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Abstract
Background and objectives Sepsis is accompanied by a considerably high risk of mortality in the short term, 
despite the availability of recommended mortality risk assessment tools. However, these risk assessment tools seem to 
have limited predictive value. With the gradual integration of machine learning into clinical practice, some researchers 
have attempted to employ machine learning for early mortality risk prediction in sepsis patients. Nevertheless, there 
is a lack of comprehensive understanding regarding the construction of predictive variables using machine learning 
and the value of various machine learning methods. Thus, we carried out this systematic review and meta-analysis to 
explore the predictive value of machine learning for sepsis-related death at different time points.

Methods PubMed, Embase, Cochrane, and Web of Science databases were searched until August 9th, 2022. The risk 
of bias in predictive models was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST). We 
also performed subgroup analysis according to time of death and type of model and summarized current predictive 
variables used to construct models for sepsis death prediction.

Results Fifty original studies were included, covering 104 models. The combined Concordance index (C-index), 
sensitivity, and specificity of machine learning models were 0.799, 0.81, and 0.80 in the training set, and 0.774, 0.71, 
and 0.68 in the validation set, respectively. Machine learning outperformed conventional clinical scoring tools and 
showed excellent C-index, sensitivity, and specificity in different subgroups. Random Forest (RF) and eXtreme Gradient 
Boosting (XGBoost) are the preferred machine learning models because they showed more favorable accuracy with 
similar modeling variables. This study found that lactate was the most frequent predictor but was seriously ignored by 
current clinical scoring tools.

Conclusion Machine learning methods demonstrate relatively favorable accuracy in predicting the mortality risk in 
sepsis patients. Given the limitations in accuracy and applicability of existing prediction scoring systems, there is an 
opportunity to explore updates based on existing machine learning approaches. Specifically, it is essential to develop 

Machine learning for the prediction of sepsis-
related death: a systematic review and meta-
analysis
Yan Zhang1†, Weiwei Xu2†, Ping Yang1* and An Zhang1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02383-1&domain=pdf&date_stamp=2023-12-4


Page 2 of 12Zhang et al. BMC Medical Informatics and Decision Making          (2023) 23:283 

Introduction
Sepsis is a life-threatening organ malfunction due to 
the host dysregulated reaction to infection [1]. In 2017, 
World Health Organization (WHO) and World Health 
Assembly (WHA) embraced a resolution on enhancing 
the diagnosis, prevention, and management to decrease 
the burden of sepsis [2]. Due to its relatively high inci-
dence and mortality rate, sepsis continues to be a sig-
nificant public health concern [3, 4]. Existing research 
indicates that the in-hospital mortality rate of sepsis sur-
passes the average mortality rate within the same medi-
cal department, particularly in intensive care units [5, 
6]. Hence, the early prediction of mortality risk in sepsis 
patients holds crucial clinical significance, as it can assist 
healthcare professionals in determining the patient’s 
disease status, improving treatment efficacy, and conse-
quently reducing the risk of early mortality in patients.

Currently, there are a variety of clinical scoring systems 
to help clinicians assess the severity of sepsis and predict 
the occurrence of adverse events, such as the Simplified 
Acute Physiology Score II (SAPS II) [7], Acute Physiol-
ogy and Chronic Health Evaluation II scoring system 
(APACHE II) [8], Sequential Organ Failure Assessment 
(SOFA) [9], and quick Sequential Organ Failure Assess-
ment (q SOFA) [1]. However, the calibration and per-
ception ability of these scores in predicting the risk of 
in-hospital death in patients with sepsis is poor [10, 11]. 
Moreover, these scores are set for the overall critically ill 
patients, rather than sepsis patients [12, 13].

