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Background
Breast cancer (BC) is one of the most common malig-
nancies among women worldwide and a leading cause 
of cancer-related death in women [1]. The incidence 
has increased with the introduction of mammography 
screening, and BC cases in China account for 12.2% of 
all newly diagnosed breast cancers and 9.6% of all deaths 
from BC worldwide [2]. International studies suggest 
that approximately 30% of women will develop recur-
rence after the primary treatment for BC [3]. Patients 
with HR + breast cancer are at risk of recurrent dis-
ease even multiple decades after primary diagnosis [4]. 
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Abstract
Breast cancer is the most common malignancy diagnosed in women worldwide. The prevalence and incidence 
of breast cancer is increasing every year; therefore, early diagnosis along with suitable relapse detection is an 
important strategy for prognosis improvement. This study aimed to compare different machine algorithms to select 
the best model for predicting breast cancer recurrence. The prediction model was developed by using eleven 
different machine learning (ML) algorithms, including logistic regression (LR), random forest (RF), support vector 
classification (SVC), extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), decision tree, 
multilayer perceptron (MLP), linear discriminant analysis (LDA), adaptive boosting (AdaBoost), Gaussian naive Bayes 
(GaussianNB), and light gradient boosting machine (LightGBM), to predict breast cancer recurrence. The area under 
the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) 
and F1 score were used to evaluate the performance of the prognostic model. Based on performance, the optimal 
ML was selected, and feature importance was ranked by Shapley Additive Explanation (SHAP) values. Compared to 
the other 10 algorithms, the results showed that the AdaBoost algorithm had the best prediction performance for 
successfully predicting breast cancer recurrence and was adopted in the establishment of the prediction model. 
Moreover, CA125, CEA, Fbg, and tumor diameter were found to be the most important features in our dataset to 
predict breast cancer recurrence. More importantly, our study is the first to use the SHAP method to improve the 
interpretability of clinicians to predict the recurrence model of breast cancer based on the AdaBoost algorithm. 
The AdaBoost algorithm offers a clinical decision support model and successfully identifies the recurrence of breast 
cancer.
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Triple-negative BC have a high risk of distant relapse 
in the first 3 to 5 years following diagnosis [5]. Hence, 
the development of models to predict BC recurrence is 
important to aid in diagnosis and monitoring.

Breast cancer is a histologic diagnosis made based on 
standardized pathologic criteria. It primarily falls into 
invasive ductal carcinoma (60-75% of patients), invasive 
lobular carcinoma (5-15% of patients), and some special 
type carcinomas, making up the remainder of patients 
[6]. In BC, some pathological characteristics, such as 
estrogen receptor (ER), progesterone receptor (PR), and 
human epidermal growth factor receptor 2 (HER2), are 
used to guide treatment decisions. Due to the complex 
causes of BC, control, early diagnosis and appropriate 
treatment are important strategies for improving progno-
sis [7]. Downregulation of endoplasmic reticulum signal-
ing by endocrine drugs is the primary systemic treatment 
for ER-positive or PR-positive breast cancers. HER2 is 
overexpressed in approximately 20% of breast cancers 
and is associated with poor prognosis in the absence of 
systemic therapy [8]. Patients with HER2- overexpress-
ing breast cancer benefit from HER2-targeted therapy, 
including anti-HER2 antibodies (such as trastuzumab 
and pertuzumab) and small-molecule tyrosine kinase 
inhibitors (such as lapatinib and neratinib) [9].

The diagnosis and monitoring of BC are the main 
aspects of BC therapy. The information derived from 
patient and primary tumor features, specifically tumor 
size, nodal status, tumor grade, and therapeutic modali-
ties, has been used to build prognostic models such as 
PREDICT [10]. However, despite considerable efforts at 
the early detection of recurrent disease, evidence sug-
gests that only a small number of recurrent cases are 
detected at the asymptomatic stage [11, 12]. Multidisci-
plinary research or data mining is necessary to help phy-
sicians predict BC recurrence.

Recently, as artificial intelligence (AI) and its applica-
tion in clinical cancer research have made rapid devel-
opments, cancer prediction performance has reached 
new heights [13, 14]. Powerful AI techniques, espe-
cially machine learning (ML) and deep learning (DL), 
can extract clinical information from massive amounts 
of data to assist in proper clinical decision making [15, 
16]. These AI techniques are noninvasive techniques to 
diagnose the disease without harming the patient. ML 
is considered an objective and reproducible method for 
integrating multiple quantitative variables to improve 
diagnostic accuracy [17]. In population studies, ML can 
be used to effectively characterize BC risk, predict out-
comes, and identify biomarkers without a priori assump-
tions of causation [18–20]. In breast cancer recurrence 
models, most studies have established predictive models 
based on imaging and pathological parameters [21–24]. 
Is it possible to use the clinical information obtained 

from the electronic medical records and the results of 
routine laboratory indicators to develop and verify the 
model for predicting the recurrence of BC?

