos-
ture detection techniques, underscoring the magnitude 
of their applicability in this particular area.
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