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Abstract 

Background Objective prognostic information is essential for good clinical decision making. In case of unknown dis-
eases, scarcity of evidence and limited tacit knowledge prevent obtaining this information. Prediction models can be 
useful, but need to be not only evaluated on how well they predict, but also how stable these models are under fast 
changing circumstances with respect to development of the disease and the corresponding clinical response. This 
study aims to provide interpretable and actionable insights, particularly for clinicians. We developed and evaluated 
two regression tree predictive models for in-hospital mortality of COVID-19 patient at admission and 24 hours (24 h) 
after admission, using a national registry. We performed a retrospective analysis of observational routinely collected 
data.

Methods Two regression tree models were developed for admission and 24 h after admission. The complexity 
of the trees was managed via cross validation to prevent overfitting. The predictive ability of the model was assessed 
via bootstrapping using the Area under the Receiver-Operating-Characteristic curve, Brier score and calibration 
curves. The tree models were assessed on the stability of their probabilities and predictive ability, on the selected vari-
ables, and compared to a full-fledged logistic regression model that uses variable selection and variable transforma-
tions using splines. Participants included COVID-19 patients from all ICUs participating in the Dutch National Intensive 
Care Evaluation (NICE) registry, who were admitted at the ICU between February 27, 2020, and November 23, 2021. 
From the NICE registry, we included concerned demographic data, minimum and maximum values of physiological 
data in the first 24 h of ICU admission and diagnoses (reason for admission as well as comorbidities) for model devel-
opment. The main outcome measure was in-hospital mortality. We additionally analysed the Length-of-Stay (LoS) 
per patient subgroup per survival status.

Results A total of 13,369 confirmed COVID-19 patients from 70 ICUs were included (with mortality rate of 28%). 
The optimism-corrected AUROC of the admission tree (with seven paths) was 0.72 (95% CI: 0.71–0.74) and of the 
24 h tree (with 11 paths) was 0.74 (0.74–0.77). Both regression trees yielded good calibration and variable selec-
tion for both trees was stable. Patient subgroups comprising the tree paths had comparable survival probabilities 
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Background
Objective prognostic information describing the prob-
ability of survival for patients may inform intensivists in 
improving triage before the admission and proportional-
ity of treatment during the admission [1]. The time-lim-
ited trial (TLT) has been proposed as a practical approach 
to establish the goals of intensive care unit (ICU) care 
when the benefits of ICU interventions are uncertain 
[2]. This seemed especially relevant during the pandemic 
COVID-19 surges when ICU resources were scarce [3].

When objective prognostic information is not available, 
intensivists can only estimate survival probabilities based 
on scarcely available evidence, as well as on tacit knowl-
edge relying on variables such as age, the number and 
severity of comorbidities, and frailty, which are based on 
experiences from the past. In case of a pandemic with an 
unknown disease, it is not known if general knowledge, 
for instance based on age is still valid. Even more so, since 
the pandemic rapidly evolved (fast development of differ-
ent variants of the virus, and introduction and fast devel-
opment of new treatment guidelines and vaccination), it 
is also unknown how stable the scarce objective prognos-
tic information is over time.

Objective prognostic information can be obtained with 
prediction models. Such models vary from relatively sim-
ple models that are easily interpretable (e.g., decision and 
regression trees) to complex but often hard-to-interpret 
models (e.g., neural networks). This study aims to provide 
interpretable and actionable insights, particularly for cli-
nicians. This immediate clinical application of our study 
required that the developed models must be easily inter-
pretable, used only variables that are robust and are in 
the eyes of clinicians understandable, and did not require 
a computer to provide the predictions. This has led us 
to rely on a simple tree-based prediction approach that 
provides predictions and insights into high-risk groups 
[4]. A tree model can also be used to define patient sub-
groups corresponding to the tree paths (i.e., from tree 
root to each leaf ) and containing those patients fulfill-
ing the conditions (e.g., on age, number of comorbidities, 
APACHE score, etcetera) on that path.

We aimed to assess in-hospital survival probabili-
ties of COVID-19 patients admitted to the ICU by 

using regression trees and inspected the correspond-
ing COVID-19 subgroups. Additionally, we analysed (1) 
the Length-of-Stay (LoS) per subgroup per survival sta-
tus, and (2) the stability of the discovered subgroups in 
terms of the survival probabilities over the six different 
COVID-19 surges in The Netherlands.