This study explored and validated eleven predictive 
algorithms using an ML approach based on the clini-
copathological and laboratory routine index data of BC 
patients. Our aim was to use the clinical information 
easily collected in clinical practice to create a clinical 
decision support system to identify patients at risk of 
recurrent cancer and promote early intervention in these 
patients.

Literature survey
Currently, AI techniques and statistical methods is 
increasingly used and developed in clinical oncology to 
diagnose cancers, predict patient outcomes, and inform 
treatment planning. In particular, rich imaging and 
molecular data have stimulated the application of ML 
and/or DL. Recently, Manoj Sharma et al. [25] proposed 
a comparative analysis of handcrafted features extraction 
approaches and DL frameworks for colon and lung can-
cer classification. A significant improvement in classifiers 
performance is observed with features extracted by deep 
convolutional neural networks (CNNs). The random for-
est (RF) classifier with DenseNet-121 extracted deep 
features can identify colon and lung cancer tissue with 
excellent results. Similarly, the authors proposed a hybrid 
approach for survival prediction of hepatocellular carci-
noma with more accuracy and sensitivity [26]. The pro-
posed RFGBEL model presented excellent performance 
in contrast to other proposed models, which achieved 
an accuracy of 93.92%, sensitivity of 94.73%, F-1 score of 
0.93. Yala et al. [27]proposed a DL model was built to tri-
age mammograms by setting a high-sensitivity prediction 
threshold so that nearly all predicted negative cases were 
truly negative.

Many state-of-art studies have been presented for pre-
diction of breast cancer. Manoj Sharma et al. [28] used 
an ensemble model comprising three pretrained CNNs 
to make grading predictions for the Databiox dataset, 
which consists of histopathological images of invasive 
ductal carcinoma breast cancer diagnosed patients for 
this grade classification and achieved an accuracy of 
94%. Dhahri et al. [29] suggested an ML-based approach 
in combination of Genetic Programming to distinguish 
between benign and malignant breast tumors using elec-
tronic health records of 569 patients collected from the 
Wisconsin Breast Cancer dataset. In an experiment with 
seven classifiers, the adaptive boosting (AdaBoost) clas-
sifier performed best, with a fair accuracy of 98.23%, 
making it suitable for early BC detection in controlled 
parametric setting. Whitney et al. [30] used both ML and 
DL algorithms to analyze routine H&E-stained images 
of early-stage ER + breast cancer patients to predict the 
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corresponding Oncotype DX recurrence risk. Bremer et 
al. [31] developed a biologic signature named DCISionRT 
for the calculation of individual decision score (DS), 
which combined molecular markers and clinicopatho-
logical factors associated with recurrence or progression 
of ductal carcinoma in situ patients following breast-con-
serving surgery in a nonlinear model.

On the one hand, many studies used limited clinical 
information analyzed by traditional statistical methods, 
and on the other hand, many studies analyzed image 
and pathology data by ML. From the literature survey, 
we found a relatively limited number of studies that pre-
dicted BC recurrence solely from easily accessible clini-
cal information and routine laboratory metrics combined 
with ML. This study utilizes the results of clinical infor-
mation and routine laboratory indicators obtained from 
electronic medical records combined with a comparison 
of 11 proposed ML models for predicting BC recurrence 
and is expected to present a rational model to help clini-
cians and decision makers.

Materials and methods
Patients
From January 2011 to December 2018, 342 hospitalized 
women diagnosed with primary BC at the Tianjin Medi-
cal University Cancer Institute and Hospital (Tianjin, 
China) were enrolled. All patients had complete patho-
logical and clinical laboratory test results. Data were col-
lected retrospectively, including patient characteristics, 
laboratory results, tumor size, lymph node staging (based 
on the eighth edition of AJCC) and treatment strategies 
(Table 1 and Supplementary Table 1).

The inclusion criteria were as follows: (1) patients who 
met the diagnostic criteria for BC and were confirmed 
by pathological examination; (2) women with unilateral 
breast lesions for the first time; (3) patients who had not 
received chemotherapy, radiotherapy, or endocrine ther-
apy; and (4) patients with complete clinical and patho-
logical data. The exclusion criteria were as follows: (1) 
patients with hypertension, heart disease, diabetes, glau-
coma, or other underlying diseases; (2) patients with dou-
ble breast tumor, double BC, or previous breast tumor 
resection; (3) patients with other tumors; (4) patients 
with an intellectual disability or other serious mental ill-
ness; and (5) patients with liver, kidney, or other gyneco-
logical diseases. The process is shown in Fig. 1.