In recent years, machine learnings methods have been 
widely used in the prediction of disease prevention, diag-
nosis, treatment and prognosis, such as disease risk pre-
diction [14], patient re-admission prediction [15], and 
death prediction [16]. Machine learning has good pre-
dictive performance [17]. It can efficiently predict the 
occurrence of adverse outcomes compared with com-
monly used clinical scores [18–22]. The meta-analysis by 
Lucas M. Fleuren et al. [23] comprehensively analyzed 
data from 28 original studies involving 130 models. 
Their results demonstrate that machine learning meth-
ods exhibit relatively favorable accuracy in predicting 
the occurrence of sepsis. However, there is a lack of sys-
tematic evidence regarding mortality risk prediction. 
Therefore, we carried out this systematic review and 
meta-analysis to dynamically estimate the predictive 
value of machine learning for risk stratification of sepsis-
related death and provide guidance for the development 
and update of sepsis death risk scoring tools.

Methods
This systematic review was performed in line with the 
standards of the Preferred Reporting Items for System-
atic Reviews and Meta-analyses (PRISMA 2020) state-
ment [24]. Before the start of the study, study protocol 
was registered and sanctioned on the international pro-
spective register of systematic reviews PROSPERO (ref-
erence number CRD 42022355565).

Information sources and search strategy
For this meta-analysis, we comprehensively and system-
atically searched PubMed, Embase, Cochrane, and Web 
of Science. August 9th, 2022 was the last search date. The 
search method adopts the form of subject headings and 
free words, with no restriction on regions and languages. 
The search terms were designed through a combination 
of subject headings and free-text keywords related to 
sepsis, machine learning, and mortality. Afterward, we 
merged the search results using the ‘AND’ logical opera-
tor to assemble our definitive retrieval set. A comprehen-
sive search strategy is provided in Table S1

Inclusion and exclusion criteria
Inclusion criteria
Studies meeting the following standards were included: 
(1) Research subjects are patients with sepsis. (2) 
Research designs are cohort studies, case-control stud-
ies, case-cohort studies, and nested case-control stud-
ies. (3) The outcome event predicted by the model is 
mortality, and machine learning prediction models were 
constructed specifically focused on death-related out-
comes. (4) Time of death is not limited to in-hospital 
death and death 28 days after discharge. (5) Studies lack-
ing an independent validation dataset are also included in 
our systematic review. The term “independent validation 
set” denotes a situation in which the study data is segre-
gated into a training set and a test set, or when the study 
encompasses a training set, a validation set, and a test set. 
(6) Various machine learning studies published on the 
same dataset. (7) Original research published in English. 
(8) Research that did not provide information on the time 
or place of death.

Exclusion criteria
We excluded the following studies: (1) Research types 
such as, Meta, review, guideline, and experts’ opinion. (2) 
Studies only carried out risk factor analysis with uncom-
pleted risk model. (3) Studies lacking at least one of the 
following indicators related to the predication accuracy 

or update more suitable mortality risk assessment tools based on the specific contexts of use, such as emergency 
departments, general wards, and intensive care units.
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of risk model: Receiver Operator Characteristic Curve 
(ROC), Concordance index (C-index), sensitivity, speci-
ficity, accuracy, recovery rate, precision rate, confusion 
matrix, diagnostic four-grid table, F1 score, calibration 
curve. (4) In the clinical applications of machine learning, 
standardized criteria for defining small sample sizes are 
lacking, and EPV > 10 is required during model construc-
tion (i.e., the number of positive events, such as deaths 
in our study, is more than 10 times the modeling vari-
able in the training set). Hence, in our particular context, 
we have defined studies with limited samples as those 
encompassing fewer than 50 cases. Consequently, studies 
with sample sizes of < 50 cases were excluded. (5) Studies 
primarily focused on the validation of assessment scales. 
(6) Research centered on the precision of single-factor 
predictions. (7) Case series, case reports, randomized 
controlled trials, and descriptive inquiries. (8) Research 
specifically related to pediatric populations.

