
Cardoso et al. 
BMC Medical Informatics and Decision Making           (2024) 24:12  
https://doi.org/10.1186/s12911-023-02400-3

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

Dirichlet process mixture models to impute 
missing predictor data in counterfactual 
prediction models: an application to predict 
optimal type 2 diabetes therapy
Pedro Cardoso1, John M. Dennis1, Jack Bowden1, Beverley M. Shields1, Trevelyan J. McKinley1* and 
the MASTERMIND Consortium 

Abstract 

Background The handling of missing data is a challenge for inference and regression modelling. A particular 
challenge is dealing with missing predictor information, particularly when trying to build and make predictions 
from models for use in clinical practice.

Methods We utilise a flexible Bayesian approach for handling missing predictor information in regression models. 
This provides practitioners with full posterior predictive distributions for both the missing predictor information (con-
ditional on the observed predictors) and the outcome-of-interest. We apply this approach to a previously proposed 
counterfactual treatment selection model for type 2 diabetes second-line therapies. Our approach combines a regres-
sion model and a Dirichlet process mixture model (DPMM), where the former defines the treatment selection model, 
and the latter provides a flexible way to model the joint distribution of the predictors.

Results We show that DPMMs can model complex relationships between predictor variables and can provide 
powerful means of fitting models to incomplete data (under missing-completely-at-random and missing-at-random 
assumptions). This framework ensures that the posterior distribution for the parameters and the conditional aver-
age treatment effect estimates automatically reflect the additional uncertainties associated with missing data 
due to the hierarchical model structure. We also demonstrate that in the presence of multiple missing predictors, 
the DPMM model can be used to explore which variable(s), if collected, could provide the most additional information 
about the likely outcome.

Conclusions When developing clinical prediction models, DPMMs offer a flexible way to model complex covariate 
structures and handle missing predictor information. DPMM-based counterfactual prediction models can also provide 
additional information to support clinical decision-making, including allowing predictions with appropriate uncer-
tainty to be made for individuals with incomplete predictor data.
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Background
Prediction models are being increasingly deployed to 
support clinical decision making in healthcare. These 
models typically take a set of predictor (explanatory) 
variables—for example, a set of routinely collected clini-
cal features—and then use these to directly predict a key 
outcome-of-interest. Counterfactual prediction models 
provide a recent extension to standard prediction mod-
els by supporting estimation of differential effects of 
treatments conditional on predictor variables. Models 
predicting such differential treatment effects have the 
potential to inform precision medicine approaches aim-
ing to target specific treatment(s) to individual patient 
most likely to benefit based on their characteristics. Such 
models are often termed ‘treatment selection models’. A 
major challenge when building and implementing both 
types of clinical prediction models in practice is deal-
ing with missing predictor data. This is particularly per-
tinent if a given model includes predictor variables that 
are informative about the outcome, but are not rou-
tinely collected, such as diagnostic test information. In 
this case it is not possible to produce predictions unless 
the model has a way to impute the missing information, 
thus severely hampering the utility of such models when 
deployed in clinical practice.

In the context of counterfactual prediction models, 
dealing robustly with missing data is one of the key pri-
ority research areas highlighted in the recent Predictive 
Approaches to Treatment effect Heterogeneity (PATH) 
statement, a document outlining principles, criteria and 
key considerations for predictive approaches of het-
erogeneity of treatment effects [1]. In particular, this 
manuscript aims to contribute to the requirement to: 
“Determine methods to permit models predicting treat-
ment effect to cope with missing data in clinical prac-
tice” [1]. In this study, we extend an exemplar recently 
published counterfactual treatment selection model for 
type 2 diabetes (T2D) that predicts optimal treatment for 
individual patients based on routinely collected clinical 
features [2]. We build on this previous work (which was 
based on a complete-case analysis) to explore the poten-
tial for using cutting-edge Bayesian approaches to handle 
missing data during both model development and model 
deployment.

There are three types of missing data that occur dur-
ing data collection: data can be missing completely-
at-random (MCAR) when the missing values can be 
thought of as a random sub-sample of the actual values; 

missing-at-random (MAR) when the pattern of miss-
ingness is predictable from other variables in the data-
set; and missing-not-at-random (MNAR) when the 
missingness is non-random, and it is not predictable 
from other variables in the dataset [3]. Due to difficul-
ties modelling missing data, many prediction models 
use only complete-case information, which can lead 
to biases unless the data are MCAR [4]. The complete-
case analysis also throws away potentially informative 
data from individuals with incomplete records. Since 
clinical data is often incomplete, then without a way to 
handle missing predictors, it would also not be possi-
ble to predict for any new patient with incomplete pre-
dictor information unless there was a way to robustly 
impute the missing data.

A common approach for dealing with missing predic-
tors, under the assumption of MAR, involves the use of 
multiple imputation (MI), commonly through chained 
equations (MICE) [3, 5]. Whilst powerful and straight-
forward to implement, MICE has some limitations. 
Unless the chained equations have a carefully chosen 
hierarchical dependence structure, these do not always 
provide a probabilistically consistent joint probability 
model for the predictors [6]. Another limitation of mul-
tiple imputation involves the propagation of uncertain-
ties to the parameters and predictions, since this only 
occurs through the standard errors and therefore does 
not provide the richness of information afforded by full 
Bayesian posterior (predictive) distributions.