Data preprocessing
For patient information, we converted “patients over 46 
years old” to 1 and “patients ≤ 46 years old” to 0. For the 
diagnosis code, we converted “patients with BC recur-
rence” to 1 and “patients with no recurrence” to 0; We 
converted “patients with menopause” to 1 and “patients 
with no menopause” to 0; We converted “patients with 

primary cancer in the left breast” to 1 and “patients 
with primary cancer in the right breast” to 2; We con-
verted “patients with invasive ductal carcinoma of BC” 
to 1, “patient with other types of invasive carcinoma” 
to 0, and “patients with unknown histological types of 
BC” to 2; We converted “patient with tumor size ≤ 2 cm” 
to 0, “patients with tumor size > 2  cm and ≤ 5  cm” to 1, 
“patients with tumor size > 5  cm” to 2, “patients with 
unknown tumor size” to 3; We converted “patient with 
lymph node staging 0” to 0, “patient with lymph node 
staging 1” to 1, “patient with lymph node staging 2” to 2, 
and “patient with lymph node staging 3” to 3; We con-
verted “patient with unknown of histological grade” to 0, 
“patient with more well-differentiated histological grade” 
to 1, “patient with moderately differentiated histological 
grade” to 2, and “patient with more poorly differentiated 
histological grade” to 3 and “patient with undifferenti-
ated histological grade” to 4; We converted “patient with 
HER2-positive of molecular subtype” to 1, “patient with 
Triple-Negative Breast Cancer (TNBC)” to 2, “patient 
with Luminal A of molecular subtype” to 3, “patient with 
Luminal B HER2- negative of molecular subtype” to 4, 
“patient with Luminal B HER2-positive of molecular sub-
type” to 5, and “patient with unknown of molecular sub-
type” to 6; We converted “patient with breast conserving 
therapy” to 0, “patient with mastectomy” to 1, “patient 
with chemotherapy” to 2, and “patient with unknown 
treatment strategies” to 3. Missing value imputations on 
missing at random data of laboratory indicators were 
used random forest by Python package (Sklearn, 1.0.2) 
and multiple imputation by R package (mice, 4.1.2).

Machine learning models
The prediction model was developed by using the fol-
lowing algorithms: logistic regression (LR) [32], random 
forest (RF) [33], support vector classification (SVC) [34], 
extreme gradient boosting (XGBoost) [35], gradient 
boosting decision tree (GBDT) [36], decision tree [37], 
multilayer perceptron (MLP) [38], linear discriminant 
analysis (LDA) [39], AdaBoost [40], Gaussian naive Bayes 
(GaussianNB) [41], and light gradient boosting machine 
(LightGBM) [42]. All ML analyses were performed by 
Python 3.8.8. The study samples were randomly divided 
into a training set (n = 239) and a testing set (n = 103) at 
a ratio of 7:3 [43, 44]. In the process of training, we used 
a 3-fold inner cross-validation approach to estimate the 
models [45, 46]. In the test set, the AUC, accuracy, sen-
sitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV) and F1 score were estimated. 
The best prediction model was selected by evaluating the 
largest AUC [47, 48]. We applied the Shapley Additive 
Explanation (SHAP) to explain the best-performing pre-
dictive model. Feature ranking was obtained by comput-
ing SHAP values. The features were ordered by the mean 
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absolute value of the SHAP values for each feature [44]. 
Combining ML with SHAP could provide an explicit 
explanation of the efficacy prediction [44, 47, 49]. The 
process is shown in Fig. 2.

Statistical analyses
Categorical data were analyzed using the chi-square test 
[50]. If the two sets of continuous variables were normally 

distributed, a two-tailed Student’s t-test was used for 
comparison. If the two sets of continuous variables were 
nonnormally distributed, a Mann‒Whitney test was used 
for comparison. The cumulative risk curve was drawn by 
Kaplan‒Meier methods. The cumulative risk incidence 
between the two groups was compared based on Kaplan‒
Meier analysis and the log-rank test. SHAP and deci-
sion curve analysis (DCA) were performed using Python 

Table 1 Characteristics of patients with breast cancer
All patients DR No DR χ2 P

N(%) 342 (100%) 256 (74.9%) 86 (25.1%)

Age (mean ± SD, range, years) 46.65 ± 10.00
(19–77)

45.80 ± 10.10
(19–77)

49.19 ± 9.30
(28–69)

- 0.006

≤ 46 169 (49.4%) 135 (39.5%) 34 (9.9%)

> 46 173 (50.6%) 121 (35.4%) 52 (15.2%)

Primary site 0.060 0.806

Left 183 (53.5%) 136 (39.8%) 47 (13.7%)

Right 159 (46.5%) 120 (35.1%) 39 (11.4%)

Menopause 1.243 0.265

No 216 (63.2%) 166 (48.5%) 50 (14.6%)

Yes 126 (36.8%) 90 (26.3%) 36 (10.5%)

Histological type 6.967 0.008

Ductal 218 (63.7%) 153 (44.7%) 65 (19.0%)

Others 124(36.3%) 103 (30.1%) 21 (6.1%)

Tumor size 49.839 0.000

≤ 2 cm 102 (29.8%) 51 (14.9%) 51 (14.9%)

2–5 cm 151 (44.2%) 122 (35.7%) 29 (8.5%)