Study selection and data extraction
Retrieved literatures were imported into Endnote X9 
and excluded duplicate literature. The titles and abstracts 
were screened to exclude ineligible studies. Full text arti-
cles were downloaded and read to include eligible stud-
ies in our systematic review. Before data extraction, we 
formulated a standard data extraction spreadsheet. The 
basic characteristics of the included studies are provided 
in Table S2.

Literature screening and data extraction were con-
ducted by two independent researchers Zhang (a practic-
ing physician specializing in critical care medicine with 
seven years of experience in the field) and Yang (a deputy 
chief physician in the department of critical care medi-
cine with 12 years of experience). After cross-checking, 
disagreement was resolved by a third researcher Xu (with 
20 years of experience in nursing profession), if there was 
any.

Quality assessment
We performed risk of bias assessments of predictive 
models using Prediction model Risk of Bias Assessment 
Tool (PROBAST) [25], which contains many questions in 
four different dimensions: participants, predictors, out-
comes, and statistical analysis, exhibiting overall risk of 
bias and overall applicability. The four dimensions con-
tain 2, 3, 6, and 9 particular questions, respectively. Each 
question has three responses (yes/possibly yes, no/possi-
bly no, and no information). A dimension is considered 
high risk if one of its questions is answered as no or pos-
sibly no. To be considered low risk, a dimension should 
have all questions answered yes or possibly yes. The over-
all risk of bias was rated as low risk when all dimensions 
were considered low risk, and as high risk when at least 
one dimension was considered high risk.

Two researchers (Zhang and Yang) independently con-
ducted a risk of bias assessment based on PROBAST. 
After cross-checking, disagreement was resolved by a 
third researcher (Xu), if there was any.

Outcome measures
The main outcome measure of our systematic review 
is the C-index, which reflects the overall accuracy of 
machine learning. In addition, this study considered 
that the C-index of constructed machine learning mod-
els is not enough to reflect the predictive value and 
actual predictive accuracy of machine learning models 
for sepsis-related deaths when the number of cases in 
the dead population and the living population is utterly 
unbalanced. Therefore, our primary outcome measures 
also included sensitivity and specificity. The secondary 
outcome measure for this study was the frequency of the 
model predictor variables.

Data synthesis
We performed a meta-analysis on the indicators 
(C-index, sensitivity, and specificity) of the machine 
learning model. If C-index with 95% confidence inter-
val and standard error were missing, we referred to the 
research of Debray TP et al. [26] to estimate the standard 
error. In view of the disparities in the variables included 
in each machine learning model and the inconsistency of 
parameters, we gave priority to a random-effects model 
for meta-analysis on C-index.

For meta-analysis for sensitivity and specificity in 
machine learning for mortality prediction, 2*2 tables 
(comprising true positives, false positives, false negatives, 
and true negatives) are needed. However, some included 
studies lacked complete 2*2 tables. Therefore, we primar-
ily employed the following methods for estimation: (1) 
the 2*2 table was estimated using sensitivity, specificity, 
precision, and case counts. (2) Sensitivity and specificity 
were extracted from the ROC curve analysis based on the 
optimal Youden’s index to calculate the 2*2 table in con-
junction with case counts.

We also performed meta-analysis of sensitivity and 
specificity using a bivariate mixed-effects model. The 
meta-analysis of this study was applied in R 4.2.0 (R 
development Core Team, Vienna, http://www.R-project.
org). The R packages utilized for this analysis included 
‘metafor,‘ ‘meta,‘ and ‘forestplot’.

Results
Study selection
A total of 6,084 articles were retrieved, and 1,166 dupli-
cate articles were excluded. The full texts of 85 articles 
were downloaded and read. Conference abstracts (n = 12), 
studies without outcome indicators or with inappropriate 
outcome indicators (n = 15), and those only conducting 

http://www.R-project.org
http://www.R-project.org


Page 4 of 12Zhang et al. BMC Medical Informatics and Decision Making          (2023) 23:283 

risk factor analysis (n = 8) were deleted. Finally, 50 origi-
nal studies were included. The literature screening proce-
dure is shown in Fig. 1.