Furthermore there are various challenges with the 
deployment of prediction models using MI in clini-
cal practice [7]. For example, it is often recommended 
that the response variable should be included in the MI 
model to improve the accuracy of the fitted model [8]; 
however, by definition the response variable will not 
be observed if using the model to predict the outcome 
for a new individual. As such, to produce predictions 
for new individuals with missing data, then MI would 
have to be conducted without using the response vari-
able, thus potentially reducing the accuracy of the pre-
dictions [8]. For more discussion of these challenges, 
please see [7].

Bayesian approaches offer principled ways to deal 
with the issues described above. The implementation of 
a hierarchical Bayesian prediction model, in which the 
response model is dependent on a flexible joint prob-
ability model for the predictor variables, facilitates both 
inference and prediction in the presence of missing data 
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[9]. Firstly, this defines a joint model for the response 
and predictor distributions, meaning that information 
on the response variable is naturally incorporated into 
posterior estimates of missing predictors during model 
fitting. Furthermore, one can estimate full posterior 
predictive distributions for new individuals empirically, 
using posterior samples obtained via e.g MCMC meth-
ods. This has a useful side-effect in that for a given set 
of posterior samples, it is possible to generate samples 
from a corresponding predictive distribution for a new 
individual without requiring access to the original data-
set. This is in contrast to models affording an analytical 
solution, such as classical linear regression, where con-
fidence and prediction intervals are typically functions 
of the original data. This makes general deployment 
of such models easier in the case where the original 
training data is under confidentiality restrictions with 
restricted access.

To this end, Dirichlet process mixture models 
(DPMMs) [10] provide a powerful way to model the 
joint (complex) distribution of a set of predictor vari-
ables. They do this by modelling complex non-standard 
distributions through a mixture of simpler, more tracta-
ble distributions (see Table  1). This approach can read-
ily capture non-standard features such as non-linearities 
and heteroscedasticity across different dimensions. Fur-
thermore, it can handle mixtures of both numerical and 

categorical predictors [11–15]. This allows for fully prob-
abilistic inference under the MCAR and MAR assump-
tions, contributing towards addressing some of the points 
raised in the PATH statement highlighted above.

For an extensive exploration of Bayesian non-paramet-
ric methods and missing data, see [20]. DPMMs have also 
been established as a clustering mechanism [21], used in 
multiple imputation [14, 15, 22–26] and used as a joint 
model in a specific type of hierarchical regression model 
known as profile regression [11, 12]. In profile regression, 
a DPMM is fitted to a set of predictor variables provid-
ing a probabilistic mapping of each individual observa-
tion to different component clusters within the DPMM. 
The cluster labels are then used as predictor variables in 
a hierarchical regression model targeting the response. 
Hence, profile regression ultimately captures the rela-
tionship between covariate profiles (as modelled through 
the cluster structure of the DPMM) and the response 
variable-of-interest [11]. In contrast, in this manuscript, 
we use a DPMM to explicitly model the joint distribu-
tion of the predictors (given the observed data), which 
can then impute missing data directly and feed these 
into the outcome model-of-interest. This is similar to the 
approach used in [27], who develop a flexible hierarchi-
cal framework that can be applied to treatment selection 
models that uses an enriched Dirichlet process [28, 29] 
as a means of capturing the complex joint distribution 

Table 1 Dirichlet process mixture models (DPMMs)

A DPMM is commonly used as a prior distribution over the components of a (possibly multivariate) mixture model of unknown complexity [16]. 
A DPMM consists of a theoretically infinite number of components, where each component is parameterised by a specific functional form with com-
ponent-specific parameters. Instead of fitting an infinite number of components, we use a truncated DPMM with a maximum number of compo-
nents K, based on the assumption the optimal number of components is lower than the set limit [17]. In turn, the computational demands for fitting 
the model are reduced. The value of K should increase as the complexity of the data increases, but its suitability can be checked post model fit.

    The DPMM thus defines a weighted sum of K component densities [18]. The component densities are restricted to particular parametric classes 
of densities that are assumed to be appropriate for the data at hand. We define fk(X | �k) as the k th component density, with �k representing 
the component parameters. A K component mixture density is defined as:

where pk are component-specific weights such that K
k=1 pk = 1 [19].

    For JC continuous predictors, we use mixtures of multivariate Gaussian distributions with JC dimensions, the cluster-specific parameters for com-
ponent k ( k = 1, . . . , K  ) are given by (µk ,�k) , where µk is a JC-vector of means and �k is a (JC × JC ) covariance matrix. For JD categorical predic-
tors, we use mixtures of categorical probability mass functions, where the number of categories for a covariate j ( j = 1, . . . , JD ) is Kj , the compo-
nent-specific parameters are the probabilities of belonging to each category, given by φk = (φk1,φk2, ...,φkJD

) with φkj = (φkj1,φkj2, . . . ,φkjKj ) 
and 

∑Kj
l=1

φkjl = 1 . The model in this paper is given as a mixture of continuous and categorical variables, since Xi =
(

X
C
i ,X

D
i , X

T
i

)

 , with XC
i  repre-

senting the continuous predictors, XD
i  corresponding to the categorical predictors and XT

i  representing the treatment taken. Hence in the nota-
tion of the Study overview section, � = (�1, . . . ,�K , p1, . . . , pK ) , where the component-specific parameters are given by �k = (µk ,�k ,φk).

