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Abstract 

Background  Automated coaches (eCoach) can help people lead a healthy lifestyle (e.g., reduction of sedentary 
bouts) with continuous health status monitoring and personalized recommendation generation with artificial intel-
ligence (AI). Semantic ontology can play a crucial role in knowledge representation, data integration, and information 
retrieval.

Methods  This study proposes a semantic ontology model to annotate the AI predictions, forecasting outcomes, 
and personal preferences to conceptualize a personalized recommendation generation model with a hybrid 
approach. This study considers a mixed activity projection method that takes individual activity insights from the uni-
variate time-series prediction and ensemble multi-class classification approaches. We have introduced a way 
to improve the prediction result with a residual error minimization (REM) technique and make it meaningful in recom-
mendation presentation with a Naïve-based interval prediction approach. We have integrated the activity prediction 
results in an ontology for semantic interpretation. A SPARQL query protocol and RDF Query Language (SPARQL) have 
generated personalized recommendations in an understandable format. Moreover, we have evaluated the perfor-
mance of the time-series prediction and classification models against standard metrics on both imbalanced and bal-
anced public PMData and private MOX2-5 activity datasets. We have used Adaptive Synthetic (ADASYN) to generate 
synthetic data from the minority classes to avoid bias. The activity datasets were collected from healthy adults (n = 16 
for public datasets; n = 15 for private datasets). The standard ensemble algorithms have been used to investigate 
the possibility of classifying daily physical activity levels into the following activity classes: sedentary (0), low active (1), 
active (2), highly active (3), and rigorous active (4). The daily step count, low physical activity (LPA), medium physi-
cal activity (MPA), and vigorous physical activity (VPA) serve as input for the classification models. Subsequently, we 
re-verify the classifiers on the private MOX2-5 dataset. The performance of the ontology has been assessed with rea-
soning and SPARQL query execution time. Additionally, we have verified our ontology for effective recommendation 
generation.

Results  We have tested several standard AI algorithms and selected the best-performing model with optimized con-
figuration for our use case by empirical testing. We have found that the autoregression model with the REM method 
outperforms the autoregression model without the REM method for both datasets. Gradient Boost (GB) classifier 
outperforms other classifiers with a mean accuracy score of 98.00%, and 99.00% for imbalanced PMData and MOX2-5 
datasets, respectively, and 98.30%, and 99.80% for balanced PMData and MOX2-5 datasets, respectively. Hermit 
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reasoner performs better than other ontology reasoners under defined settings. Our proposed algorithm shows 
a direction to combine the AI prediction forecasting results in an ontology to generate personalized activity recom-
mendations in eCoaching.

Conclusion  The proposed method combining step-prediction, activity-level classification techniques, and personal 
preference information with semantic rules is an asset for generating personalized recommendations.

Keywords  eCoach, Physical activity, Autoregression, Time-series, Residual error minimization, Ensemble, Interval 
prediction, Ontology, Personalized recommendation

Key Contributions to the Literature

•	 This conceptual study has hypothesized a person-
alized hybrid activity recommendation generation 
method in an activity eCoach prototype system.

•	 The daily collection of real-time activity data with 
a medical-grade wearable activity sensor (e.g., 
MOX2-5) has served as an input for the activity 
eCoaching session. Recommendation generation 
aims to motivate participants to meet their per-
sonal activity goals and reduce sedentary time. The 
individual preference datasets (such as goal set-
ting, response type, and interaction type) have been 
helpful for the meaningful delivery of personalized 
recommendation messages.

•	 The autoregression model with residual error mini-
mization technique has shown the potential to 
improve forecasting performance in time series. 
Besides, the ensemble approach has been helpful 
for daily activity level classification on activity sen-
sor data.

•	 We have introduced the application of the 
ADASYN sampling algorithm for data balancing to 
avoid prediction biases in machine learning classi-
fiers. Moreover, we have used Mathew’s coefficient 
(MCC) metric to cross-verify prediction biases.

•	 Semantic ontology has been used to logically rep-
resent personal preference data, prediction and 
classification outcomes, knowledge reasoning, and 
querying. Combined with a defined ruleset, the 
SPARQL queries help to generate personalized 
physical activity recommendations.

Introduction
This section encompasses the background, motivation, 
current state-of-the-art, and the study’s objectives. 
Additionally, it includes a qualitative comparison with 
prior research to highlight the uniqueness and innova-
tion brought by this study.

Background
About 60% to 85% of people live a sedentary lifestyle 
worldwide [1]. The collective effects of the sedentary 
lifestyle are related to several adverse health outcomes, 
including increased risk of lifestyle diseases, such as 
obesity, diabetes type II, high blood pressure, depres-
sion, and cardiovascular threats [1–10]. Regular physi-
cal activity has a positive impact on preventing and 
managing lifestyle diseases. Compared with people 
with adequate exercise, people with inadequate activ-
ity have an increased risk of death by 20% to 30% [10]. 
An automatic health coach may help people to manage 
a healthy lifestyle with ubiquitous personalized health 
state monitoring (e.g., physical activity, nutrition, 
healthy habits) and tailored recommendations [11–14]. 
A coaching process can be “In-person” or “Technology-
driven” (via Telematic means) [12]. In-person coaching 
with manual activity tracking and personalized recom-
mendations is inefficient and repetitive. Therefore, in 
this regard, an automatic coach can be more efficient. 
An eCoach system tries to involve users proactively in 
an ongoing collaborative dialogue to support planning 
and encourage effective goal management using per-
sonalized health and wellness status monitoring and 
thereby, recommendation generation to meet the life-
style goal [14].

Recommendation technology, a decision-making 
approach under complex information environments can 
be classified as rule-based and data-driven [15–17]. The 
data-driven recommendations use AI algorithms. In 
contrast, rule-based recommendation technology uses 
binary logic in a symbolic form to present knowledge 
in IF–THEN or IF-ELSEIF-THEN rules and infer new 
knowledge with the reasoning method. A knowledge 
base (KB) is maintained to store and access such rules 
and associated messages. Rules can be specified in the 
form of propositional logic, decision tree, relational alge-
bra, and description logic. Rule-based systems are modu-
lar, intelligible, and easy to manage; however, they suffer 
from symbol grounding problems [16]. The data-driven 
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approach experiences a lack of sufficient data, high com-
puting power, lack of interpretability, re-training for new 
cases, personalization, and cold-start. Therefore, to over-
come the failings of data-driven and rule-based recom-
mendations, a hybrid approach can be useful.

Description logic is the formal knowledge representa-
tion of ontology language (e.g., Web Ontology Language 
(OWL), which balances clarity, complexity, and effective-
ness of knowledge description and knowledge reasoning. 
Semantic Web Rule Language (SWRL), and SPARQL are 
well-accepted query languages in semantic ontology [4]. 
An ontology is a formal description of knowledge within 
a domain and its relationships following a hierarchi-
cal structure. Other methods of knowledge representa-
tion are thesaurus, topic maps, and logical models. Still, 
unlike relational database schemas, ontologies express 
relationships and allow users to join or link multiple con-
cepts together with the following elements: individuals/
objects, classes, attributes, relationships, and axioms [4].

Motivation
Behavior and health are strongly connected. Reduction 
of a sedentary lifestyle with increased physical activity 
needs self-motivation, self-correlation, and self-manage-
ment. Tudor-Locke et  al. [18] and Matthews et  al. [19] 
showed that human activity varies between the weekends 
and weekdays. Gardner et al. [20] acknowledged that self-
monitoring, and reforming the social and physical envi-
ronment are the most encouraging strategies for human 
behavior change besides recommending environmental 
reorganization, persuasion, and education to improve 
self-regulation skills. Intervention design to improve 
physical activity levels and reduce sedentary time varies 
significantly in content and effectiveness [20–22]. Mobile 
applications used to improve young people’s physical 
activity should include personalized feedback and pro-
vide guidance [14]. Only a few available mHealth appli-
cations for physical activity have been evaluated, and the 
evidence is of inferior quality [14].

In the digital activity recommendation system, a tracker 
is maintained to record daily step count, metabolic equiv-
alent of tasks, kilocalories, and distance to reduce sed-
entary behavior. Such digital recommendation systems 
consist of a data collection module, an AI module, and 
a recommendation generation or decision module. Data 
are captured over time and analyzed with AI algorithms 
to generate real-time feedback to accomplish personal 
activity goals. The decision module recommends chang-
ing a person’s behavior, daily routine, and activity plan 
[20]. A walking tracker smartphone app can measure 
individual activity levels and enable self-monitoring [23, 
24]. Most of the modern consumer-based activity sensors 
(e.g., Fitbit, Actigraph, MOX2-5, Pedometer, Garmin, 

and smartwatches (e.g., Apple, Samsung, Huawei)) based 
smartphone apps contain a variety of behavior change 
models or theories [25–28]; however, they experience 
lack of a genuine eCoaching flavor. A meta-analysis from 
Qiu et al. [29] and Stephenson et al. [30] concluded that 
using a pedometer has a small but significant effect on 
reducing sedentary time. Just wearing an activity tracker 
(even without any form of guidance) can stimulate the 
passion for performing physical activities to improve the 
quality of life.