Study characteristics
Our research included 50 original studies [22, 27–75] 
involving 1,928,030 patients, with 270,361 dead cases 
(14.02%); 247,519 died in the hospital (91.6%) and 13,739 
died in January (5.1%).

This study included 104 machine learning models, 
including Naive Bayes (NB), Random Forest (RF), Artifi-
cial Neural Networks (ANN), eXtreme Gradient Boost-
ing (XGBoost), Logistic Regression (LR), Decision Tree 
(DT), K-nearest neighbor (KNN), Survival model, Least 
Absolute Shrinkage and Selection Operator (LASSO), 
Support Vector Machine (SVM), and Blending model.

Among these models, 25 studies built 64 machine 
learning models for predicting in-hospital death [22, 27, 
31, 33, 35, 43, 45, 46, 48, 49, 52–55, 58, 60, 61, 63, 66, 68, 
69, 71, 74, 75], 21 studies built 30 machine learning mod-
els for predicting death within 1 month [28–30, 34, 37–
39, 41, 44, 47, 48, 50, 51, 55, 56, 59, 65, 68, 72, 73], two 
studies built two machine learning models for predicting 
death within 3 months [32, 71], other two studies built 

two machine learning models for predicting death within 
1 year [62, 70], and 4 studies built 6 machine learning 
models that did not specifically describe the time of sep-
sis death [40, 42, 64, 67], these models are depicted in 
Fig. 2. There are relatively few research data on long-term 
death of sepsis. Therefore, this research mainly focused 
on short-term death of sepsis. Table S2 gives an outline 
of key characteristics per study.

Risk of bias in included studies
The PROBAST assessment tool was used to evaluate 
the risk of bias of prediction model. The assessment was 
carried out from four aspects: predictors, participants, 
outcome and analysis. The results of the risk of bias 
assessment are shown in Fig. 3 and Table S3.

Meta-analysis
C-index
According to a comprehensive analysis of data from 50 
studies, the overall C-index of machine learning models 
predicting sepsis-related death, in the training and vali-
dation sets, was 0.799 (95%CI: 0.779–0.819) and 0.774 
(95%CI: 0.763–0.785), respectively. However, the pooled 
overall C-index of the clinical scoring tools was 0.717 

Fig. 1 Flowchart of literature screening
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(95%CI: 0.673–0.761) and 0.689 (95%CI: 0.633–0.745), 
respectively. The results show that C-index of machine 
learning models is superior to that of clinical scoring 
tools for predicting sepsis-related death.

According to subgroup analysis of model types, the 104 
models included in the training set were ANN (n = 11; 
10.6%), DT (n = 8; 7.7%), KNN (n = 4; 3.8%), LR (n = 33; 
31.7%), RF (n = 14; 13.5%), SVM (n = 14; 13.5%), XGBoost 
(n = 14; 13.5%), NB (n = 2; 1.9%), Survival model (n = 3; 
2.9%), and LASSO (n = 1). The 88 models included in 
the validation set were ANN (n = 13; 14.8%), DT (n = 7; 
8%), KNN (n = 4; 4.5%), LR (n = 23; 21%), RF (n = 13; 
14.8%), SVM (n = 13; 14.8%), XGBoost (n = 9; 10.2%), NB 
(n = 3; 3.4%), Blending model (n = 1), and LASSO(n = 2; 
2.3%). Almost every machine learning model had a bet-
ter C-index than the clinical scoring tools (C-index: 
0.717 in the training set and 0.689 in the validation set). 
Among the above-mentioned models, RF (C-index: 0.834 
in the training set and 0.827 in the verification set) and 

XGboost (C-index: 0.829 in the training set and 0.805 in 
the verification set) had the best predictive performance, 
respectively. RF, in particular, showed surprisingly simi-
lar effects between the training and the validation sets, 
which avoided overfitting to a certain extent. Hence, RF 
and XGboost may be our preferred modeling schemes.