≥ 5 cm 83 (24.3%) 77 (22.5%) 6 (1.8%)

N stage 80.151 0.000

N0 109 (31.9%) 50 (14.6%) 59 (17.3%)

N1 77 (22.5%) 59 (17.3%) 18 (5.3%)

N2 63 (18.4%) 58 (17.0%) 5 (1.5%)

N3 93 (27.2%) 89 (26.0%) 4 (1.2%)

Grading 33.202 0.000a

G1 15 (4.4%) 12 (3.5%) 3 (0.9%)

G2 143 (41.8%) 83 (24.3%) 60 (17.5%)

G3 163 (47.7%) 151 (44.2%) 12 (3.5%)

G4 19 (5.5%) 8 (2.3%) 11 (3.2%)

Molecular subtype 40.258 0.000b

Luminal A 23 (6.7%) 7 (2.0%) 16 (4.7%)

Luminal B HER2-neg 149 (43.6%) 111 (32.5%) 38 (11.1%)

Luminal B HER2-pos 29 (8.5%) 25 (7.3%) 4 (1.2%)

HER2-pos 66 (19.3%) 59 (17.3%) 7 (2.0%)

Triple negative 62 (18.1%) 54 (15.8%) 8 (2.3%)

Unknown 13 (3.8%) - 13 (3.8%)

Treatment strategy 27.071 0.000c

Breast conserving 20 (5.8%) 6 (1.8%) 14 (4.1%)

Mastectomy 252 (73.7%) 195 (57.0%) 57 (16.7%)

Chemotherapy 64 (18.7%) 55 (16.1%) 9 (2.6%)

Unknown 6 (1.8%) - 6 (1.8%)
Data are presented as numbers (percentages). The P value represents the result of statistical significance testing with χ2 test (or by a two-tailed Student’s t-test for 
age) for comparison between patients with disease recurrence (DR) and without relapse (no DR)
aχ2 test performed on classified groups (G1/G2 vs. G3/G4)
bχ2 test performed on classified groups (Luminal A/ Luminal B HER2-neg/ Luminal B HER2-pos/ HER2-pos/ Triple negative)
cχ2 test performed on classified groups (breast conserving/ mastectomy/ chemotherapy). Lymph node staging (N stage) was based on the eighth edition of AJCC
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3.8.8. Statistical analysis was conducted by SPSS statistics 
25.0. All statistical tests were two-tailed, and p < 0.05 was 
considered significant.

Results
Clinical features
In all, 342 BC patients (average age, 46.65 years; range, 
19–77 years) from January 2011 to December 2018 were 
identified, and 256 (74.9%) had recurrence, 86 (25.1%) 
patients had no recurrence. Table 1 summarizes the clini-
cal and tumor histological characteristics of patients. The 
most frequent molecular subtypes were luminal B HER2-
neg (43.6%) > HER2-pos (19.3%) > TN (18.1%) > luminal 
B HER2-pos (8.5%) > luminal A (6.7%) [missing data for 
molecular subtypes were grouped as unknown (3.8%)]. 
Compared with patients without recurrence, patients 
with recurrence had multiple lymph node involvement 
and invasive ductal-type disease, and the histological 
grade and tumor size in these patients were significantly 
higher (Table  1). In clinical laboratory characteristics, 
D-dimer, CEA, CA125, CA15-3, WBC, NEUT, NLR, Fbg 

and α2-AP levels played critical roles in the differential 
diagnosis of patients with BC recurrence and no recur-
rence (Supplementary Table 1). All of these clinical fea-
tures are easily obtainable from the electronic medical 
records of BC patients, and there are a total of 25 clinical 
features.

Machine learning-based prediction of BC recurrence
We hypothesized that the comprehensive integration of 
clinical features might provide important clues to predict 
BC recurrence outcomes. Therefore, we obtained 25 clin-
ical features from electronic medical records, all of which 
were used for the development of predictive models for 
BC recurrence. We tested the performance of eleven ML 
models, including AdaBoost, LightGBM, XGBoost, deci-
sion tree, GBDT, LDA, GaussianNB, SVC, LR, RF and 
MLP, using the discovery cohort. We selected and then 
tested eleven types of ML models as clinical decision-
support systems for predicting BC recurrence. During 
the development of these models, the clinical features of 
70% of the patients were randomly selected for training. 

Fig. 1 Visual diagram of the detailed process for clinical design and data collection
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In addition, we performed a 3-fold internal cross-vali-
dation used to assess the effectiveness of the predictive 
ability of a model built based on the training set, and 
externally validated the accuracy of the predictive abil-
ity of the model by going through a test set based on an 
independent sample size (Table 2 and Supplementary 
Table 2). Furthermore, to evaluate the performance of a 
ML model, a confusion matrix was used (Supplementary 
Table 3). The prediction performances of these eleven ML 
models were compared, and the most accurate prediction 
model was chosen. The model obtained by AdaBoost had 
the best discrimination (AUC = 0.987) (Fig. 3). The sensi-
tivity, specificity, PPV, NPV, F1 score and accuracy of the 
model for predicting BC recurrence were 94.7%, 97.6%, 
90.0%, 98.8%, 92.3% and 97.1%, respectively (Table 2).