Only a few studies have investigated the use of action-
able, data-driven predictive models [31]. Dijkhuis et  al. 
[32] analyzed Hanze University’s personalized physical 
activity coaching with AI algorithms to improve seden-
tary lifestyles. They collected daily step data to train AI 
classifiers to estimate the probability of achieving hourly 
step goals and followed by feedback generation with 
a web-based coaching application. Hansel et  al. [33] 
designed a fully automated web-based coaching program. 
They used pedometer-based activity or step monitor-
ing in a random group of Type 2 diabetes and abdomi-
nal obesity patients to increase their physical activity. 
Pessemier et  al. [34] used raw accelerometer data for 
individual activity recognition, accepted personal pref-
erences for activity recommendation planning, and gen-
erated personalized recommendations with tag-based 
recommender and rule-based filter. Amorim et  al. [35] 
and Oliveira et  al. [36] performed activity monitoring 
with a Fitbit activity sensor on a group of random trials. 
They accomplished a statistical analysis to discover the 
efficacy of a multimodal physical activity intervention 
with supervised exercises, health coaching, and activ-
ity monitoring on physical activity levels of patients suf-
fering from chronic, nonspecific low back pain. Petsani 
et al. [37] designed an eCoach system for older people to 
increase faithfulness to exergame-based physical activi-
ties. They followed the inclusion of eCoaching guide-
lines set by the human therapists/doctors or a familiar 
person chosen by the user who can access their persis-
tent health and wellness data and involve in the coach-
ing process. They remarked that health eCoaching is a 
complex process that needs careful planning and integra-
tion of different scientific domains, such as psychology, 
computer science, health informatics, and medical sci-
ence. Braber et al. [38] incorporated the eCoaching con-
cept in personalized diabetes management where lifestyle 
data (e.g., dietary intake, physical activity, glycemic value) 
were recorded and integrated with clinical rules to give 
customized coaching to improve adherence to lifestyle 
recommendations.

Chatterjee et  al. [12] focused on creating a meaning-
ful, context-specific ontology to model non-intuitive, 
raw, and unstructured observations of personal and 



Page 4 of 28Chatterjee et al. BMC Medical Informatics and Decision Making          (2023) 23:278 

person-generated health data (e.g., sensors, interviews, 
questionnaires) using semantic metadata to create a logi-
cal abstraction for rule-based health risk prediction and 
thereby, personalized lifestyle recommendation gen-
eration in a health eCoach system. Villalonga et  al. [39] 
conceptualized an ontology-based automated reasoning 
model for generating personalized motivational messages 
for activity coaching considering behavioral character-
istics. Thus, ontology can be a good alternative for rule-
based decision-making with robust design flexibility in 
object-oriented design paradigms.

Improvement of physical activity in combination with 
wearable activity sensors and digital activity trackers, 
eCoach features can be promising and motivating to its 
participants. The application of AI to eCoaching is new. 
Therefore, real-time data analysis and, thereby, the gener-
ation of personalized recommendations with eCoaching 
is missing in existing literature with the following search 
string in well-reputed PubMed or Medline database: with 
a search string: ((ecoach OR e-coach) AND (activity moni-
toring) AND (Healthy lifestyle or lifestyle) AND (activity 
or physical activity or exercise) AND (Sensor or activ-
ity sensor or activity tracker) AND (recommendation or 
recommendation generation) AND (data driven or data-
driven or classification or prediction or regression or fore-
casting or rule-based or rule based or ruleset or knowledge 
base or knowledge-based or hybrid)). Different activity 
monitoring and lifestyle coaching smartphone applica-
tions are available online; however, they are too generic 
and lack appropriate design and development guidelines, 
and eCoaching features [12].

State‑of‑the‑art
The state-of-the-art is to generate personalized recom-
mendations using AI and interpretable semantic rules 
to motivate participants to achieve their activity goals. 
A goal type can be of two types – short-term goals (e.g., 
weekly) and/or long-term goals (e.g., monthly). Success 
in short-term goals (STG) attainment may help in achiev-
ing long-term goals (LTG) when the LTGs are the sum-
mation of STGs.

Our assumed hypothesis is that an eCoach system 
can generate meaningful, automatic, and personal-
ized recommendation plans to accomplish individual 
lifestyle goals. To prove the concept, we have concep-
tualized the design of the ActieCoach prototype sys-
tem for physical activity as a study case. ActieCoach 
can collect activity and personal preference data 
from actual participants with wearable activity sen-
sors, questionnaires, and self-reported forms, respec-
tively, and thereby, process collected data to forecast 

daily step count, classify individual activity levels, 
and combine the outcomes in an ontology model for 
semantic knowledge representation to generate of 
personalized recommendations with a query engine 
against a defined semantic rule set. The semantic 
rules in an ontology can show a direction to enhance 
the understandability of recommendation genera-
tion with IF-ELSE conditions in a logical tree struc-
ture. Most activity trackers, involving mobile apps and 
smart wearable devices (e.g., smartwatches), predict 
future activity in terms of "steps" as a point prediction 
with time-series forecasting, probabilistic approaches, 
or specific rules. However, point prediction is a very 
abstract concept. Therefore, a probabilistic interval 
prediction approach may be encouraging. Prelimi-
nary research has been found on sensor data with AI 
technology and combining the predictive analysis 
result with semantic rules for hybrid recommendation 
generation. Moreover, this research adds arguments 
to attain ethical aspects of AI by addressing a collec-
tion of ethical data, data governance, testing for bias, 
explainable AI, and continuous model improvement 
with incremental model designing.

This study is novel as no similar work has been pub-
lished as revealed from the literature search. Recom-
mendation technology has a broad application domain. 
We have considered studies that are only related to life-
style recommendations, either personal or group-level. 
A qualitative comparison between our study and the 
related studies has been made in Table 1 based on the 
following parameters: hybrid recommendations (data-
driven and rule-based), ontology modeling, interval 
prediction, observation with activity sensors, prefer-
ence settings, and logical recommendation generation. 
The high-level descriptions of the used terminologies 
are specified in Additional file  3: Appendix A.1. The 
study by Pessemier et al. [34] focused on recommenda-
tion generation at the “Community” level; however, our 
research targets activity coaching and recommendation 
generation at the “Personal” level.

Aim of the study
This theoretical and experimental evaluation study in 
laboratory settings addresses the following identified 
research questions associated with automatic and tai-
lored recommendation generation for physical activity 
in our ActieCoach:

a.	 How to combine AI forecasting and classification out-
comes in an ontology with semantics?
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b.	 Can residual error minimization technique improve 
the performance of time-series prediction?

c.	 How to use AI technology with semantic rules in auto-
matic activity coaching for personalized and under-
standable recommendation generation?

d.	 How to handle data imbalances to avoid model 
biases?

Design of the eCoach system
This section discusses the design of our ActieCoach 
prototype system. We followed an iterative and incre-
mental approach to design and implement our eCoach 
prototype that follows a modular design pattern with 
four key modules (see Fig. 1): (a.) data collection, (b.) 
data processing and activity prediction, (c.) integrating 

Table 1  A qualitative comparison between our study and the related healthy lifestyle recommendation studies

Study Hybrid 
recommendation?

Ontology 
modeling

Interval 
prediction

Real-time observation with 
an activity sensor

Preference 
settings

Logical 
recommendation 
generation

Our work Yes Yes Yes Yes Yes Yes

[12] Rule-based No No No No Yes

[29] No No No Yes No No

[30] No No No Yes No No

[32] Data-driven No No Yes No No

[33] No No No Yes No No

[34] Yes No No Yes Yes No

[35] No No No Yes No No

[36] No No No Yes No No

[37] No No No No No No

[38] No No No No No No

[39] Rule-based No No No No Yes

Fig. 1  The proposed solution for ActieCoach

Table 2  The rules for “Activity Level” feature formation are based on standard guidelines for activity level classification [10]

a MPA = 2VPA

Activity Level Rulea Score

Sedentary ((Steps < 5000) ∧ (VPA*2 + MPA) *7 < 90 ∧ LPA ≥ 0)) ˅ (Steps < 5000) 0

Low active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 90 ∧ (VPA*2 + MPA) *7 < 210) ˅ (Steps > 4999 ∧ Steps < 7500) 1

Active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 210 ∧ (VPA*2 + MPA) *7 < 300) ˅ (Steps > 7499 ∧ Steps < 10,000) 2

Medium active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 300 ∧ (VPA*2 + MPA) *7 < 360)) ˅ (Steps > 9999 ∧ Steps < 12,500) 3

Highly active ((Steps > 4999) ∧ (VPA*2 + MPA) *7 ≥ 360) ˅ (Steps > 12,499) 4
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the outcomes in an ontology and (d) recommenda-
tion generation based on SPARQL query processing. 
The data processing and activity prediction module 
is divided into two sub-modules: step forecasting and 
daily activity level classification (see Table  2). The 
individual data collection, step prediction, activity 
level classification, and personalized recommendation 
generation are continuous processes according to the 
eCoach feedback cycle. All the data and results were 
stored in an In-Memory tuple database (TDB) [5].