    A latent variable, Zi = 1, . . . , K  , is used to assign individual data points to different components of the mixture model, and we assume independ-
ence between continuous and categorical components conditional on the cluster allocations [11, 12]. Thus the probability density for individual 
i, given Zi is:

More details on the component densities, prior distributions, and how to sample from the DPMM are given in the Supplementary Materials.
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of the predictors and the response, providing a means of 
imputing missing data under a MCAR/MAR assumption. 
These methods are highly flexible, and can generate esti-
mates of the response regression function indirectly from 
the joint predictive density (an idea originating in [30]; 
see e.g. [29] and references therein for a more detailed 
discussion). However, they are technically challenging to 
implement in practice without bespoke code.

The original motivation for the work in this paper was 
to augment currently developed and validated models to 
enable prediction for new patients with incomplete pre-
dictor data, and thus facilitate their deployment in rou-
tine clinical practice. Furthermore we wanted to be able 
to develop these models in general-purpose Bayesian 
analysis software, to make these ideas more accessible to 
a wider audience and to make them applicable to a wide-
class of pre-existing models. As such we decided to use a 
simpler approach where we use the DPMM to model the 
joint distribution of the predictor variables as a means of 
imputing missing data, and then use the aforementioned 
spline-based treatment selection model in T2D [2] as 
our outcome model-of-interest, which combines routine 
clinical features of each patient to predict future blood 
glucose (HbA1c) levels under two commonly prescribed 
treatments, SGLT2i and DPP4i. We will henceforth refer 
to this model as the SGLT2i-DPP4i treatment selection 
model. The analysis identified marked heterogeneity 
in HbA1c outcome that is predicted by baseline patient 
characteristics: age-at-treatment, baseline HbA1c, body 
mass index (BMI), estimated glomerular filtration rate 
(eGFR), alanine aminotransferase (ALT) measurements 
and previous treatment history. These predictions can 
determine which treatment is likely to be optimal for 
an individual patient based on their characteristics. We 
carefully validated the model in hold-out data, and well 
as the development data.

Furthermore, we show how the model can also be used 
to identify how predictions of the response or treatment 
selection outcomes might change if any of the missing 
predictor variable(s) were available, and if so, which ones 
(if any) would be the most useful to collect. We note that 
this latter feature could be particularly useful for model-
ling non-routinely collected diagnostic test information, 
such that one could examine how predictions might 
change if the test were to be conducted, and hence could 
be used to inform whether it is worthwhile to perform 
the test or not. We also provide code that enables this 
approach to be implemented in the general-purpose 
Bayesian modelling package NIMBLE, within the R sta-
tistical language (which by default does not currently 
allow for the conditional sampling of missing dimen-
sions of multivariate nodes, which is required for this 
approach to work).

Methods
Study overview
The focus here is on enhancing the previously described 
SGLT2i–DPP4i penalised linear regression model 
designed to predict likely glucose-lowering response 
(HbA1c) in people with T2D initiating SGLT2i or DPP4i 
therapy [2]. For an individual patient, the difference in 
the predicted outcome for each treatment is then used 
to infer which is likely to be optimal. Such models are 
labelled treatment selection models [31].

The model uses interaction effects between the treat-
ment and the other predictors to allow for differential 
responses to treatment given a set of predictors. For 
a new individual with a specific set of characteristics, 
mean predictions of the HbA1c change at 6/12 months 
post-treatment can be made under both treatments and 
then the difference can be derived. We note that there 
is considerable residual uncertainty in the fitted mod-
els, and as such [2, 31] only use point predictions when 
making comparisons. With this in mind, predictions 
should be interpreted as the expected difference for an 
individual with a specific set of predictors under the two 
treatments, commonly named the conditional average 
treatment effect (CATE). In the Bayesian model below, 
we follow the same principle, where posterior predictive 
distributions are for the expected treatment effect for an 
individual with a given set of characteristics.

In the model description below, we use Y to denote the 
outcome variable and X to denote the set of predictor 
variables. Hence, f (Y | X,ψ) corresponds to the likeli-
hood function from the regression model of Dennis et al. 
[2], with parameters ψ ; f (X | �) corresponds to the joint 
probability density function for the DPMM, given param-
eters � (see Table  1); and f (ψ ,�) corresponds to the 
prior distribution for the parameters, then our Bayesian 
hierarchical model has posterior distribution:

where Xo corresponds to all observed covariates, the full 
set of covariates for complete individuals and the subset 
of covariates that were observed for those with miss-
ingness, and Xm represents the unobserved covariates, 
but not the observed values for the incomplete patients 
(see the Supplementary Materials Section  S1 for more 
details). If fitting to complete-case data only, then the 
posterior simplifies to Equation (S.3) in the Supplemen-
tary Materials. We refer the reader to [9] for a compre-
hensive reference for Bayesian hierarchical models.