Subgroup analysis was conducted according to time 
of death. In the in-hospital death subgroup, a total of 
64 machine learning models were included in the train-
ing set. Its combined C-index was 0.780 (95%CI: 0.754–
0.806). However, C-index of clinical scoring tools (n = 2) 
was 0.726 (95%CI: 0.567–0.885). A total of 63 machine 
learning models were included in the verification set, 
and their combined C-index was 0.756 (95%CI: 0.743–
0.769), and C-index of clinical scoring tools (n = 8) was 
0.730 (95%CI: 0.702–0.758). These results show that in 
the subgroup of in-hospital deaths, the C-index of the 
machine learning models is slightly better than clini-
cal scoring tools. However, because the sample size of 

Fig. 3 Risk of bias assessment results

 

Fig. 2 Bar chart depicting the number of models
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clinical scoring tools involved in this statistical analysis 
is too small, the results still need more verification. In 
1-month death subgroup, a total of 30 machine learn-
ing models were included in the training set, and their 
combined C-index was 0.849 (95%CI: 0.815–0.882), and 
C-index of the clinical scoring tools (n = 10) was 0.716 
(95%CI: 0.667–0.765). However, in the verification set a 
total of 20 machine learning models were included, and 
their combined C-index was 0.835 (95%CI: 0.806–0.865), 
and C-index of the clinical scoring tools (n = 6) was 
0.667 (95%CI: 0.635–0.699). The results show that in the 
1-month death subgroup, the C-index of machine learn-
ing models was significantly better than the clinical scor-
ing tools. The C-index forest plot is shown in Fig. 4.

Sensitivity and specificity
In the training set, the combined sensitivity and speci-
ficity of the machine learning models in predicting sep-
sis-related death were 0.81 (95%CI: 0.75–0.86) and 0.80 
(95%CI: 0.72–0.86), respectively. However, the combined 
sensitivity and specificity of the clinical scoring tools in 
predicting sepsis-related death were 0.65 (95%CI: 0.61–
0.68) and 0.68 (95%CI: 0.65–0.71), respectively.

In the validation set, the combined sensitivity and 
specificity of the machine learning models in predicting 
sepsis-related death were 0.71 (95%CI: 0.67–0.74) and 
0.68 (95%CI: 0.59–0.77), respectively. However, the com-
bined sensitivity and specificity of the clinical scoring 
tools in predicting sepsis-related death were 0.52 (95%CI: 

0.42–0.62) and 0.28 (95%CI: 0.04–0.78), respectively. The 
results suggest that machine learning models are better 
than conventional clinical scoring tools in predicting sep-
sis death.

According to the subgroup analysis of model types, 
the 65 models included in the training set were ANN 
(n = 5; 7.7%), DT (n = 6; 9.2%), KNN (n = 2; 3%), LR (n = 23; 
35.4%), RF (n = 10; 15.4%), SVM (n = 5; 7.7%), XGBoost 
(n = 11; 17%), NB (n = 1), Survival model (n = 1), and 
LASSO (n = 1). The 67 models included in the valida-
tion set were ANN (n = 11; 16.4%), DT (n = 4; 6%), KNN 
(n = 4; 6%), LR (n = 17; 25.4%), RF (n = 9; 13.4%), SVM 
(n = 9; 13.4%), XGBoost (n = 7; 10.4%), NB (n = 3; 4.5%), 
and LASSO (n = 3; 4.5%). The sensitivity and specificity 
of machine learning models are superior to clinical scor-
ing tools (sensitivity and specificity: training set 0.65 and 
0.68, validation set 0.52 and 0.28), respectively. RF (sen-
sitivity and specificity: training set 0.90 and 0.87, verifi-
cation set 0.74 and 0.77) and XGboost (sensitivity and 
specificity: training set 0.83 and 0.86, verification set 0.68 
and 0.75) had the fittest predictive performance in both 
training and validation sets.