We used a traditional wearable activity sensor for 
personal activity data collection following individual 
consent and ethical guidelines,, such as General Data 
Protection Regulation (GDPR) [40]. Participants were 
recruited on a voluntary basis. We prepared a set of 
questionnaires to collect personal preference data (e.g., 
activity goal setting, response type, and the nature 
interaction) for recommendation planning. Partici-
pants were allowed to view and update their preference 
information at any time. The classification sub-module 
classifies daily activity data into the following activity 
levels: sedentary, low physical activity (LPA), medium 
physical activity (MPA), and vigorous physical activity 
(VPA). The prediction sub-module is responsible for 
forecasting daily steps for the next 7-days based on the 
temporal pattern in individual step data. After seman-
tic annotation with ontology, the respective module 
stores personal preference data and activity prediction 
and classification results in the TDB.

We designed a pipeline to automate the process with 
an incremental approach to handle real-time grow-
ing activity data with continuous machine learning 
model training, validation, and testing. The recom-
mendation generation module executes a scheduler to 
query and process individual activity prediction results 
from the TDB database with a SPARQL query engine, 
on a regular basis. A KB has been maintained in the 
TDB. In the KB, all the semantic rules are stored for 
recommendation generation. Semantic rules consist 
of propositional variables using (IMPLIES), (NOT), 
(AND), and (OR) operations. The recommendation 
generation module triggers a logical rule of structure 
(A IMPLIES B). If some specific variables are inferred 
to be true, then some suggestions should be provided 
to the participants of the semantic data source. Follow-
ing, individual recommendation data are updated in 
the ontology against a timestamp before storing it back 
in the database. The TDB database can be accessed 
periodically for personal preference data and the gen-
eration of individual recommendation messages or 
feedback data.

The design follows a modular microservice architec-
ture. The exposed eCoach interfaces are protected with 

multi-factor authentication and authorization rules 
[41, 42]. The data processing and activity module is 
written in Python (V. 3.8.x) with the Flask Framework 
and Python libraries. The other modules are written 
in the Java (JDK 11 +) programming language with the 
SpringBoot Framework. Open-source Apache librar-
ies (Jena, Jena Fuseki) [5] have been used for ontology 
implementation and eCoach service deployment.

Ontology modeling and algorithm design for personalized 
recommendations
The concept of ontology supports an open-world 
assumption knowledge representation style with the fol-
lowing elements: classes, individuals/objects, attributes 
or properties, relationships, and axioms [5, 43]. Proper-
ties are of two types: ObjectProperties and DataProper-
ties. Each property has a domain range, restriction rule, 
restriction filter, and restriction type as Some (existen-
tial), Only (Universal), Min (Minimum Cardinality), 
Exact (Exact Cardinality), and Max (Max Cardinality) 
[43]. Owl: Thing acts as a super-class in an ontology class 
hierarchy [43]. The class diagram of a program written 
with object-oriented programming visually represents 
an ontology structure. An ontology follows a connected, 
acyclic, and directed tree structure [43]. Our ontology 
has been explained in Table 3 and its high-level structure 
is depicted in Fig. 2, using the OntoGraf tool plugged-in 
Protégé. The asserted class hierarchy of the ontology has 
been depicted in Fig. 3.

The object properties, domain, range, property type, 
and cardinality of the ontology are defined in Table 4. The 
purpose of an ontology is the semantic representation of 
knowledge, reasoning, and rule-based decision-making 
with the generalization rules in the induction phase. The 
proposed ontology follows the following knowledge rep-
resentation phases: abstraction or lexicon phase (L) for 
mapping rules, abduction phase (B) for hypothesis gen-
eration rule, deduction phase (C) for the operator-reduc-
tion rule, and induction phase (D) for generalization 
rule. The resultant recommendation generation tree (T) 
follows a binary structure, and the syntactic knowledge 
representation in T helps to address the understandabil-
ity problem in personalized recommendation generation.

A set of propositional variables, logics, constants, and 
operators (such as NOT, AND, OR, IMPLIES, EQUIV, 
and quantifiers) are linked with Ontology representa-
tion and processing. The “EQUIV” refers to equivalence 
in logic or mathematics. In the context of a knowledge 
representation language such as OWL, it might be an 
equivalence relation, indicating that two entities have 
the same meaning or denotation. In this study, the rec-
ommendation generation aims to maximize weekly indi-
vidual physical activity time to minimize sedentary time. 
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The maximization problem to stay medium activate for 
a week (∑ days (1…0.7)) has been expressed in Table 5.

According to the World Health Organization (WHO) 
guidelines, adults (age group:18–64) should do at least 
150–300 min (2.5 – 5 h) of MPA; or at least 75–150 
min of VPA or perform an equivalent combination of 
moderate and high-intensity activities within a week to 
stay active [10]. To determine the weekly score of per-
sonal goal achievement, we summed up the daily activ-
ity score (see Table  2). eCoaching aims at goal score 
maximization with constant activity monitoring and 
recommendation generation. To conceptualize the per-
sonalized recommendation generation in our eCoach 
system, we considered an example of personal prefer-
ences table (see Table  6). We integrated the designed 
and developed ontology model into the ActieCoach for 
the logical representation of forecasting, classification, 
and personal preferences results. Preferences can be 
following three types.

•	 Activity goal setting (e.g., kind of goals, direct vs. 
motivational goals, and generic vs. personalized 
goals).

•	 Response type (e.g., way to communicate extended 
health state, health state prediction, and tailored rec-
ommendations for activity coaching).

•	 The kind of interaction with ActieCoach (e.g., mode, 
frequency, and medium).

The generic activity goals are the activity guidelines set 
by the WHO.

Moreover, we have shown a direction to use the ontol-
ogy for automatic rule-based personalized activity rec-
ommendation generation with SPARQL queries. The 
ontology has demonstrated an approach to annotating 
recommendation messages beyond the static verba-
tim form to describe its characteristics, metadata, and 
content information. The recommendation messages 
can be of two types: Formal and Informal (“To-Do”). 

Table 3  The Ontology structure and knowledge expression
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Additionally, the rule base has helped to interpret the 
logic behind recommendation generation with logical 
(AND), (OR), and (NOT) operations. Additional file  3: 
Appendix A.2 describes a set of defined recommenda-
tion messages for ontology verification against the used 
datasets. Against each condition described in Additional 
file  3: Appendix A.3, the recommendation generation 
module will execute a SPARQL query to verify the type 
of recommended message to be delivered to individuals 
daily. This study divides eight semantic rules into activity 
level classification (7) and satisfiability (1).

Semantic rules are created to describe the relationships 
and limitations between different concepts or entities 
within our eCoach knowledge representation prototype 
system. These rules facilitate the capture of the intended 
meaning and the intended behavior of data, respectively, 
and enable deduction and inference capabilities. Creat-
ing semantic rules is complicated and requires an under-
standing of the domain, the participants, and the desired 
meaning. Other methods, including collaboration with 
domain experts and utilizing existing ontologies or 
knowledge bases, have also been beneficial in the crea-
tion of rules.

Time-stamped measurable parameters related to the 
activities of specific participants are obtained using 
SPARQL queries at preference-based intervals. The rules 
(1–7) in Additional file 3: Appendix A.3 assign truth val-
ues to variables to ensure consistency. We strengthened 
with the ontology reasoner that the correct recommen-
dation message will be triggered for specific situations. 
However, it is essential to ensure that no variable pattern 
makes the entire rule unsatisfiable. We managed that 
only one message would be activated at a time. Here, we 
have a formal assurance that two "once a day" messages 
can neither be activated concurrently nor can there be a 
model output by the reasoner every time for every pos-
sible variable combination. Suppose we put the different 
variables used in the first seven rules in Additional file 3: 
Appendix A.3 into the propositional variables (see Addi-
tional file 3: Appendix A.2). In that case, we will have an 
exponential number of "possible participants". Since two 
messages cannot be triggered concurrently to meet the 
exact requirements, we have added a rule (Rule-8), and 
the variable used in the proposal starts "once a day". If 
(Rule-8) is false, the entire ruleset (considered as signifi-
cant conjunction) will be set to false, and then there will 

Fig. 2  The high-level structure of the proposed ontology
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Fig. 3  The asserted class hierarchy of our proposed ontology
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be no model as output, and we will be able to "debug" 
our rules if needed. If it is set to true, we will have a for-
mal assurance that no matter the true value we put in 
the rule base, two "once a day" messages will not be trig-
gered simultaneously. All the rule execution internally 
follows a binary tree structure where the non-leaf nodes 
hold the semantic rules (A | A ➔ B) to be executed, the 

leaf nodes hold the results (B or recommendation mes-
sages), and the edges hold a decision statement (True or 
False). In this way, satisfiability, and understandability 
problems have been addressed in customized, evidence-
based, and goal-oriented recommendation generations 
in ActieCoach. The proposed algorithm for the hybrid 
recommendation generation is described as follows:

Table 4  Key object Properties, domain, range, and cardinality of the ontology

ObjectProperties Domain Range Cardinality

hasHealthRecord Participant HealthRecord Some

hasPersonalData Participant PersonalData Some

hasPreferences Participant Preferences Some

hasReceivedRecommendation Participant Recommendation Some

hasStatus Participant ParticipantStatus Some

hasbeenCollectedBy ActivityData ActivityDataValue Some

hasTimeStamp ActivityDataValue, Questionnaire, Recommenda-
tion, ParticipantHealthRecord

TemporalEntity Some

has Measurement Capability ActivityDevice Measurement Capability Only

hasOutput ActivityDevice Sensor Output Some

observes ActivityDevice Property Only

detects ActivityDevice Stimulus Only

feature of interest Observation Feature of Interest Only

observation result Observation Sensor Output Only

observedBy Observation Sensor Only

is property of Property Feature of Interest Some

hasProperty Feature of Interest Property Some

hasIntervalDay Participant StepPrediction Some

hasActivityLevel Participant Activity_Level_(Daily) Some

Table 5  Expression for the activity maximization problem
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Algorithm 1  A personalized hybrid activity recommendation generation method.

Table 6  Personalized preferences of individual participants for recommendation generation

Personal preference names Selection of example preference values

Goal setting Weekly score

Nature of goal System defined—Generic [set by the WHO]

Frequency of recommendation delivery Weekly

Target goal To stay medium active for the entire week

Target score 21

Mode of recommendation Text (e.g., push notification on the eCoach app.)

Time of recommendation 8:00 am
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Datasets
We used statistical forecasting and ensemble classifica-
tion algorithms to analyze activity datasets for adults (age 
group: 18–64). Activity data for the elderly, children, ath-
letes, bodybuilders, and pregnant women are beyond the 
scope. Our used datasets are imbalanced.

PMData public datasets
We used the anonymous public PMData sports logging 
dataset for n = 15 adults (male: 12; female: 3) model train-
ing and testing participants. The activity dataset has been 
collected with Fitbit Versa 2 fitness smartwatch in the 
PMSys sports logging smartphone application. A detailed 
description of the dataset is provided by Vajira et al. [44]. 
We received records between 114–152 days per par-
ticipant with a total volume of 2244 records. The dataset 
reveals multiple features related to physical activities, 
such as step count, sleep time, resting heart rate, type of 
exercise, restlessness, sedentary minutes, LPA, MPA, and 
VPA. We selected the “steps” meta-data file and excluded 
sleep-related features as sleep monitoring is not in the 
scope. We excluded Participant P-12 from the analysis 
due to missing LPA information.

MOX2‑5 private datasets
We collected anonymous activity data (539 records) 
from n = 16 adults (male: 12; female: 4) in Norway for 
30–45 days using the MOX2-5 wearable activity sen-
sor (CE certified) [45], following ethical guidelines 
and signed consent. Based on the Norwegian Cen-
tre for Research Data (NSD) approval, we collected 
and assessed personal data in this project following 
the data protection legislation. The attributes of the 
MOX2-5 data are in Additional file  3: Appendix A.3. 
The participant’s characteristics are recorded in Addi-
tional file  3: Appendix A.4. Informed or signed con-
sent has been taken from all the participants. We have 
not disclosed any identifiable data of the participants 
using text, numbers, or figures. The relevant features 
obtained from the MOX2-5 sensors are—timestamp, 
activity intensity (IMA), sedentary seconds, weight-
bearing seconds, standing seconds, LPA seconds, MPA 
seconds, VPA seconds, and steps per minute. The “step” 
and “IMA” are the most valuable and robust features 
of the MOX2-5 sensor-based datasets, as other attrib-
utes (except the timestamp) are almost derived (e.g., 
LPA, MPA, and VPA are derived from IMA as defined 
in Table 7). IMA has a strong relation with steps where 
steps are primarily involved as a measure for activi-
ties. In the MOX2-5 sensor, sedentary time refers to 
the non-activity duration, including leisure and sleep. 

The relation between sedentary and active (LPA/MPA/
VPA) can be written as:

Methods
This section describes an adopted methodology for fea-
ture selection, data labeling for classification, data pro-
cessing with prediction and regression models, and 
model evaluation. We have followed the Standards for 
Reporting Implementation (StaRI) for this study (see 
Additional file  2: Appendix B). All methods have been 
carried out following the regulations and relevant guide-
lines in the “Ethical approval and consent to participate” 
section under Declarations.

Feature selection
For the feature selection [46–50], we adopted well-
established feature selection and feature ranking 
methods, such as SelectKBest, Recursive Feature Elimi-
nation (RFE), Principal Component Analysis (PCA), 
ExtraTreesClassifier, and correlation analysis. SelectK-
Best is a univariate feature selection and feature ranking 
method with statistical testing (e.g., chi-squared) [46–
50]. RFE selects optimal features and assigns a rank after 
removing redundant features recursively [46–50]. PCA is 
an unsupervised data reduction method that uses linear 
algebra to reduce data dimensions. It ranks features based 
on variance ratio [46–50]. ExtraTreesClassifier is a bag-
ging-based feature importance (or ranking) method [46–
50]. Moreover, correlation analysis is a statistical method 
used to measure the strength of the linear relationship 
between two variables and compute their association [4]. 
A high correlation signifies a strong relationship between 
the two variables, and a low correlation means that the 
variables are weakly related [4]. The sample correlation 
coefficient (r) measures the closeness of association of 
the variables. "r" ranges from -1 to + 1, where -1 indicates 
a perfectly linear negative, i.e., inverse, correlation (slop-
ing downward) and + 1 shows a linear positive correlation 
[4]. "r" close to 0 suggests little, if any, correlation. Cor-
relation methods are of the following two types [4]: (a.) 
Pearson correlation: it evaluates the linear relationship 

(1)
(sedentary, active, weight − bearing, standing) = 60 seconds

Table 7  Relation between IMA and activity level classification

Activity type IMA range to 
determine physical 
activity types

LPA 0 ≤ IMA ≤ 400

MPA 401 ≤ IMA ≤ 800

VPA IMA ≥ 801
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between two continuous variables, (b.) Spearman corre-
lation: It considers the monotonic or non-gaussian rela-
tionship. Our used datasets have shown a non-gaussian 
relationship with normality testing methods. The corre-
lation analysis [4] with the “spearman” method revealed 
the strength of the linear relationship between features 
and helped to determine which feature to retain or not. 
We considered removing features if they showed a pow-
erful dependency score (r >  = 0.72). The Shapiro–Wilk 
normality test [4] revealed that both data samples did not 
look like “Gaussian”. The normality test involved multiple 
univariate tests following the hypothesis testing method 
with P-value > α = 0.05 (i.e., the sample looks like Gauss-
ian) and P-value < α = 0.05 (i.e., the sample does not look 
like Gaussian) [4]. “α” signifies the significance level. We 
have set a rule to eliminate participants’ data that are less 
than one month redundant, noisy, incomplete, or miss-
ing. For time-series forecasting, we have considered uni-
variate daily step counts from both datasets. Moreover, 
we have used the forward and backward filling methods 
to handle missing data.

Combining features from datasets
First, we performed feature ranking and feature selection 
from public Fitbit datasets based on the adopted corre-
lation method and created an optimal feature set (FS-1). 
Second, we have performed the same feature selection 
method on private MOX2-5 datasets and created an 
optimal feature set (FS-2). Then, we performed an inter-
section of FS-1 and FS-2 to create a common feature 
space (or final feature set) to make the transfer learning 
approaches relevant to this study (see Fig. 4).

Data labeling for classification
The “Activity Level” feature represents five classes – 
sedentary (0), low active (1), active (2), medium active 

(3), and highly active (4). The rule for “Activity Level” 
feature class creation is defined in Table  2. In the 
multi-feature-based classification problem, we derived 
the feature class “active” based on the sedentary, LPA, 
MPA, and VPA following activity references for adults 
[10, 51, 52]. Features, such as age, gender, and weight 
are not in the scope of this study. The class distribu-
tions in multi-class classification for both datasets are 
depicted in Figs. 5 and 6.

Data balancing for classification
Data balancing [53, 54] is crucial to addressing class 
imbalance and making sure that machine learning mod-
els are impartial, legitimate, and powerful. It increases 
the performance of the model, averts bias, enhances gen-
eralizability, facilitates better learning of features, pre-
vents overfitting, and increases the model’s stability to 
change in concept.