We fit this model using Markov chain Monte Carlo 
(MCMC) with the package NIMBLE [32, 33] (version 
0.12.2) in the software R [34] (version 4.0.3). We note 
that in the current version of NIMBLE, using the in-built 

(2)
f (ψ ,�,X

m | Xo
,Y) ∝ f (Y | Xo

,X
m
,ψ)f (Xo

,X
m | �)f (ψ ,�).
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samplers, it is not possible to update individual dimen-
sions of a multivariate node. However, NIMBLE does 
allow users to specify their own custom MCMC sam-
plers, and so in order to implement model (2) we wrote 
our own custom samplers, and provide complete code 
for model fitting and prediction at https:// github. com/ 
PM- Cardo so/ DPMM- tsm. We cannot share the original 
data due to confidentiality constraints, but we provide an 
example of using the code to fit a model to a smaller syn-
thetic dataset.

Data/Study population
The analysis in this paper is performed with 
anonymised routinely collected, population-represent-
ative UK primary care electronic healthcare records 
from Clinical Practice Research Datalink (CPRD) 
GOLD (July 2019 download) [35], selecting users of 
SGLT2i and DPP4i therapy after January 1st, 2013. We 
used the same dataset as previously described by Den-
nis et al. [2] in the initial model development study and 
extracted the same clinical feature predictor variables 
(age-at-treatment, baseline HbA1c, BMI, eGFR, ALT, 
the number of previously prescribed glucose-lower-
ing therapies, the current therapy and its duration, 
the number of ongoing prescribed treatments) and 
HbA1c outcome. The dataset is split into two groups: 
the development group (60% of the dataset correspond-
ing to 16,126 patients) and the validation group (40% 

of the dataset corresponding to 10,751 patients). Com-
pared to the dataset used to fit the original model [2], 
there are an extra 2,057 patients in the development 
group and 1,375 patients in the validation group with 
incomplete predictor variables (Table  2). We fit to the 
development dataset and undertake both internal and 
external validation.

Prediction model for treatment selection based on HbA1c 
outcome
The model from Dennis et al. (2022) [2] assumes a con-
tinuous, normally distributed response variable Yi for 
i = 1, . . . , n , where N corresponds to the number of 
observations. The model is a standard linear regression 
model with both continuous and categorical predictors 
( XC

i  and XD
i  , respectively). Restricted cubic splines are 

placed on the continuous predictors ( S
(

X
C
i

)

 ) [36], and 
interaction terms are included between the binary vari-
able for a drug taken ( XT

i  ) and the other variables. Hence 
the structure of the treatment selection model is:

where β0 is the intercept, β =
(

β1,β2, . . . ,β5

)

 is a vec-
tor of regression coefficients (where β2, . . . ,β5 are them-
selves vectors of regression coefficients corresponding to 

(3)

Yi = β0 + β1X
T
i + β2X

D
i + β3S

(

X
C
i

)

+ β4X
T
i X

D
i + β5X

T
i S

(

X
C
i

)

+ ǫi

ǫi ∼ N
(

0, σ 2
)

,

Table 2 Summaries of differential predictors and biomarkers used in the model for the development and validation datasets. (SD) 
[percentage of missing values]

Development Dataset Validation Dataset

Drug Taken DPP4-inhibitor SGLT2-inhibitor DPP4-inhibitor SGLT2-inhibitor

(n = 9,974) (n = 6,152) (n = 6,650) (n = 4,101)

Age (years) 63.9 (10.8) 59.9 (9.1) 65.0 (10.7) 60.2 (9.3)

Number of Past Drugs

     2 3,884 1,167 2,556 731

     3 3,653 1,693 2,457 1,115

     4 972 1,569 683 1,045

     5+ 186 945 117 672

Number of Current Drugs

     0 523 149 309 93

     1 5,078 2,191 3,424 1,418

     2 3,000 2,449 1,993 1,643

     3+ 94 585 87 409

HbA1c (mmol/mol) 72.9 (13.5) 76.6 (14.2) 72.6 (13.2) 77.1 (14.1)

eGFR (mL/min/1.3m2) 83.1 (17.4) [0.2%] 88.8 (14.7) [0.3%] 84.9 (17.2) [0.2%] 88.6 (14.8) [0.4%]

ALT (IU/L) (logged) 3.3 (0.5) [10.0%] 3.4 (0.5) [10.4%] 3.3 (0.5) [10.1%] 3.4 (0.5) [10.8%]

BMI (kg/m2) 32.3 (6.4) [3.2%] 34.4 (6.5) [2.4%] 32.3 (6.4) [2.9%] 34.4 (6.6) [2.5%]

Outcome HbA1c (mmol/mol) 65.1 (16.0) 64.9 (14.2) 65.0 (16.2) 65.1 (14.6)

HbA1c_Month: Month of outcome HbA1c 9.2 (3.5) 9.0 (3.5) 9.2 (3.4) 9.0 (3.4)

https://github.com/PM-Cardoso/DPMM-tsm
https://github.com/PM-Cardoso/DPMM-tsm
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the different discrete, spline and interactions variables as 
required), with σ the residual standard deviation. Poste-
rior summaries for the parameters can be found in Sup-
plementary Table S1 and Fig. S5.