Subgroup analysis was carried out according to time 
of death. In the in-hospital death subgroup, a total of 37 
machine learning models were included in the training 
set. The combined sensitivity and specificity were 0.85 
(95%CI: 0.75–0.92) and 0.86 (95%CI: 0.73–0.93), respec-
tively. However, the sensitivity and specificity of the clini-
cal scoring tools (n = 1) were 0.59 and 0.66 respectively.

Fig. 4 C-index forest plot of training set (A) and validation set (B)
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A total of 51 machine learning models were included 
in the verification set, and the combined sensitivity and 
specificity were 0.68 (95%CI: 0.64–0.72) and 0.67 (95%CI: 
0.54–0.78), respectively. However, the sensitivity and 
specificity of the clinical scoring tools (n = 8) were 0.47 
(95%CI: 0.33–0.61) and 0.10 (95%CI: 0.00-0.83), respec-
tively. These results suggest that sensitivity and specificity 
of machine learning models are higher than clinical scor-
ing tools in the subgroup of in-hospital deaths.

In the 1-month death subgroup, a total of 20 machine 
learning models were included in the training set, and 
their combined sensitivity and specificity were 0.78 
(95%CI: 0.75–0.80) and 0.70 (95%CI: 0.63–0.75), respec-
tively, while sensitivity and specificity of clinical scor-
ing tools (n = 10) were 0.65 (95%CI: 0.62–0.69) and 0.68 
(95%CI: 0.65–0.72), respectively. A total of 14 machine 

learning models were included in the validation set, 
and their combined sensitivity and specificity were 0.78 
(95%CI: 0.73–0.82) and 0.75 (95%CI: 0.67–0.82), respec-
tively. However, the sensitivity and specificity of clinical 
scoring tools (n = 5) were 0.62 (95%CI: 0.58–0.65) and 
0.65 (95%CI: 0.58–0.72), respectively.

The results show that in the 1-month death subgroup, 
sensitivity and specificity of machine learning models 
are higher than clinical scoring tools. The sensitivity and 
specificity forest plot are shown in Fig. 5.

Modeling variables
This study summarized 125 modeling variables, and the 
main 30 modeling variables were: lactate, age, GCS, ven-
tilator, systolic blood pressure, pH, heartrate, respira-
tory rate, temperature, gender, SpO2, SOFA score, BUN, 

Fig. 5 Sensitivity (A-B) and specificity (C-D) forest plot of training set (A, C) and validation set (B, D)
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creatinine, PLT, PaO2, INR, PCO2, urine output, shock, 
comorbidities, cancer, PTT, WBC, MAP, albumin, BMI, 
BE, race, and bicarbonate. Incorporating these frequently 
occurring modeling variables into machine learning 
models may help improve the prediction of sepsis-related 
death. In addition, some variables with lower frequency 
still need to be considered, such as: Surviving Sepsis 
Campaign Bundles, ScvO2, BNP, TnT, PCT, IL-6, and 
administration time of appropriate antimicrobial therapy.

In RF model, the modeling variables with higher fre-
quency were age, lactate, GCS, systolic blood pressure, 
heartrate, respiratory rate, ventilator, pH, temperature, 
SpO2, BUN, creatinine, and MAP. In XGboost model, 
the modeling variables with higher frequency were age, 
lactate, systolic blood pressure, heartrate, temperature, 
SpO2, GCS, ventilator, BUN, creatinine, and PLT. The 
modeling variables with higher frequency in the two 
dominant models are highly similar and of great signifi-
cance in clinical practice. If the two models are combined 
reasonably, the predictive value of RF and XGboost mod-
els for sepsis-related death may further increase on the 
existing basis. Modeling variables for the included mod-
els are provided in Table S4.