Synthetic Minority Over-sampling Technique (SMOTE) 
[55] is a well-known and widely used method for generat-
ing synthetic samples to remove class imbalance. It does 
this by creating virtual instances in the space of features 
of the minority class that are synthetic in nature, they are 
interpolated between the existing samples of the minor-
ity class. It chooses a random sample of minority classes 
and finds the k closest classes to it. It then produces syn-
thetic samples that follow the line segments that connect 
the smaller sample and its neighbors. SMOTE can increase 
the percentage of the minority class and decrease the class 
disparity. ADASYN [56] is a supplement to SMOTE that 
addresses the deficiency of SMOTE in dealing with data 
that have a more intricate distribution of classes.

ADASYN provides an adaptive method that considers 
the local density distribution of the minority class. This 
method is intended to better represent the distribution 
of underlying data and provide a more effective method 

Fig. 4  Combining features from both datasets to prepare the final feature set
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of addressing class imbalance. In this study, we have used 
the ADASYN method for data balancing for predictive 
analysis.

Let “X” be the feature matrix of the original dataset 
with n samples and m features, and y be the correspond-
ing class labels. Let “X_minority” and “X_majority” rep-
resent the feature matrices of the minority and majority 
classes, respectively. The adopted steps for the ADASYN 
method have been summarized as follows:

1. Calculate the imbalance ratio (IR) as the ratio of 
the number of majority samples to the number of 
minority samples and the corresponding formula is:

IR = (number of majority samples)/(number of minority samples).

2. Calculate the number of synthetic samples to gen-
erate for each minority sample based on the IR and 
the corresponding formula is:

3. For each minority sample xi in X_minority, calcu-
late the Euclidean distance (dist) between xi and its k 
nearest neighbors in the feature space. The value of k 
is a user-defined parameter.
4. Calculate the relative contribution (rc) of each 
minority sample based on the normalized distance 
and the corresponding formula is:

N_synthetic = IR ∗ (number of minority samples)

Fig. 5  Class distribution for the public PMData datasets

Fig. 6  Class distribution for the private MOX2-5 datasets
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5. Calculate the density distribution (dd) for each 
minority sample and the corresponding formula is:

6. Calculate the number of synthetic samples to gen-
erate for each minority sample based on the density 
distribution and the corresponding formula is:

7. For each minority sample xi, generate N_
synthetic_i synthetic samples by randomly interpo-
lating between xi and its k nearest neighbors.
8. Combine the original dataset X with the synthetic 
samples to form the augmented dataset X_aug-
mented.
9. Apply a machine learning algorithm to the aug-
mented dataset X_augmented for classification.

Auto regression model with residual error minimization
Autoregression [57] is a time-series model that utilizes 
temporal patterns as an input to a regression equation to 
forecast the value at the next time step. It is a straightfor-
ward idea that can make accurate predictions for many 
time series problems. Linear regression models output 
values ​​based on linear combinations of input values [57]. 
This technique can be applied to time series, where input 
variables are used as observations at earlier time steps, 
so-called lagged variables [57]. In auto-regression, the 
regression models use data from the same input vari-
ables at an earlier time step [57]. To predict the next time 
step or (t + 1) based on the last two observations (t-1) and 
(t-2), an autoregression model can be expressed as:

A residual error (RE) [58] is a difference between the 
expected and predicted values. RE generates a tempo-
ral form of information that we can model to correct 
existing time-series predictions [58]. Any temporal 
structure in the residual forecast error time series can 
be used as a diagnostic because it implies information 
that might be included in the forecast model. An ideal 
model leaves no structure in the residuals. A simple 
and effective residual model is auto-regression where 
some lag error values ​​are used to predict the error at the 
subsequent time step. Such lag errors are conjoined in 

rc(xi) = dist(xi)/
∑

dist(xi)

dd(xi) = rc(xi)/
∑

rc(xi)

N_synthetic_i = dd(xi) ∗N_synthetic.

(2)X(t + 1) = b0 + b1 ∗ X(t − 1)+ b2 ∗ X(t − 2)

a linear regression model, such as the AR model for a 
direct time-series analysis. Auto-regression of residual 
time series is called a moving average (MA) model. We 
created a model with autoregression to model the RE 
time series in a linear form. The linear model yields a 
weighted linear summation of lagged RE terms, and that 
can be expressed as:

Our activity data shows the number of steps per min-
ute. We converted it to a daily step count for daily step 
forecasting. Time-series [59, 60] data is strictly sequen-
tial; however, highly prone to non-stationarity, autocor-
relation, trend, and seasonality. We used the Augmented 
Dicky-Fuller hypothesis test [59, 60] with autolog = ‘AIC’ 
and regression = ‘CT/C’ to verify the stationarity of the 
time-series data. We used seasonal decomposition with 
model = ‘additive’ or ‘multiplicative’ to analyze the data’s 
trend, seasonality, and residual components. We con-
verted the non-stationary data to stationary with the 
different transform methods. We used an autocorrela-
tion (ACF) 2D plot to observe the lag value (X-axis) and 
the correlation (Y-axis) between -1 and 1, and partial 
autocorrelation (PCF) with limited lag value (e.g., 25, 
50). ACF and PCF had been useful for parameter selec-
tion in time-series forecasting models. We have used the 
autoregression model with the integration of the residual 
error minimization technique to forecast time-series step 
data. We have created a lag value of 50 for the PMData 
datasets and 14 for the MOX2-5 datasets. We have con-
sidered an autoregression window length of five for both 
datasets. The steps for autoregression with residual error 
minimization to improve univariate time-series forecast-
ing are described in Table 8.

Ensemble classification algorithms
This study has performed multi-class classification with 
standard ensemble machine learning models [61–63], 
such as bagging, boosting, and voting, followed by 
empirical comparison testing. We have used ensemble 
classifiers instead of deep learning classifiers because of 
the following reasons: convex optimization technique in 
gradient descent to find global minima, small amounts 
of training data, lesser model training time, training on a 
central processing unit (CPU), computationally inexpen-
sive in terms of time and space, and transparency.

Regularizations, such as L1-norm and L2-norm have 
not been added to the models because of the limited 
set of features. Ensembles [61, 62] can give a boost to 
classification results in combination with several super-
vised models based on the approaches, such as paral-
lel ensemble (bagging), sequential ensemble (boosting), 

(3)Error(t + 1) = b0 + b1 ∗ Error(t − 1)+ b1 ∗ Error(t − 2)+ ..+ bn ∗ Error(t − n)
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and voting. Bagging is a bootstrap aggregation method 
where homogeneous weak learners are clubbed 
together in parallel with a deterministic averaging 
process to improve prediction accuracy by decreasing 
model variance. Random Forest (RF), Bagging Classi-
fier, and ExtraTreesClassifier are examples of bagging 
ensembles and are used here for comparative perfor-
mance analysis. Boosting is an incremental method in 
which multiple weak learners are combined sequen-
tially over numerous iterations using a deterministic 
strategy to build a strong ensemble. AdaBoost (ADA) 
and Gradient Boosting Classifier (GB) are examples of 
boosting ensembles and are used here for performance 
comparison. Voting combines predictions based on 
standard statistical metrics, such as the mean median, 
to decide the final prediction.

To better use data, initially, we shuffled the dataset, 
then split the dataset into training and testing with a ran-
dom state integer value. To boost the performance of the 
machine learning model, we used k-fold cross-validation 
where k >  = 5. We used Grid Search [4] hyperparameter 
optimization technique for machine learning model tun-
ing for an appropriate selection of learning rate (alpha 
(α)) in gradient descent algorithm, and proper selection 
of other components, such as components, criterion, 

and max_depth is important for tree-based models. We 
executed each ensemble machine learning classification 
model five times and calculated their mean performance 
score for comparison. The step for classification is stated 
in Table 9.

Additionally, we have used a DummyClassifier as a 
simple baseline to compare against other more complex 
classifiers. It makes predictions that ignore the input fea-
tures. We have used its strategy parameter as “most_fre-
quent”. First, we performed predictive analysis on the 
imbalanced physical activity datasets and then, we car-
ried out the same experiment on balanced datasets to 
verify model biases. Stratification techniques helped to 
ensure that the distribution of target classes is preserved 
in the resulting subset.