The AdaBoost algorithm was adopted in the establish-
ment of the prediction model. To better understand how 
features in the prediction model of BC recurrence based 
on the AdaBoost algorithm contribute to the prediction 
results, we calculated the SHAP value of each feature. The 

top 20 features were selected by the importance ranking 
of the average absolute SHAP value, which was based on 
the AdaBoost algorithm model (Fig.  4a). According to 
the importance ranking of the average absolute SHAP 
value, the top 4 features [carcinoma antigen 125 (CA125), 
carcinoembryonic antigen (CEA), fibrinogen (Fbg) and 
tumor diameter] were assessed as the most important 
variables. Figure 4b is a violin plot of each feature show-
ing the correlation between the value of each feature and 
the SHAP value. The larger the absolute value of a fea-
ture’s SHAP, the greater the hint that this feature has a 
greater impact on the AdaBoost-based prediction model. 
Red dots represent the higher values for this feature, 
while blue dots represent lower values for this feature. 
Higher CA125, Fbg, carcinoma antigen 15 − 3 (CA15-3), 
D-dimer and coagulation factor VIII (FVIII) concentra-
tions, red blood cell (RBC) count, N stage, larger tumor 
diameter and lower CEA, α2-antiplasmin (α2-AP) and 
tissue polypeptide specific antigen (TPSA) concentra-
tions were associated with a higher predicted probability 

Fig. 2 Flowchart of the machine learning development model for predicting recurrence of breast cancer. Abbreviations: BC, breast cancer; LR, logistic 
regression [32]; RF, random forest [33]; SVC, support vector classification [34]; XGBoost, extreme gradient boosting [35]; GBDT, gradient boosting decision 
tree [36]; decision tree [37]; MLP, multilayer perceptron [38]; LDA, linear discriminant analysis [39]; AdaBoost, adaptive boosting [40]; GaussianNB, Gaussian 
naive Bayes [41]; LightGBM, light gradient boosting machine [42]; SHAP, Shapley Additive Explanation; DCA, decision curve analysis
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of 5-year BC recurrence. Furthermore, different molecu-
lar subtypes also had a certain impact on the outcome of 
BC recurrence.

Clinical use
Several single clinical features were found to be signifi-
cant predictive markers of BC recurrence. There were 
significant correlations between CA125 expression (cut-
off 4.71 U/ml) and BC prediction. The cutoff value was 

selected based on the probability threshold of Youden’s 
index. The study population was divided into high-risk 
groups and low-risk groups based on the cutoff value. 
Based on Kaplan‒Meier analysis and the log-rank test, 
there was a significant difference in progression-free sur-
vival between the two groups (p < 0.0001, Fig. 5a). CA125 
expression levels affected the risk of recurrence, with 
higher expression levels associated with a higher five-
year risk of recurrence and a shorter progression-free 

Table 2 Comparison of the prediction results of each test model using test datasets
Algorithms AUC Accuracy Sensitivity Specificity PPV NPV F1 

Score
AdaBoost 0.987 0.971 0.947 0.976 0.900 0.988 0.923

Decision Tree 0.894 0.951 0.941 0.953 0.800 0.988 0.865

GaussianNB 0.945 0.883 0.667 0.949 0.800 0.904 0.727

GBDT 0.967 0.971 0.947 0.976 0.900 0.988 0.923

LightGBM 0.983 0.971 0.947 0.976 0.900 0.988 0.923

LR 0.951 0.961 0.864 0.988 0.950 0.964 0.905

MLP 0.952 0.951 0.857 0.976 0.900 0.964 0.878

Random Forest 0.981 0.981 1.000 0.976 0.900 1.000 0.947

SVC 0.834 0.864 0.750 0.879 0.450 0.964 0.563

XGBoost 0.974 0.971 0.947 0.976 0.900 0.988 0.923

LDA 0.847 0.883 0.722 0.918 0.650 0.940 0.684
Abbreviations: PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; SVC, support vector classification; XGBoost, 
extreme gradient boosting; GBDT, gradient boosting decision tree; MLP, multilayer perceptron; LDA, linear discriminant analysis; AdaBoost, adaptive boosting; 
GaussianNB, Gaussian naive Bayes; LightGBM, light gradient boosting machine