Hence, in the notation of  the Study overview sec-
tion, Yi and Xi corresponds to the response and covari-
ates for the individual i, such that Y = (Y1, . . . ,Yn) 
for the outcome, X = (X1, . . . ,Xn) corresponds to the 
predictor values used in the modelling, where each 
observation’s covariates can be decomposed into 
Xi =

(

X
D
i ,X

C
i ,X

T
i

)

 and ψ = (β0,β , σ) . For a full discus-
sion of the form of this model, and the interpretation 
of the parameters, please see Dennis et al. (2022) [2].

Model validation
To assess convergence and mixing of the MCMC 
chains, we perform a visual inspection of the trace 
plots for all parameters, as well as monitoring the Gel-
man-Rubin R̂ values [37] (Supplementary Figs. S2–S3). 
The Gelman-Rubin R̂ values for α , σ and regression 
parameters vary between 1 and 1.005. Together these 
diagnostics suggest that the chains converged and are 
mixing well. The model took 3 hours to fit with com-
plete data and 24 hours to fit with incomplete data.

Since the application of DPMM in the model uses 
a truncated number of clusters, we also inspect the 
posterior mean number of individuals in components 
ranked by occupancy (Supplementary Fig. S2) along-
side a posterior predictive plot of the fitted DPMM 
against the empirical distribution of the predictors 
from the development and validation data sets (Sup-
plementary Figs. S4 and 1 respectively). Contrasting 
standard prediction models, the principal aspect of a 
treatment selection model is to accurately predict the 
optimal treatment instead of solely focusing on the 
outcome [38].

Validation of the individualised treatment effects 
of the model is carried out according to the guide-
lines provided by Dennis et  al. [2]. The first method 
suggested is verifying the prediction performance 
by checking standardised residuals for predicted 
HbA1c—Supplementary Fig. S6. This shows that there 
is no major systematic bias in the mean function but 
that there is considerable residual variation as per the 
results of [2]. The second method is to plot a density 
graph for all patients regarding the difference between 
each therapy’s treatment effects (Supplementary 
Fig.  S7) that can be compared to [2]. This shows the 
predicted number of patients benefiting from DPP4i or 
SGLT2i across the population and shows good agree-
ment with [2].

Results
Fit and validation of the DPMM
To visualise the fit of the DPMM, we take the bivariate 
marginal posterior predictive distributions for a com-
bination of variables versus the empirical equivalent 
(Fig.  1). The combination of density plots, density map 
plots and bar plots demonstrate that the fitted DPMM 
provides a good representation of both the development 
(Supplementary Fig. S4) and external validation (Fig.  1) 
datasets. We can see that the DPMM is very flexible and 
captures non-linearities, heteroscedasticity, correlation 
structures and mixtures of continuous and categorical 
variables.

Probabilistic predictions using the Bayesian treatment 
selection model
The Bayesian model produces full posterior predic-
tive distributions that marginalise the uncertainty in the 
parameters and any missing predictor variables. This 
means we can make probabilistic statements about the 
parameter values and predicted outcomes based on the 
observed data and the choice of prior distributions. This 
is in contrast to frequentist approaches, where uncer-
tainty statements relate to the expected long-term behav-
iour of an estimator if the same study were to be repeated 
ad infinitum [9]. In Fig.  2 (A), we showcase the poste-
rior predictive distributions of average therapy response 
for three synthetic but representative patients (A, B and 
C) under the two competing treatments. An alternative 
way to visualise this information is to generate a poste-
rior predictive distribution for the conditional average 
treatment effect (CATE) estimates (Fig. 2 (B)). Posterior 
samples for the CATE estimates can be calculated by 
subtracting the mean predicted treatment response of 
DPP4i from the mean predicted treatment response of 
SGLT2i (given the predictors) for each iteration of the 
fitted model. In this case, the proportion of the distribu-
tion to the left of the zero line corresponds to an estimate 
of the probability that SGLT2i is associated with a better 
average treatment response, and conversely, the propor-
tion of the distribution to the right of the zero line is an 
estimate of the probability that DPP4i is associated with 
a better average treatment response. Hence the model 
predicts a 98% probability of SGLT2i performing bet-
ter than DPP4i on average for patient A. For patient B, 
SGLT2i has a 58% probability of performing better on 
average than DPP4i, and for patient C the model predicts 
DPP4i as the optimal treatment on average with a >99% 
probability. With this approach, it is evident that there is 
a high probability of patient A having a 1–3 mmol/mol 
greater HbA1c reduction on average with SGLT2i instead 
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Fig. 1 Generalised pairs plot of predictor variables for an independent validation dataset against an equal number of random samples 
from the Dirichlet process mixture model (DPMM). The DPMM provides an exceptional representation of the validation dataset
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of DPP4i. Patient B is predicted a possible average HbA1c 
benefit between 0–3 mmol/mol for both therapies. For 
patient C, there is a high probability of DPP4i resulting 
in a greater HbA1c reduction than SGLT2i, with a likely 
1–7 mmol/mol benefit on average. As discussed earlier, 
these are posterior predictive distributions for the mean 
response for a patient with each set of characteristics (see 
Table 3).