Evaluation metrics
The performance of ML-based classification models 
has been evaluated against discrimination analysis. Dis-
crimination analysis metrics are precision, recall, speci-
ficity, accuracy score, F1 score, classification report, 
and confusion matrix [4, 61, 62]. A confusion matrix is 
a 2-dimensional table (“actual” vs “predicted”), and both 
dimensions have “True Positives (TP)”, “False Positives 

Table 8  Steps for residual error minimization in univariate time-series forecasting

Step 1: Creation of lagged datasets

Step 2: Split data into train and test with a 60:20:20 ratio using the stratification technique

Step 3: Apply the persistence model by predicting the output value (Y) as a replica of the input value
(X)

Step 4: Calculate residuals

Step 5: Model the training set residuals with a defined lag value, predict RE with the AR model, and
defined window size ⋲ Z + 

Step 6: Walk forward over time steps in the test dataset

Step 7: Correct forecasts with the designed model of RE using the following equation:
improved forecast = forecast + estimated error

Step 8: Calculate metrics for the corrected forecasts and compare them with the forecasts without REM to observe the improvements

Table 9  Steps for daily activity level classification

Step 1: Load activity datasets

Step 2: Encode predictive class values with one-hot encoding

Step 3: Split data into train, validation, and test with (a 60:20:20) ratio using the stratification technique

Step 4: Create classification model, M

Step 5: Compile M with value-set for optimization technique, k-fold, and metrics

Step 6: Fit model M with training data

Step 7: Improve the model with a grid-search technique

Step 8: Calculate accuracy and other classification metrics

Step 9: Select the best learning parameters as computed with the Grid Search technique

Step 10: Classify input data into respective output classes
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(FP)”, “True Negatives (TN)”, and “False Negatives (FN)”. 
Equations to calculate classification metrics are:

Accuracy tells how close a measured value is to the 
actual one. Recall or sensitivity suggests the exact num-
ber of positive measures. Precision means how relative 
the measured value is to the actual one. Furthermore, 
we used cross-validation scores to determine overfitting 
and underfitting, a validation curve to determine bias vs. 
variance, and a learning curve to visualize the conver-
gence status of the training score with the cross-valida-
tion score. Bias is an error due to erroneous assumptions 
in the learning algorithm, and variance is an error from 
sensitivity to small fluctuations in the training set. High 
bias leads to underfitting, and the high variance results 
in overfitting. Accuracy and F1 scores can be mislead-
ing because they do not fully account for the sizes of the 
four categories of the confusion matrix in the final score 
calculation. MCC is more informative than the F1 score 
and accuracy because it considers the balanced ratios of 
the four confusion matrix categories (for example, true 
positives, true negatives, false positives, and false nega-
tives). The F1 score depends on which class is defined as a 
positive class. However, MCC does not depend on which 
class is the positive class, which has an advantage over 
the F1 score and avoids incorrectly defining the positive 
class [64–66]. The MCC can be represented as:

The performance of each time-series forecasting 
model has been evaluated with root mean squared error 
(RMSE). MSE informs how close the regression line is to 
a set of points. It calculates “errors” from the points to 
the regression line and squares them to eliminate nega-
tive signs. The squared root of MSE is called RMSE, 

(4)Accuracy(A) =
(TP+ TN)

(TP+ FP+ FN + TN)
, 0 ≤

(A)

(100)
≤ 1

(5)Precision(P) =
(TP)

(TP+ FP)

(6)Recall(R) or Sensitivity(S) or True positive rate =
(TP)

(TP+ FN)

(7)Specificity(S) = (1− Sensitivity) =
(TN)

(TN + FP)

(8)F1score(F1) =
(2 ∗ P ∗ R)

(P+ R)
, 0 ≤

(F1)

(100)
≤ 1

(9)Matthew′s correlation coefficient (MCC) =
(TP(TP ∗ TN − FP ∗ FN))

√

(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)
,−1 ≤

(MCC)

(100)
≤ +1

which gives more weight to a significant difference with 
no bias [4, 60]. We used other metrics such as forecast 
bias (FB), RSD, and model execution time (in seconds or 
sec.). FB can be positive or negative. A non-zero mean 
prediction error value implies the tendency of the model 
to predict too high (negative error) or too small (positive 
error). Thus, the mean forecast error is called FB. If fore-
cast error = 0, the forecast has no error for that predic-
tion. Overprediction if the prediction variance < 0, and 
the model is unbiased if the prediction variance ≈ 0 [60].

Our proposed ontology model has been evaluated against 
reasoning time and SPARQL query execution time [5]. Pro-
tégé provides a list of reasoners, such as HermiT, Pellet, 
Fact +  + , RacerPro, and KAON2, to check the logical and 
structural consistencies [5, 43]. We compared mean rea-
soning time and selected the best reasoner for our ontology. 
We have captured the SPARQL query execution time in 
Protégé. Furthermore, we cross-verified the execution time 
of the ontology in the Jena Fuseki server [5].

Probabilistic interval prediction
In predictive inference, a prediction interval is an esti-
mate of an interval containing future observations 
with some probability, based on what has already been 
observed. Prediction intervals are often used in predic-
tion analysis. In this study, we have used the concept 
of step forecasting. The prediction interval which gives 
the gap to maintain a specific probability value, can be 
written as [67, 68]:

“c” changes with coverage probability. In one-step 
interval prediction “c” is 1.28 (80% prediction interval 
where forecast errors are normally distributed). “σh” is 
the estimation of the residual standard deviation (RSD) 
in the h-step forecast distribution (h>0). RSD is used to 
statistically describe the difference in the standard devia-
tion of observed values versus the standard deviations 
of estimated values. We have used the Naïve forecast 
method to statistically derive “σh”.

Validation study
The validation part explains the performances of the 
best-performing classification models on both the bal-
anced and imbalanced datasets and the verification of the 
intended personalized recommendation generation and 
its appropriate visualization.

(10)YT+h|T ± c ∗ σh
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Verification of the classifiers
To verify the performance of the classifiers in public Fitbit 
and MOX2-5 datasets, we have the following two visuali-
zation approaches: (a.) Validation curve: it is an essen-
tial diagnostic tool that shows the sensitivity between 
changes in the accuracy of an ML model and changes in 
specific model parameters. A validation curve is usually 
drawn between some model parameters and the model’s 
score. There are two curves in the validation curve—one 
for the training set score and one for the cross-validation 
score. Validation curves evaluate existing models based 
on hyperparameters, and (b.) Learning curve: it shows 
the estimator’s validation and training scores for different 
numbers of training samples. It is a tool to see how much 
we benefit from adding more training data and whether 
the estimator suffers more from variance or bias errors.

Verification of personalized recommendation generation 
and visualization
For personalized recommendation generation in the 
eCoach prototype system, we have maintained individ-
ual preferences to understand personal interests (e.g., 
Table  6). Preference data are stored in the KB. Partici-
pants can view and update their preference data in the 
eCoach mobile app. To determine the weekly score of 
personal goal achievement, we have summed up the daily 

activity score, and the measure of the daily activity score 
is mentioned in Table 2.

Results
Experimental setup
We used Python 3.8.5 libraries, such as pandas (v. 1.1.3), 
NumPy (v. 1.21.2), SciPy (v. 1.5.2), Matplotlib (v. 3.3.2), 
Seaborn (v. 0.11.0), Plotly (v. 5.2.1), scikit-learn (v. 0.24.2), 
Statsmodels (v. 0.13.2), and Graph Viz (v. 2.49.1) to pro-
cess data and build the AI models. We have set up the 
Python environment in the Windows 10 operating sys-
tem using Anaconda distribution and used the Jupyter 
Notebook v. 6.4.5 for the development, model analysis, 
and data visualization. The targeted system consists of 
16GB RAM and 64-bit architecture. We used the Protégé 
5.x open-source editor for ontology design, implementa-
tion, SPARQL query processing, and visualization.

Experimental results
The correlation matrix of the selected features from the 
PMData and MOX2-5 datasets has been captured in 
Figs. 7 and 8. “Step” has been found to be an essential fea-
ture in both activity datasets. We have prepared our final 
feature set based on the outcome of the feature correlation 
score. The feature “calorie” is not related to the context of 
this study. Therefore, the final feature set can be written as:

(11)Final feature− set = (FS− 1
⋂

FS− 2) = {sedentary, LPA, MPA, VPA, steps}

Fig. 7  Correlation matrix for the public PMData datasets
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The performance of standard ensemble models 
depends on the nature of datasets used for a particular 
case study, under a defined setting. Therefore, we have 
tried different standard ensemble classifiers with unique 
settings using the Grid-Search method. The compara-
tive analyses between considered ensemble classifiers for 
both datasets have been captured in Tables  10 and 11. 
The GB classifier outperformed other classifiers on both 
datasets to classify daily human activity levels into five 
activity-level classes. Therefore, GB has been successful 
in combining weak learners to deliver improved classi-
fication accuracy. The resultant confusion matrices for 
both datasets against the GB classifier have been depicted 
in Figs. 9 and 10. {’learning_rate’: 0.1, ’max_depth’: 3, ’n_
estimators’: 100} have been the best tree-specific hyper-
parameters for the GB classifier to affect each individual 
tree in the model as obtained with the Grid Search for 
PMData and MOX2-5 datasets, respectively. The training 
vs. testing, validation, and learning curves for the Gradi-
ent Boosting classifier used in both datasets are depicted 
in Additional file 3: Appendix A.6 – Appendix A.8.