Fig. 3 Comparison of the area under the receiver operating characteristic curves for eleven machine learning algorithms. Abbreviations: LR, logistic re-
gression; RF, random forest; SVC, support vector classification; XGBoost, extreme gradient boosting; GBDT, gradient boosting decision tree; MLP, multilayer 
perceptron; LDA, linear discriminant analysis; AdaBoost, adaptive boosting; GaussianNB, Gaussian naive Bayes; LightGBM, light gradient boosting machine
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Fig. 4 SHAP values and feature interaction scores in AdaBoost-based prediction. (a) The top 20 most important features for the prediction of BC recur-
rence (ranked from most to least important). (b) The distribution of the impacts of each feature on the model output. The colors represent the feature 
values: red for larger values and blue for smaller values. Abbreviations: CA125, carcinoma antigen 125; CEA: carcinoembryonic antigen; Fbg: fibrinogen; 
CA15-3, carcinoma antigen 15 − 3; FVIII, coagulation factor VIII; TPSA, tissue polypeptide-specific antigen; α2-AP, α2-antiplasmin; RBC, red blood cell; NEUT, 
neutrophils; PLR, platelet-to-lymphocyte ratio; WBC, white blood cell; PLT, platelet, SHAP, Shapley Additive Explanation
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survival in patients. Similarly, higher expression levels of 
CA15-3, Fbg, D-dimer and FVIII were correlated with a 
worse prognosis in patients (Fig. 5b–e).

In clinical practice, machine model prediction is 
not simply predictive of patients who will likely have 
BC recurrence or be free of recurrence. The clinical 

application value of the model was evaluated by DCA. 
We expressed the net benefit as a function of the decision 
threshold in the decision curve, and the threshold prob-
ability reflected the cost‒benefit ratio. The DCA of the 
11 ML algorithms is shown in Fig. 5f, which shows that 
when the threshold probability of a patient was greater 

Fig. 5 Kaplan‒Meier plots and decision curve analysis (DCA). (a–e) Kaplan‒Meier plot of progression-free survival (PFS) based on CA125, CA15-3, Fbg, D-
Dimer and FVIII expression (*p < 0.05, ****p < 0.0001). (f) DCA of different ML algorithms. The y-axis measures the net benefit. The dotted line (Treat None) 
represents the net benefit of the prediction of nonrecurrence for all BC patients; the black line (Treat All) represents the net benefits of the outcomes of 
recurrence for all BC patients. The model with the highest clinical value was determined by quantifying net benefits under different thresholds
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than 1%, using the AdaBoost algorithm model to guide 
clinical intervention provided more benefit than either 
the intervention for all (black line) or none (dotted line). 
Compared with the other algorithms, the net benefit in 
this range had obvious superiority. When 1% was taken 
as the prediction probability, the net benefit of the Ada-
Boost algorithm was significantly higher than that of the 
other algorithms.

Discussion
In this study, an AdaBoost-based model was trained and 
tested as a decision-making tool, which is expected to 
predict the recurrence risk of BC. In addition, the most 
important variable features were selected by SHAP from 
many clinical characteristics related with BC. With this 
type of analysis, clinicians can use the model established 
by the proposed algorithm to identify BC patients with 
high recurrence risk, and it is expected to improve the 
risk stratification of patients in clinical practice.

BC, the most common malignancy diagnosed in 
women worldwide, is a highly heterogeneous disease 
presenting with a broad range of clinical and molecu-
lar characteristics. In recent years, there has been a 
steady decline in BC mortality, and early detection of 
BC recurrence allows for more effective salvage treat-
ment. Women with early BC are at an ongoing risk of 
relapse, even after successful surgery and treatment of 
the primary tumor [51]. Following initial treatment, BC 
can recur locally, regionally (nodes), or at distant meta-
static sites. For women with HR-negative disease, the 
risk of recurrence is mainly confined to the first 5 years 
after diagnosis [52, 53]. Patients with HR-positive tumors 
are at risk of late recurrence even after triamcinolone 
therapy [54]. Most recurrences of BC occur distally, with 
the most common sites of metastasis being the bones, 
liver and lungs [55]. Although BC tumor markers such 
as CA15-3 and CEA can be used to detect early tumor 
recurrence, the serum test is not suitable alone for BC 
follow-up [56, 57]. To establish a predictive model for 
BC recurrence with comprehensive integration of rel-
evant clinical factors, we collected 25 clinically relevant 
features that are clinically common and readily available 
from patients with BC from electronic medical records, 
including CA125 expression, coagulation function (Fbg, 
FVIII and D-dimer), tumor diameter, molecular subtype, 
and previous strategy of therapy, among others. These 
factors are evaluated in routine clinical practice and do 
not require additional cost or effort.