Discussion
In this study, the data of 50 original studies were compre-
hensively analyzed, and we found that in the training and 
validation sets, the combined C-index, sensitivity and 
specificity of machine learning models in predicting sep-
sis-related death were higher than clinical scoring tools. 
The results of this study are in line with those of Raith et 
al. [76]. The predictive models for mortality risk achieved 
a pooled C-index of 0.799, sensitivity of 0.81, and speci-
ficity of 0.80 in the training set, and a pooled C-index 
of 0.774, sensitivity of 0.71, and specificity of 0.68 in the 
validation set, indicating that machine learning methods 
demonstrate relatively favorable predictive performance 
for early mortality in sepsis, with no evidence of overfit-
ting. Moreover, among the 104 machine learning models 
included in this study, RF and XGboost showed better 
predictive performance. Regarding clinical scoring tools 
for predicting sepsis-related death in the training set, 
the combined C-index, sensitivity, and specificity were 
0.717, 0.65, and 0.68, respectively, in the validation set 
the above-mentioned values were 0.689, 0.52, and 0.28, 
respectively, revealing that clinical risk scoring still pos-
sesses significant limitations in predicting mortality risk 
in sepsis. Our research indicates that the prediction of the 
risk of mortality in sepsis extends beyond focusing solely 
on in-hospital deaths in current clinical practice, as there 
is a growing interest in studying out-of-hospital deaths as 
well. Machine learning models appear to exhibit favor-
able accuracy in early prediction of both in-hospital and 
out-of-hospital deaths. In-hospital mortality is primarily 

concentrated in the ICU and emergency department. 
Therefore, we believe that the development and update 
of sepsis-specific mortality risk assessment tools tai-
lored specifically for intensive care units and emergency 
departments are imperative. This would enable clinicians 
to promptly formulate effective diagnostic and treatment 
decisions, thereby reducing the risk of mortality. Addi-
tionally, effective predictive tools should be developed for 
assessing the risk of out-of-hospital mortality to provide 
support to patients’ families and the community, with the 
aim of improving patient quality of life and potentially 
extending their survival time.

Additionally, we also conducted a meta-analysis of 38 
studies on the accuracy of SOFA score and qSOFA score 
in predicting short-term mortality risk in sepsis patients. 
The results of our study show that the predictive value of 
SOFA score for sepsis-related mortality remains unsatis-
factory, which is consistent with those of Fernando et al. 
[13]. Their review reported low sensitivity and specific-
ity values for both SOFA and qSOFA scores in predicting 
the risk of death in sepsis patients (sensitivity values were 
0.685 and 0.608, and specificity values were 0.688 and 
0.595, respectively).

For machine learning models, the selection of appro-
priate modeling variables is a key factor in improving 
their predictive accuracy, some studies have found that 
blood lactic acid could be treated as a predictor of mor-
tality in patients with sepsis, and combining blood lactic 
acid with the existing scores could increase the predic-
tive accuracy of the scoring system [12, 77]. Lactic acid 
is an independent predictor of death in patients with 
septic shock; mortality rate of patients can increase with 
the elevation of lactic acid level [78–80]. Lactic acid not 
only predicts high risk of death but can also guide sepsis 
treatment [81, 82]. However, almost none of the existing 
scores included this indicator. In this study, when calcu-
lating the frequency of statistical modeling variables, we 
found that the frequency of lactic acid was the highest, 
suggesting that lactic acid can be used as an important 
variable for predicting sepsis death and an important 
predictor in the advance of simple risk assessment tools 
for clinical visualization in the future. At the same time, 
we found that the main 30 important modeling variables 
involved coagulation system, respiratory system, circula-
tory system, nervous system, liver, kidney; multiple organ 
failures were closely associated with the prognosis of 
sepsis. It is suggested that these modeling variables are 
consistent with the clinical indicators for predicting the 
prognosis of sepsis. Creatinine and blood urea nitrogen 
are important indicators for evaluating renal function. 
Therefore, measuring serum creatinine and blood urea 
nitrogen in the early course of sepsis can help evalu-
ate renal function, identify sepsis-related acute kidney 
injury, and predict disease progression and prognosis [83, 
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84]. Respiratory rate, blood pressure, and blood oxygen 
saturation are important health indicators of the human 
body, which can evaluate the function of the respiratory 
and circulatory systems, and are also important monitor-
ing indicators in early resuscitation programs [85].