Predictions for patients with missing data using 
the Bayesian treatment selection model
The inclusion of DPMM in the Bayesian model enables 
it to make predictions for patients with missing infor-
mation. These predictions are possible by averaging 

over the conditional posterior predictive distributions 
for the missing values, given the existing data, and the 
uncertainty of the distributions is in part related to the 
degree of missingness. Figure  3 demonstrates how the 
data available for patient A influences the uncertainty 
of the posterior predictive distributions for the missing 
variables and the response. For each scenario, different 
sets of predictor variables are artificially missing. Each 
row displays how the uncertainty of the posterior pre-
dictive distributions for the missing covariates change 
as more data becomes available. The uncertainty of 
the posterior predictive treatment response distribu-
tion decreases as more variables become available. As 
baseline HbA1c is the most influential predictor in 

Fig. 2 A Posterior predictive distributions for HbA1c outcome at 6-month post-treatment for three synthetic but representative patients. 
For patient A, SGLT2i has a 98% probability of performing better than DPP4i. B Predicted treatment response difference or conditional average 
treatment effect (CATE) at 6-months. A negative value corresponds to a benefit on SGLT2i, and a positive value corresponds to a benefit on DPP4i. 
For patient B, SGLT2i has a 58% probability of performing better than DPP4i. For patient C, DPP4i has a >99% probability of performing better 
than SGLT2i. Patient [A,B,C]: Number of Past Drugs [4,3,4], Number of Current Drugs [2,2,2], HbA1c [67,75,65], eGFR [84.2,66.6,67.9], ALT(log) 
[3.4,2.8,2.6], BMI [26.1,33.4,28.5], Age [68,79,81]
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the model, the availability of the baseline HbA1c value 
vastly reduces the uncertainty of the prediction com-
pared to other variables.

Variable influence on the response prediction using 
the Bayesian treatment selection model
Since the model provides posterior predictive distribu-
tions for the missing data, a new question can be pro-
posed—which missing variable will, if collected, give the 
most information about the treatment response? As an 
example, consider a patient with only three predictors 
available (number of previous therapies, current thera-
pies and age). With these three predictors, the model 
predicts similar treatment responses for both DPP4i and 
SGLT2i. For each missing predictor, a range of treatment 
response distributions can be estimated for different val-
ues of the predictors, which have been chosen as different 
quantiles from the corresponding conditional posterior 
predictive distributions for the missing variables given 
the observed variables. This provides insight into how the 
treatment response prediction might be affected across a 
range of plausible predictor values.

Figure 4 showcases the conditional probability distribu-
tions for any missing variable, and we can explore what 
we might expect to see at different values informed by 
these distributions. For example, the treatment response 
changes drastically depending on starting HbA1c. For 
this patient, if HbA1c was equal to the 5% quantile 
value, there is a high probability the expected treatment 
response would be below 60 mmol/mol with DPP4i ther-
apy but a much lower probability of being below the same 

threshold under SGLT2i. On the other hand, if HbA1c 
was equal to the 50% quantile value, then the expected 
HbA1c response is between 60–70 mmol/mol for both 
treatments, with considerable overlap between the treat-
ment response predictions for both therapies. Lastly, 
if HbA1c was equal to the 95% quantile value, there is a 
low probability of the expected treatment response being 
below 70 mmol/mol for DPP4i but a higher probability of 
being below the same threshold for SGLT2i. In contrast, 
when other missing variables take different quantile val-
ues, it results in very similar treatment responses across 
all quantiles. All of the above provides evidence that, 
given the choice, starting HbA1c would be the most use-
ful additional variable to collect to improve the choice of 
therapy for this patient.

High‑risk patient prediction using the Bayesian treatment 
selection model
In addition to all previous aspects, the Bayesian model 
could also be used in a different way. For example, in the 
case of a high-risk patient, it may be desirable to choose 
the treatment response that is most likely to result in a 
reduction of HbA1c to below 60 mmol/mol. Hence we 
could choose treatment on the basis of overall predicted 
benefit, or we could select the therapy with the high-
est probability of meeting some target threshold. Using 
Fig.  5 as a hypothetical example, there is a high proba-
bility of SGLT2i resulting in a better treatment response 
than DPP4i for this patient. In a conventional approach, 
SGLT2i would be the therapy chosen. However, it is 
critical to note that SGLT2i has a higher probability of 

Table 3 Posterior predictive distributions

In Bayesian modelling, it is possible to derive a full posterior predictive distribution for any new individual. Thus the uncertainty associated with a predic-
tion is captured through a probability distribution, from which point estimates can be derived, or alternatively, probabilistic questions can be asked, 
such as those described in the Probabilistic predictions using the Bayesian treatment selection model section. The definition of a posterior predictive 
distribution for an individual with complete predictor information is:

    Thus, the predictive distribution integrates (or averages) over the posterior distribution for the parameters and thus naturally incorporates 
the uncertainties about the parameters as well as those arising from the underlying model. The examples in this paper present the posterior pre-
dictive distribution for the expected outcome, with a given set of characteristics defined by:

    We are free to use either distribution (4–5), dependent on the context, although in practice, most treatment selection models use an analo-
gous approach to (5), focusing on the conditional average treatment response. Please see the Supplementary Material for more information 
about how different predictive distributions can be derived and sampled from (including when predictors are missing, in which case we integrate 
the missing information modelled using the DPMM).