CA125 is expressed by normal bronchial, endome-
trial, ovarian and corneal epithelial cells, and it was first 
identified in mice immunized with ovarian cancer cells 
[58]. CA125 is best known as a biomarker for monitor-
ing epithelial ovarian cancer [59]. In addition, CA125 is 
a repeating peptide epitope of the mucin MUC16, which 

promotes breast cancer cell proliferation and metasta-
sis [60, 61]. An increase in the concentration of CA125 
is an indicator of disease recurrence [62]. In a study by 
Jager et al., CA 125 levels in 26 patients with a single site 
of metastasis out of 250 metastatic BC patients were 
analyzed, suggesting that an elevated CA 125 level in 
metastatic BC patients is related to pleural disease [63]. 
Another prospective study also demonstrated the value 
of metastatic sites. Among nine patients with pleural-
based disease, eight (89%) had an elevated CA 125 level, 
and progressive disease correlated with elevated CA 125 
levels in all cases [64]. This suggests that lesions close 
to the pleura can induce an inflammatory reaction and 
result in elevated CA 125 levels. In a retrospective review 
of 51 patients with treated BC, progressive disease in 21 
patients correlated with an elevation in CA125 in 57% of 
patients and one false-negative reduction [65]. Continu-
ous biomarker monitoring has the potential to predict the 
diagnosis of recurrence at the minimum asymptomatic 
stage [66]. Our data demonstrate that an increase in CA 
125 may also result in the earlier detection of recurrent 
or progressive disease, which is likely to alter survival and 
affect quality of life. The patients with values above the 
cutoff of CA125 presented a significantly shorter median 
PFS than those with values below the cutoff. The optimal 
use of this marker in breast carcinomatosis is unclear, 
but its possible use in combination with other tumor 
markers, such as CA15-3 or CEA, is expected to be of 
complementary value for clinical decision making and to 
improve our understanding of the function of CA125 in 
human pathology.

CEA is a cytoplasmic glycoprotein that is highly 
expressed in most tumor tissues and is commonly used 
as a marker to assess cancer risk and prognosis [67, 68]. 
However, this study reveals conclusions that are inconsis-
tent with these several studies, and low CEA expression 
levels are involved in predicting the recurrence risk of BC 
according to SHAP values. Similarly, in 105 patients with 
metastatic BC, 39 patients (37%) with low CEA levels had 
significantly shorter median survival times after recur-
rence (18 versus 28 months) than patients with high CEA 
levels [69]. Low CEA levels may indicate complex and 
heterogeneous disease; thus, there might be a subtype of 
BC with rapid proliferation and low CEA secretion [69]. 
Preoperative serum levels of CEA were associated with 
molecular subtypes of BC, and CEA expression levels 
were significantly lower in patients with triple-negative 
metastatic BC than in those with other subtypes [70].

Malignant tumor growth and dissemination are associ-
ated with the development of a subclinical hypercoagu-
lable state [71]. The patient’s coagulation abnormalities 
worsened with cancer progression and metastasis. In 
this respect, circulating thrombotic biomarkers may rep-
resent a novel noninvasive factor for better prediction 
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of disease recurrence risk [72]. In our study, fibrinogen, 
FVIII and D-dimer had potential value in predicting BC 
recurrence. D-dimer is the primary degradation prod-
uct of cross-linked fibrin, representing an index of both 
coagulation and fibrinolysis activation. The pathogenesis 
of cancer coagulation activation is complex and variable. 
Laboratory results indicate that fibrinolysis and fibrino-
lysis processes are similar in the progression of malig-
nant tumors and are increasingly present in patients with 
metastases [73]. In BC, high fibrinogen levels were asso-
ciated with poorer overall survival [74, 75]. Some stud-
ies have shown that D-dimers are useful indicators for 
monitoring metastasis in cancer patients, and increased 
D-dimer levels are associated with the rate of progression 
and poor prognoses [76, 77], which is consistent with our 
data.

A growing body of evidence suggests that the risk of 
recurrence depends heavily on the biology of BC [78–80]. 
The classification of subtypes shows the heterogeneity of 
BC, which has been shown to be of prognostic value in 
BC. Several studies have revealed associations between 
molecular subtypes of BC and local recurrence rates. 
The subtypes are ER-positive luminal A (luminal A), ER-
positive luminal B (luminal B), HER2 enriched, basal-like, 
and normal breast-like. In a study of 2985 patients clas-
sified into different subtypes, HER2-enriched and basal 
subtypes showed a significantly higher risk of regional 
relapse after breast-conserving therapy [81]. Luminal B 
tumors have poorer outcomes than luminal A tumors 
due to the expression of some proliferating genes, such 
as Ki-67, CCNB1 and MYBL2 [82]. In addition, tumor 
size and lymph node status were significant predictors of 
disease-free survival and overall survival. In a cohort of 
15,819 women with invasive BC, the rate of lymph node 
metastasis increased with increasing tumor volume in 
BC patients with tumors smaller than 100 cm3, increas-
ing BC mortality [83].

The strong heterogeneity of BC represents a serious 
issue for treatment monitoring [84], and predicting the 
individual risk of recurrence of primary BC will enable 
physicians to choose the best treatment strategy. In this 
respect, AI holds great promise to enable the evaluation 
of tumor aggressiveness, individual risk of recurrence, 
and response to specific treatments in BC [85]. AI is 
applied to assist cancer diagnosis and prognosis, given its 
unprecedented accuracy level, which is even higher than 
that of general statistical experts [14]. Previous studies 
have mainly applied AI to two main approaches to BC 
diagnosis, relying on image analysis and pathological 
data [86]. While AI in digital breast pathology and breast 
imaging shows great promise in reducing false positive 
rates in breast cancer screening, images might suffer 
from technical bias [86, 87]. In this study, we used clini-
cal characteristics, pathological molecular typing, and 

laboratory indicators, which provide a detailed finger-
print of tumors to predict recurrent BC by ML-based AI.