The modeling variables included in machine learning 
have clinical significance and theoretical support, with 
application value in predicting risk of death in patients 
with sepsis. In addition, this study found many vari-
ables that are ignored clinically, such as Surviving Sep-
sis Campaign Bundles, ScvO2, BNP, TnT, PCT, IL-6, and 
administration time of appropriate antimicrobial therapy. 
However, all these predictive models have a certain pre-
dictive value. As a result, these variables should be paid 
attention to in the subsequent development of scoring 
systems. In the process of meta-analysis, machine learn-
ing models generally have a high risk of bias in the mod-
eling process, possibly because of the fact that bias risk 
assessment of predictive model is relatively critical, espe-
cially in statistical analysis. Most of the models did not 
meet a low risk of bias in statistical analysis, causing an 
excessive high proportion of bias, which needs to be dealt 
with to improve machine learning performance.

This study is a large-scale systematic review, which is 
one of it is strength points. The results show that machine 
learning has good predictive value for sepsis-related 
death and outperforms clinical scoring tools. The meta-
analysis published by Lucas M. Fleuren et al. [23] showed 
that machine learning could precisely predict the onset 
of sepsis in advance, but their systematic review did not 
conduct a comprehensive analysis of the predictive value 
of model learning for sepsis-related death. However, our 
study fills in the gap of its predictive value for sepsis-
related death. Therefore, this study can act as a theoreti-
cal support for the improvement of clinical scoring tools. 
By summarizing the frequency of modeling variables, we 
found that lactate can be used as an important predictor 
for the development of simple clinical visualization risk 
assessment tools. Numerous studies have ignored and 
screened out various variables, which are also of a great 
value for enhancing scoring system performance.

This study has some limitations as follow: (1) The iden-
tification of cases of septicemia is highly challenging and 
often inaccurate, particularly when relying on routine 
data or ICD code-based approaches. (2) The included 
machine learning models exhibited great risk of bias due 
to the obvious criticality of risk of bias assessment of pre-
dictive models. (3) Most of the included studies explored 
the short-term death of sepsis, such as in-hospital death 
and one-month death, but there are few original studies 
on medium and long-term death time, such as 3 months, 
6 months or even one year. Therefore, the predictive 
value of machine learning models for long-term death 
time of sepsis is still lack of evidence-based medical 

evidence. (4) In our study, we included full-text confer-
ence papers, while other gray literature sources were not 
incorporated into our research. We will continue to pay 
attention to this field in future research. (5) In certain val-
idation sets within the original studies, there were fewer 
than four models. It is important to note that the utili-
zation of at least four models is a prerequisite when cal-
culating positive and negative predictive values through 
a bivariate mixed-effects model. Consequently, this study 
exclusively focused on evaluating the c-index, sensitivity, 
and specificity. (6) Furthermore, it is worth acknowledg-
ing that some clinically relevant variables may pose chal-
lenges in terms of measurement, particularly in settings 
beyond the purview of major hospitals. Moreover, the 
accessibility of these variables for patients residing at a 
considerable distance from the hospital can present sig-
nificant obstacles.

Conclusion
The predictive value of clinical scoring tools is contro-
versial and needs further improvement. Machine learn-
ing has an ideal predictive value for sepsis-related death, 
outperforms clinical scoring tools, and can be utilized as 
a predictive tool for early risk stratification. Therefore, 
simple scoring tools or risk equations suitable for dif-
ferent races are desired to be developed based on large-
scale machine learning models with large samples, and 
cross-races.
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