We repeated the predictive analysis on PMData 
and MOX2-5 datasets using the Ensemble Classifi-
ers after making their distributions balanced based 
on the local density of minority samples, with the 
well-known ADASYN sampling algorithm to verify if 
data balancing is improving the model performance 
and fairness or not. ADASYN augmented PMData 
by 76.6% (3964–2244 = 1720) and MOX2-5 by 79.9% 

Fig. 8  Correlation matrix for the private MOX2-5 datasets

Table 10  Performance of the machine learning classifiers for 
public original Fitbit datasets

ML classifier 
models

Mean accuracy Precision Recall F1 MCC

RF 98.00 98.00 98.00 97.29 96.60

Bagging 98.00 98.00 98.00 97.24 96.30

ExtraTreesClas-
sifier

97.00 97.00 97.00 97.16 95.30

ADA 91.00 88.00 89.00 88.19 84.98

GB 98.00 98.00 98.00 97.86 96.78
Voting 96.00 96.00 96.00 96.21 94.99

DummyClassifier 35.18 12.00 35.00 18.00 00.00

Table 11  Performance of the machine learning classifiers for 
private original MOX2-5 datasets

ML classifier 
models

Mean accuracy Precision Recall F1 MCC

RF 99.00 99.00 99.00 99.07 98.80

Bagging 99.00 99.00 99.00 99.20 98.70

ExtraTreesClas-
sifier

99.00 99.00 99.00 99.07 98.85

ADA 59.00 70.00 62.00 70.30 67.17

GB 99.00 99.00 99.00 99.50 99.00
Voting 95.00 93.00 92.00 92.50 90.80

DummyClassifier 27.31 27.00 27.00 27.00 00.00
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(970–539 = 431). The resultant confusion matrices for 
both balanced datasets against the GB classifier have 
been depicted in Figs. 11 and 12. {’learning_rate’: 0.1, 
’max_depth’: 3, ’n_estimators’: 100} have been the 
best tree-specific hyperparameters for the GB clas-
sifier to affect each individual tree in the model as 
obtained with the Grid Search for balanced PMData 
and balanced MOX2-5 datasets, respectively. The 

comparative analyses between considered ensemble 
classifiers for both the balanced datasets have been 
captured in Tables 12 and 13.

Tables 14 and 15 have shown the performance compar-
ison between the autoregression model with the residual 
error minimization technique and the traditional autore-
gression model without the residual error minimization 
technique. The residual error minimization technique 

Fig. 9  Confusion matrix for the public original PMData datasets

Fig. 10  Confusion matrix for the private original MOX2-5 datasets
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has improved the model’s performance according to the 
prediction outcomes. As an example, the ACF, PCF, and 
autoregression with residual error minimization predic-
tion plots for the participant-1 or P-1 from the PMData 
datasets are depicted in Additional file 3: Appendix A.9 
and Appendix A.10.

Interval prediction can be a meaningful representation 
of temporal daily step counts. Therefore, we have used 
autoregression with the residual error minimization for 
the next seven days’ step forecast for participants’ data 
from the PMData datasets, based on its temporal step 
data analysis. As an example, we have calculated the 

Fig. 11  Confusion matrix for the public balanced PMData datasets

Fig. 12  Confusion matrix for the private balanced MOX2-5 datasets
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RSD value ≈ 2600.0 for the step data of P-1. Using the 
informed probabilistic Naïve interval prediction method, 
we have shown a direction to calculate the 1-step inter-
val prediction of activity steps on top of the point predic-
tion (see Table 16). An approach to present the interval 
step prediction in the ActieCoach mobile app to motivate 
individuals for their personal activity monitoring to reach 
activity goals has been implemented and is shown in 
Fig. 13. A similar process can be accomplished for other 
participants in the PMData and MOX2-5 datasets.

We have used the “OWL_MEM_MICRO_RULE_INF” 
specification (OWL full) to read the ontology in Jena in 
the “TTL” format and approximated the reading time 
to 1.0–1.5 s. Moreover, we used “In-memory” storage, 
“optimized rule-based reasoner OWL rules” and the Jena 
framework to query the ontology class, ontology, predi-
cate, subject, and object of each sentence in < 1.0 s, < 2.0 
s, and < 2.0 s, respectively. We have implemented the 
RDF interface provided by Jena to persist the modeled 
ontology and its instances in the TDB and load them 
back for further processing. The reasoning time of the 
ontology has been evaluated against the following rea-
soners: HermiT, Pellet, Fact +  + , RacerPro, and KAON2, 
and the corresponding reasoning time has been cap-
tured in Table 17. The HermiT reasoner has performed 
the best.

Discussion
The discussion section consists of key findings from 
this study, conceptual implementation of the proposed 
algorithm for recommendation generation, relevance 
of this study towards a sustainable society, as well as 
an exploration of its limitations and potential future 
directions.

Key findings
In Fig. 1, the TDB database functioned as a KB. All the 
messages as described in Additional file 3: Appendix A.2 
were saved in the KB. The recommendation generation 

Table 12  Performance of the machine learning classifiers for 
public balanced Fitbit datasets

ML classifier 
models

Mean accuracy Precision Recall F1 MCC

RF 97.80 97.00 98.00 97.80 95.60

Bagging 97.60 97.00 98.00 97.60 95.30

ExtraTreesClas-
sifier

98.20 98.00 98.00 98.20 96.30

ADA 81.50 81.00 82.00 82.50 78.00

GB 98.30 98.00 98.00 97.30 96.40
Voting 90.50 91.00 91.00 90.50 88.00

DummyClassifier 20.50 21.00 21.00 20.50 00.00

Table 13  Performance of the machine learning classifiers for 
private balanced MOX2-5 datasets

ML classifier 
models

Mean accuracy Precision Recall F1 MCC

RF 99.50 99.00 99.00 99.50 98.00

Bagging 99.50 99.00 99.00 99.50 98.00

ExtraTreesClas-
sifier

99.50 99.00 99.00 99.50 98.00

ADA 76.50 76.00 77.00 76.50 72.07

GB 99.80 99.00 99.00 99.80 99.00
Voting 75.00 75.00 75.00 75.00 72.80

DummyClassifier 20.72 20.70 20.70 20.72 00.00

Table 14  Mean prediction performance on original PMData 
datasets

Models RMSE | FB | RSD ET (sec.)

Autoregression 
with residual error 
minimization

5936.50 223.40 1475.60 144.00

Autoregression with-
out residual error 
minimization

6590.00 252.00 1863.00 149.00

Table 15  Mean prediction performance on original MOX2-5 
datasets

Models RMSE | FB | RSD ET (sec.)

Autoregression 
with residual error 
minimization

5936.50 223.40 1475.60 144.00

Autoregression with-
out residual error 
minimization

6590.00 252.00 1863.00 149.00

Table 16  Step and Interval prediction for Week-X for P-1 in 
PMData datasets

Week-X Predicted step 
points

80% interval step 
prediction c = 1.28, 
σh = 2600.00

Day-1 7369 7369 ± 3328

Day-2 8879 8879 ± 3328

Day-3 8202 8202 ± 3328

Day-4 7557 7557 ± 3328

Day-5 10,199 10,199 ± 3328

Day-6 9819 9819 ± 3328

Day-7 7426 7426 ± 3328
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module (see Fig. 1) retrieved these messages during tai-
lored recommendation generation based on a SPARQL 
query execution plan, followed by applying the rules in 
Additional file  3: Appendix A.3. The rules are also kept 
in the KB. Both the asserted and inferred information 
attained from the reasoning method had been effective 
in determining the most appropriate recommendation 
message. We generated personalized activity recom-
mendations according to the semantic rules to improve 

individual physical activity to meet activity goals. We exe-
cuted the semantic rules and used the Jena ARQ engine 
to run relevant SPARQL queries on the applied datasets. 
Several SPARQL queries are provided in Additional file 3: 
Appendix A.11 as an example, and their results need to 
be combined to create personalized recommendations to 
meet the eCoaching requirements.

Furthermore, this sub-section describes the over-
all process of daily and weekly score determination for 
activity performance, goal verification, recommendation 
generation, and its visualization on the eCoach app as a 
push notification. To verify the personalized recommen-
dation generation in participant data (i.e., MOX2-5 data), 
we have divided each participant’s activity days (n) into 
the following two parts – a. (n-7) days window for train-
ing the best-performing ensemble classifier model, and 
b. the remaining seven days windows for testing with an 
incremental learning approach. The incremental learn-
ing approach has helped in activity classification on the 
day-(n + 1) based on model training with personal activ-
ity data up to day-n. We repeated the same incremental 
process until the goal periods were completed (here, we 
assumed it was a window of 7 days). Moreover, we have 
used three standard emojis in recommendation visualiza-
tion to motivate participants based on their weekly goal 
accomplishment (well done or good work (😊), up-to-
the-mark or satisfactory performance (😐), and improved 
performance (☹)).