Methods
Population
This study used prospectively collected data on patients 
admitted between February 27 2020 and November 
23, 2021 with confirmed COVID-19 to Dutch ICUs, 
extracted from the Dutch National Intensive Care Evalu-
ation (NICE) registry [5]. The NICE dataset contains, 
amongst other items, demographic data, minimum and 
maximum values of physiological data in the first 24 h of 
ICU admission, diagnoses (reason for admission as well 
as comorbidities), ICU as well as in-hospital mortality 
data and length of stay. The data collection takes place in 
a standardized manner according to strict definitions and 
stringent data quality checks to ensure high data quality. 
The registry did not include information on COVID-19 
vaccination status. The (number of ) chronic comorbidi-
ties include: (1) immunological insufficiency or AIDS; (2) 
chronic renal failure or chronic dialysis; (3) respiratory 
failure or COPD; (4) neoplasm or hematologic malig-
nancy; (5) cardiovascular insufficiency; (6) liver cirrhosis; 
(7) diabetes. We included patient data that were available 
within the first 24 h after admission.

Patient inclusion
Patients were considered to have COVID-19 when either 
the RT-PCR of their respiratory secretions was positive 
for SARS-CoV-2, or (during the early surges when RT-
PCR tests had limited availability), when their CT-scan 
was consistent with COVID-19 (i.e. a CO-RADS score 
of ≥4 in combination with the absence of an alternative 
diagnosis) [6].

Outcome measurements
The primary outcome of this study was in-hospital mor-
tality. During the peaks of COVID-19 there was a short-
age of ICU beds in some hospitals and many patients 

as the full-fledged logistic regression model, survival probabilities were stable over six COVID-19 surges, and sub-
groups were shown to have added predictive value over the individual patient variables.

Conclusions We developed and evaluated regression trees, which operate at par with a carefully crafted logistic 
regression model. The trees consist of homogenous subgroups of patients that are described by simple interpretable 
constraints on patient characteristics thereby facilitating shared decision-making.

Keywords Decision rules, Decision and regression trees, Prediction model, Intensive care, COVID-19, In-hospital 
mortality, Registry, Observational data
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were transferred to other ICUs. For transferred patients 
we could follow their transfers through the Netherlands 
or Germany (because all Dutch ICUs participate in the 
used registry) and used the survival status of the last hos-
pital the patient was admitted to during one and the same 
COVID-19 episode. Additionally, we analysed as second-
ary outcome the hospital and ICU Length-of-Stay (LoS) 
per subgroup per survival status.

Model development
Decision and regression tree-based models are easily 
interpretable, non-parametric prediction models. They 
allow for complex non-linear relationships between pre-
dictors and outcomes, can handle missing values [7], and 
variable selection forms part of the learning algorithm. 
We developed two regression tree models, one with only 
admission data and one with first 24-hours (24 h) data. 
Supplementary Table S7 includes an overview of the used 
variables contained in the admission and 24 h datasets, 
respectively. We relied on the regression tree mechanism 
to impute missing values, and hence no imputation was 
attempted beforehand. The tree consists of nodes (patient 
subgroups) and branches (constraints on variable val-
ues). The entire patient group forms the top node and is 
iteratively split into two nodes (subgroups) until a prede-
fined stopping criterion, e.g., depth of the tree or mini-
mal subgroup size. The further working of decision trees 
is explained in Supplementary Text S1. Throughout the 
paper, we use the term subgroup to denote a path in the 
tree from top (root) to bottom (leaf ), corresponding with 
a group of patients that fulfil the conditions on that path. 
The subgroup is associated with a survival probability 
(this is the proportion of survivors within the group). To 
avoid overfitting, the complexity of the tree (i.e., its depth 
and hence its size) was determined by finding the com-
plexity that corresponds to the minimal 10-fold cross-
validated error plus its standard deviation, akin to what 
we did in [4]. This complexity was then used to fit the 
final tree on the whole dataset. Limiting the tree’s com-
plexity also means that not all available variables need to 
be chosen in the tree.

Model evaluation
We used bootstrapping to evaluate the predictive per-
formance of both trees on discrimination using the Area 
under the Receiver-Operating-Characteristic curve, 
(AUROC) curve, and on prediction accuracy by means 
of the Brier score (i.e., the mean squared error of the 
prediction). We also inspected calibration with calibra-
tion curves. Internal model validation of the AUROC 
and Brier measures was based on 200 bootstrap samples 
and 95% confidence intervals were computed from the 

resampling distribution with percentile intervals. Cali-
bration curves were based on 10-fold cross validation.

We did post hoc validation analyses in which we tested 
both trees on a dataset including patients up to January 
1st, 2023.