ML, as a narrow form of AI, has been proven to be a 
powerful tool in the prediction of disease outcomes 
[88–92]. In our study, prediction models based on 11 ML 
algorithms were tested using 25 easily obtainable clini-
cal features from electronic medical records. Compared 
with the prediction performance of every single clinical 
feature, ML-based AdaBoost using the combination of 
clinical features showed more significant performance. 
Several recent studies have used ML methods to predict 
cancer recurrence and survival outcomes. For exam-
ple, a study showed three prediction models combined 
with digitized images of fine needle aspiration of breast 
masses that can be used to predict BC reoccurrence time 
as accurately as 1 year [93]. In addition, Tahmassebi A 
reported using ML with multiparametric magnetic reso-
nance imaging to predict pathological complete response 
and survival in patients treated with neoadjuvant chemo-
therapy [94]. A breast cancer recurrence and metastasis 
risk assessment framework was developed from histo-
pathological images using image features and ML tech-
nologies [23]. In contrast to these studies, we tested more 
models based on different algorithms for predicting BC 
recurrence within a five-year follow-up period through 
easily accessible clinical information and routine labora-
tory indicators. We found that AdaBoost can be used to 
predict recurrence/nonrecurrence with an accuracy of 
97.1%, a high sensitivity of 94.7% and a high specificity 
of 97.6%.

To our knowledge, we used AdaBoost in combination 
with SHAP for the first time to predict the recurrence 
of BC. Second, by searching for keywords [(((((((con-
ventional laboratory indicators) OR (routinely measured 
blood biomarkers)) OR (routinely measured blood indi-
cators)) OR (routinely peripheral blood indicators)) OR 
(conventional peripheral blood indicators)) AND ((breast 
cancer) OR (breast carcinoma))) AND (Recurrence)) 
AND ((((((((((((Machine Learning) OR (logistic regres-
sion)) OR (random forest)) OR (support vector machine)) 
OR (XGBoost)) OR (gradient boosting decision tree)) OR 
(decision tree)) OR (multilayer perceptron)) OR (linear 
discriminant analysis)) OR (AdaBoost)) OR (Gaussian 
naive Bayes)) OR (LightGBM))] on the PubMed website, 
we believe that our study is the first to use the features of 
traditional laboratory indicators and clinical information 
easily available from electronic medical records in Ada-
Boost’s model to predict the recurrence of BC. AdaBoost 
is one of the best boosting algorithms. AdaBoost can 
boost a weak learning algorithm with an accuracy slightly 
better than random guessing into an arbitrarily accurate 
strong learning algorithm, bringing about a new method 
and new insights into the design of the learning algo-
rithm [95]. Even if many base classifier instances are used, 
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AdaBoost rarely overfits the solution and minimizes the 
exponential loss function by fitting the stepwise additive 
model [96]. Due to the minimization of the classifica-
tion error, which can be best approximated as exponen-
tial loss, AdaBoost performs very well on a wide range of 
classification problems [97] AdaBoost could be a helpful 
tool for physicians to predict BC recurrence. Addition-
ally, we use SHAP to interpret AdaBoost predictions 
based on SHAP values and feature interaction scores. We 
found that correlated variables reflecting tumor biomark-
ers (CA125, CEA, CA15-3), clinicopathological features 
(tumor diameter, N stage, molecular subtype), and coag-
ulation abnormalities (Fbg, FVIII, D-dimer) have impor-
tant weights in predicting the recurrence of BC. This may 
result in more sustainable health for patients, thereby 
reducing the psychological, social and economic burden 
on society.

Our study has several limitations. First, the study pop-
ulation was relatively small. Although we evaluated 342 
patients, 103 of whom were randomly included in the test 
set as an independent sample, a larger cohort is needed 
for future external validation of the accuracy of the pre-
diction model. Second, although we initially evaluated 
the value of 25 available clinical features for predict-
ing recurrence, we need more clinical information, such 
as gene mutations, to optimize these prediction models 
and provide a valuable basis for individualized treatment. 
Thus, future studies should be conducted to validate the 
feasibility of the proposed algorithm.

Conclusion
This study described the application of clinical informa-
tion and laboratory parameters-based ML in patients 
with BC recurrence, generating a AdaBoost algorithm 
model that reliably predicts the probability of BC recur-
rence. In our study, ML combined with the explainabil-
ity method of SHAP makes the black box model of ML 
explainable, which is more suitable for the clinical sce-
nario of predicting breast cancer recurrence. In addition, 
the addition of DCA highlights the clinical value of Ada-
Boost. We suggest the use of this approach as an audit-
able decision aid that contributes to patient healthcare 
and research.
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