For example, in the last week, participant P-1 from 
the MOX2-5 datasets (see Additional file 2: Appendix B 
for the dataset) failed to achieve WHO’s generic activity 
goal to stay medium active for a week. Therefore, based 
on the semantic rule, he received recommendation mes-
sage A-17. Based on the step forecast results with our 
proposed autoregression with residual error minimi-
zation model, P-1 received recommendation message 
A-13 for the following week. We have shown the overall 
daily and weekly recommendation generation process 
and its meaningful presentation for a single participant 
(P-1) from the private MOX2-5 datasets (see Table  18) 

Fig. 13  Visualization of daily step count, target step count, 
and predicted interval

Table 17  Performance analysis of different reasoners available in 
Protégé

Reasoner(s) Average 
reasoning 
time (sec.)

HermiT 1–1.5 s

Pellet 2–3.5 s

Fact +  +  2.5–3.5 s

RacerPro 1.5–2.5 s

KAON2 2.5–3.5 s
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collected for this study. A sample recommendation gen-
eration screen has been captured in Fig. 14. However, the 
same approach can be applied to other participants (P-2 
to P-16) in MOX2-5 datasets.

From the classification and forecasting results on 
both datasets, we can confirm that we have success-
fully designed and developed AI models in ActieCoach 
for time-series prediction and activity-level classifica-
tions. According to the results, an increased volume of 
MOX2-5 datasets will improve individual model stabil-
ity and learning. In both datasets, model loss for training 
and testing converges. Future step prediction for indi-
viduals combined with the statistical approaches (e.g., 
weekly activity weighted means and/or standard devia-
tion calculation) can be a useful direction for generating 
personalized recommendations.

The average SPARQL queries’ execution time has been 
captured between 0.1 s – and 0.3 s (sec). The semantic 
rules described in Additional file  3: Appendix A.3 rep-
resent the logic behind personalized recommendation 
message generation. The rule-based binary reasoning (If 
➔ 1, else ➔ 0) helps to explain the formation of a per-
sonal activity recommendation message. A complete 
data-driven approach to personalized recommendation 
generation in healthcare is critical due to false-positive 
scenarios. Therefore, prediction modeling followed by an 
annotated ruleset can produce more value for personal-
ized health recommendations.

Overall, this study rigorously focuses on automizing 
the personalized activity recommendation generation 
with an AI, personal preference information, adjustable 
rule base, and their integration with a semantic network 
for reasoning and meaningful querying for personalized 

recommendations. Personalization is important in health 
recommendations to understand the user context and 
perspective. Therefore, health recommendation algo-
rithms are contextually different from traditional user 
or item-based recommendation algorithms which are 
well-accepted in the commercial domains. In Table  16, 
we have accomplished the efficiency of applying our 
proposed hybrid recommendation algorithm in activity 
eCoaching in an empirical way. The Daily achieved score 
predicted column in Table 16 describes the reason behind 
the recommendation generation in the Propositional 
variable column. Such a study in eCoaching has not been 
conducted according to the existing literature. Therefore, 
we have restricted Table  1 to a qualitative comparison 
instead of an empirical comparison.

Relevance
Our proposed physical activity eCoaching is intended 
to facilitate long-term behavior alteration and reduction 
of a sedentary lifestyle. Constantly providing healthy 
lifestyle assistance, self-management instructions for 
healthy lifestyle goal-management, and individual-
ized counseling, eCoaches facilitate the development 
of healthy behaviors that can be maintained follow-
ing a specific program or intervention. Overall, activity 
eCoaching has a significant impact on the contribution 
to the United Nations’ Sustainable Development Goals 
(SDG) 3 [69], which is concerned with ensuring healthy 
lifestyles and promoting well-being across all ages. 
Through technology, personalization, and behavio-
ral alteration, our activity eCoaching may align with 
the objectives of SDG-3 by promoting physical fitness, 

Table 18  Activity classification and personalized recommendation generation for P-1 in the MOX2-5 dataset

Days The best performing classifier 
model(s) used in transfer 
learning

Actual activity 
level on day-n

Activity level predicted on 
day-n after incremental 
learning

Daily achieved 
score predicted

Propositional variable

Day-1 GB classifier Low Active Low Active 1 A-2, A-6, A-8, A-10, A-15

Day-2 Low Active Low Active 1 A-2, A-6, A-8, A-10, A-15

Day-3 Medium Active Medium Active 3 A-4, A-6, A-9, A-11, A-14

Day-4 Active Active 2 A-3, A-6, A-8, A-10, A-15

Day-5 Low Active Low Active 1 A-2, A-6, A-8, A-10, A-15

Day-6 Low Active Low Active 1 A-2, A-6, A-8, A-10, A-15

Day-7 Low Active Low Active 1 A-2, A-6, A-8, A-10, A-15

Weekly Score Achieved = ∑Daily_achieved_score_predicted = (1 + 1 + 3 + 2 + 1 + 1 + 1) = 10 -

Prediction accuracy ∑Daily_achieved_score_actual—∑Daily_achieved_score_predicted = 0 -

Difference Defined_goal_score—Achieved = (21 – 10) = 11 -

Weekly
Recommendation

Formal message—“You are 11 points behind to reach your weekly goal. Work hard on the following week.”
Informal message – “Improve your performance to meet the goal! ☹”

A-17, A-13
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preventing diseases, empowering individuals, and con-
tributing to the overall goal of having healthy lives and 
enhancing well-being for all.

Limitations and future scope
Our used datasets are small, and we thought they might 
be biased. High bias leads to model underfit. Therefore, 
we have used the MCC metric to understand the ensem-
ble models’ performance in a better way. However, more 

data is required to train and test the classifier models. 
The data balancing technique is popular in predictive 
analysis to verify bias and fairness in classification mod-
els. Thus, we have restricted our experimental analysis 
to imbalanced and balanced datasets for classification 
or predictive analysis, instead of regression analysis. 
The comparative predictive analysis (Tables  10, 11, 12, 
13 and 14) of both imbalanced and balanced datasets 
reveals that models are not biased, and data balancing 
can improve model performances. Our implemented 
approach toward the collection of personalized physi-
cal activity data based on consent, test for model biases, 
fairness, and scalability with metrics (e.g., MCC) and 
data balancing algorithm, data governance following the 
GDPR guidelines, steps toward the handling of growing 
data with automatic and continuous model training-vali-
dation-testing has made the eCoaching approach ethical 
and trustworthy.

Our proposed approach in Fig. 1 gives design flexibil-
ity with a modular design approach to deal with other 
deep learning classifiers and forecast algorithms. In 
that case, we need to update the prediction and clas-
sification algorithms in the data processing and activity 
prediction module. The ontology tree supports branch-
ing and pruning to integrate new ideas. The knowledge 
base and the recommendation message table can grow 
or shrink based on the preferences and study require-
ments. This design approach can also support other 
activity sensors (e.g., Actigraph). This study proves an 
integrated concept for tailored hybrid recommenda-
tion generation in activity eCoaching. We can include 
deep learning-based classification and prediction for 
performance comparison, stability analysis, and more 
activity attribute support with the growing activity 
data. We will improve the recommendation generation 
with other approaches, such as clustering and similar-
ity score, and calculate and compare activity intensity 
across different weeks using the statistical and com-
munity-based heuristic methods. A person can receive 
multiple recommendation messages, and the solution 
can be enhanced with a meta-heuristic approach to 
select an optimal set of recommendations from a feasi-
ble recommendation set.

In authentic coaching, to attain a weekly or monthly 
goal, as a part of continuous monitoring, the eCoach 
module will generate personalized recommendations 
on time, based on the activity outcome on each day, fol-
lowed by a predictive analysis to achieve the weekly goal. 
Moreover, this is not authentic coaching but conceptual 
modeling with AI technology and semantics. To evaluate 
the practical effectiveness of the concept, further study is 
needed on a cluster of controlled trials.

Fig. 14  Weekly recommendation generation as a text (e.g., push 
notification) for P-1
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Conclusion
This study has shown a direction to use standard AI tech-
nology, ethics, data governance, personal preferences, 
and semantic ontology to design and develop an intelli-
gent eCoach system with semantic knowledge represen-
tation to generate automatic, meaningful, contextual, and 
personalized activity recommendations to attain personal 
activity goals. To improve individual physical activity 
levels with wearable activity sensors and digital activ-
ity trackers, eCoach features can be encouraging. The 
concept of univariate time-series forecasting exists; its 
application with an ontology and interval prediction for 
activity eCoaching is novel. Furthermore, in this study, 
we have proved the hypothesis that an auto-regression 
model with the residual error minimization technique 
can produce better performance than an auto-regression 
model without the residual error minimization tech-
nique. Moreover, this study has presented a detailed anal-
ysis of different standard ensemble classifiers on balanced 
and imbalanced physical activity data, elaborated classi-
fication results, investigated for bias, and ethical aspects 
of AI, and thereby generated understandable and mean-
ingful personalized activity recommendation generation 
with semantic rules and SPARQL query execution. We 
will extend this study with the integration of concepts 
such as activity density and clustering to make eCoach 
recommendations more realistic and evidence-based on 
a group of controlled trials.
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