Fig. 3 Predictive distributions for missing data and treatment response conditional on the scenario for a patient at 6-months. Unobserved 
true values are given by the black vertical line and its prediction by the grey distribution. As more variables become known, the uncertainty 
in the predictions decreases. Scenario 1: Past Drugs, Current Drugs, Age known. Scenario 2: Past Drugs, Current Drugs, Age, HbA1c known. Scenario 
3: Past Drugs, Current Drugs, Age, HbA1c, BMI known. Scenario 4: Past Drugs, Current Drugs, Age, HbA1c, BMI, eGFR known. Scenario 5: All variables 
known. Patient: Number of Past Drugs [2], Number of Current Drugs [0], HbA1c [73], eGFR [68.9], ALT(log) [2.9], BMI [30.1], Age [75]

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 Analysis of variable influence on response prediction for a patient at 6-months. The initial response prediction is conditional on age, number 
of previous and current therapies. Further predictions are conditional on quantile values for HbA1c, BMI, eGFR and ALT. Out of the 4 missing 
covariates, the collection of HbA1c will, in theory, provide the most information about treatment response for the patient. Patient: Number of Past 
Drugs [2], Number of Current Drugs [0], Age [75]
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resulting in a value of HbA1c above 60 mmol/mol than 
DPP4i. In this instance, the fact that DPP4i is less likely 
to result in a value above the target could be more influ-
ential in the choice of therapy than SGLT2i being more 
likely to result in lower treatment response on average. 
Choosing DPP4i as a therapy for this patient gives the 
highest probability of achieving  an average treatment 
response below the target.

Discussion
This paper provides details on how to fit a Bayesian 
treatment selection model with continuous and cat-
egorical covariates using a DPMM to capture the joint-
covariate distribution. The model enables model fitting 
and response prediction for patients with complete and 
incomplete data (under the assumption that missing-
ness is MCAR/MAR), similarly to [14, 27, 39]. It can be 
thought of as an alternative to Bayesian profile regres-
sion [11, 12] in which the outcome model-of-interest is 
conditioned explicitly on the covariates, rather than on 
the cluster memberships derived from the DPMM. This 
makes it more directly applicable to augment existing 
models. Crucially, it can be used to gain insight into the 
utility of collecting further data on patients with incom-
plete predictors in clinical practice.

The Bayesian treatment selection model presented in 
this paper augments the classical counterfactual model 
developed by Dennis et  al. [2]. The model validation is 
carried out in an analogous way to the original model. 

This validation assesses whether the treatment selection 
model accurately predicts the optimal treatment rather 
than the exact therapy response. With that in mind, the 
performance of the Bayesian model is comparable to [2], 
even after augmenting the data to include the incomplete-
case individuals (Supplementary Table S1 and Fig. S5). 
The regression parameter values are similar between the 
three models, with the Bayesian model achieving simi-
lar regularisation through the use of weakly informa-
tive regularising priors [40]. Including individuals with 
incomplete data in the model fitting process reduces the 
uncertainty of regression parameters marginally (Supple-
mentary Fig. S5). This is because here the original data set 
was very large, and the number of individuals with incom-
plete data was a relatively small proportion of the data set 
(especially since most individuals would only be missing 
a few covariates at most). Hence, in this case, the missing 
data do not influence the posterior distributions for the 
parameters very much. However, this may not be true in 
other settings, and this approach allows a direct compari-
son of the difference between models fitted to complete-
case data and incomplete-case data. More importantly, 
the treatment selection model now has a mechanism to 
produce predictions for new individuals with incomplete 
information, thus facilitating its use in clinical practice.

There are several additional benefits of this type of 
approach. In this case, we can estimate the treatment 
response alongside the difference in treatment response 
for both therapies. Furthermore, due to the inclusion of 

Fig. 5 Therapy probability distribution at 6-month prediction for an arbitrary patient. The patient has a <60 mmol/mol target HbA1c outcome. 
In this situation, SGLT2i has a 7.7% chance of >60 mmol/mol treatment response, whereas DPP4i has a 3.1% chance of >60 mmol/mol. Due 
to the lower probability of treatment response above the target, DPP4i is the right therapy for this patient
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the DPMM, the model can provide predictive distribu-
tions for any missing covariates [14, 27, 39]. The availabil-
ity of predictive distributions for missing covariates, in 
turn, can be used to influence the choice of future covari-
ate data collection to improve treatment response pre-
diction. Instead of having a set rule, we could use these 
distributions (Fig. 4) to choose to collect a variable that 
reduces the uncertainty in the predictive distribution 
for the difference between the two treatments. Alterna-
tively, we could choose to collect a variable that optimises 
the posterior probability of preference for one therapy 
over the other. Moreover, since we obtain joint predic-
tive distributions for all the missing variables, these can 
be utilised to look at the changes in expected treatment 
response for multiple variables simultaneously (although 
in Fig. 4 we show the univariate marginal predictive dis-
tributions for each variable, averaging over the others).

Furthermore, even in the presence of complete data, 
the inclusion of the DPMM in the model building ena-
bles the potential to make predictions for patients with 
incomplete predictor information, which is useful in the 
deployment of prediction models in clinical practice, 
where it may not be possible to collect all predictor infor-
mation for a new patient. This is a novel approach with 
considerable advantages for prediction from treatment 
selection models, and many of these advantages would 
also be true for standard clinical prediction models. 
We have implemented this model in standard software 
(NIMBLE), and as such the DPMM can be used to aug-
ment any regression model supported by NIMBLE (for 
example, the same ideas could be applied to e.g. survival 
models, logistic regression and so on), without requiring 
new inference algorithms to be developed.

Currently, the assumption that missing predictor 
data are MCAR/MAR means that it is not necessary to 
explicitly model the missingness mechanism (as long as 
the parameters for the missingness model are a priori 
independent of the other parameters—in which case the 
missingness mechanism can be analytically integrated 
out, leaving the posterior defined in (2)). However, there 
are some restrictions. DPMMs, like many non-paramet-
ric approaches, are not good models for extrapolation. 
This means that for the DPMM to be a good represen-
tation of the joint distribution of the predictors, there 
needs to be some observed data throughout all regions of 
non-negligible density. As an extreme example, assume 
there are multiple predictors, X1,X2, . . . ,Xp , where X1 is 
truncated, based on X2 (so X1 is missing for any X2 > x∗ 
say). Here the missingness mechanism for X1 depends 
only on X2 , so the data are MAR. However, since there 
are no samples for X1 in the region X2 > x∗ the DPMM 
will be unable to adequately estimate the conditional 
distribution f (X1 | X2 > x∗) on its own (although in 

hierarchical prediction models the response variable 
Y can also play a role in constraining the distributions 
for the missing data). In this case, we may need a more 
structured model for X1 | X2 if we wish to extrapolate 
into regions with no available data; although note that 
we can consider other hierarchical structures, such as 
f (X1 | X2)f

(

X2, . . . ,Xp

)

 where a DPMM is used to model 
the density f

(

X2, . . . ,Xp

)

 . In this setting, despite major 
challenges (large sample size, large absolute numbers of 
missing information, reasonable numbers of covariates, 
clear non-normality in the data, combinations of contin-
uous and categorical predictors) we were able to fit the 
described models in ≈ 24 hours. We note that this is sub-
stantially more than the complete-case model (3 hours), 
but it would be expected that the approach would be 
computationally challenging to fit for large datasets with 
lots of missing data and/or a high number of predictors. 
Despite this, once the models are fitted then predictions 
will remain relatively quick to obtain. On the other hand, 
a complete case analysis is straightforward to perform, 
only requiring the NIMBLE code we provide without the 
need for the custom MCMC samplers.

The further development of DPMM models is an 
active area of research, and some extensions that could 
be of interest in future work include exploring whether a 
more complex model structure, such as those previously 
discussed based on the joint modelling of the response 
and predictor variables [27] could improve predictive 
performance. The predictive performance could also be 
compared to simpler imputation techniques such as mul-
tivariate imputation by chained equations (MICE) (see 
[41] for more information). A key constraint in mak-
ing these models straightforward and cost-effective to 
employ in clinical practice is ensuring that they are par-
simonious, and hence this is an area where often variable 
selection methodology is employed, and although soft-
ware exists to do this within DPMMs, such as the PRe-
MiuM package in R [12], this currently only works for 
profile regression, or if a DPMM is used as a joint model 
for the response and predictors. There is published work 
exploring ways to handle missing data in prediction mod-
els when the missingness mechanism is MNAR (see e.g. 
[39, 42]), which may be relevant for other future applica-
tions. One potential advantage of separating the response 
model from the predictor distribution model is that cut-
ting-edge treatment selection approaches such as Bayes-
ian Causal Forests [43] could be used for the former, 
alongside a DPMM for the latter, but this would require 
more methodological development.

As a final note, we found that the DPMM structure 
employed here did a good job of capturing the covari-
ate distribution without overfitting (Fig.  1 and Supple-
mentary Fig. S4), but it is worth considering that there 
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are many alternative ways to specify joint distributions 
with dependency structures amongst the predictors 
which may be applicable in other situations (see [44] for 
a review).

Conclusion
In this work, we develop a hierarchical joint model using 
a spline-based treatment selection model for type 2 dia-
betes, alongside a DPMM as a flexible way of modelling 
the complex multivariate distribution of predictor varia-
bles. This facilitates both model inference and prediction 
in the presence of incomplete information. The inclusion 
of the DPMM in the joint model unlocks information that 
can be used by practitioners during the decision-making 
process. This modelling technique is being applied in 
treatment selection models for type 2 diabetes but could 
provide benefits to other types of prediction models.
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