Stability of variables selected in the tree
In the 200 bootstrap samples of the model development 
procedure, we counted the times that a variable was 
selected in the corresponding bootstrap trees. We then 
compared the resulting variable frequency with variables 
appearing in our final trees.

Subgroup analysis
To get insight into the behaviour of subgroups we per-
formed the following calculations on them:

1. We analysed the Length-of-Stay (LoS) per patient 
subgroup per survival status for ICU and hospital, 
because ICU LoS of COVID-19 patients tends to be 
generally higher, and longer treatment time is accept-
able if survival chances are sufficiently high.

2. Although regression trees may be easily interpret-
able, they may not be stable over time. Therefore, we 
computed and compared the survival probabilities 
for each patient subgroup for each COVID-19 surge. 
Table 1 overviews the time periods of the COVID-19 
surges in The Netherlands.

3. Since regression trees may not perform as well as 
standard crafted parametric regression models and 
logistic regression is the most commonly used pre-
diction model in intensive care, we developed a full-
fledged logistic regression (LR) model and compared 
probabilities of the regression tree with the predic-
tions of the LR model. Parameters used for both trees 
and logistic regression were kept the same, e.g., the 
model was trained with the same data, and the same 
performance measures were used. For this analysis 
we used one imputation using chained eqs [8]. When 

Table 1 Overview of dates for the COVID-19 surges in The 
Netherlands

Surge From To

1 1 February 2020 15 May 2020

0 (in between) 16 May 2020 30 September 2020

2 1 October 2020 1 December 2020

3 1 December 2020 31 January 2021

4 1 February 2021 1 July 2021

5 1 July 2021 30 September 2021

6 1 October 2021 23 November 2021
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the continuous variables had a non-monotonic asso-
ciation with the outcome they were transformed by 
restricted cubic splines. The best predictors were 
selected with a backward AIC (Akaike Information 
Criterion) variable selection procedure. We obtained 
per patient subgroup the mean, median, and 1st and 
3rd quartiles of the LR predictions.

4. We assessed the added predictive performance of 
subgroups. Hereto we added a new variable to the 
LR model described above indicating the subgroups 
to which a patient belongs. We performed variable 
selection using the AIC to inspect whether this vari-
able would survive the variable selection. In addition, 
we used ANOVA to test whether the LR model with 
the subgroup variable was significantly better than 
without the variable.

Statistical analysis
To analyse the data, we used the statistical environment R 
version 3.6.1. We used the MICE package for imputation, 
the MASS package for stepwise model selection, and the 
Rpart package for recursive partitioning (decision tree). 
The R packages are available for download from https:// 
cran.r- proje ct. org/ web/ packa ges/.

Results
Study population
A total of 13,369 confirmed COVID-19 patients from 
70 ICUs were included; 3726 patients (28%) died during 
their hospital stay. Table  2 shows the descriptive sum-
mary statistics of the patient population stratified by 
hospital survival state. Compared to survivors, the non-
survivors were older (69 vs 60 years, p < 0.001) more often 
male (73.5% vs 67.3%, p < 0.001), had more comorbidities 
and a much higher APACHE II score (73 vs 57 points, 
p < 0.001).

Model development
Figure 1 shows the learned regression tree based on data 
that were available at admission. We found that two vari-
ables (age and number of chronic comorbidities) were 
selected, and that age is at the root (top) of the tree, 
which can be understood as the most important vari-
able in the population. Patients from 78 years on have 
the worst chance to survive (41%). Patients younger than 
59 years and with at most one comorbidity have the best 
chance to survive (91%). These worst and best survival 
probabilities differ considerably from the population sur-
vival average of 72%.

The regression tree based on data that were available 
24 h after admission is included in Fig.  2. We observe 

Table 2 Descriptive statistics of baseline characteristics of the study population stratified by hospital survival state

Survived hospitalization Deceased during 
hospitalization

P-value

Number of patients 9643 3726

Age (mean (SD)) 59.9 (12.1) 68.59 (9.0) < 0.001

Male (%) 6486 (67.3) 2740 (73.5) < 0.001

BMI (mean(SD)) 29.8 (5.6) 28.96 (5.5) < 0.001

Chronic diagnosis

 Respiratoir insufficiency 1097 (11.4) 710 (19.1) < 0.001

 Renal insufficiency 270 (2.8) 347 (9.3) < 0.001

 Chirrosis 25 (0.3) 32 (0.9) < 0.001

 Malignancy 171 (1.8) 64.8 (1.7) < 0.001

 Immunological insufficiency 714 (7.4) 524 (14.1)

 Cardiovasculair insufficiency 103 (1.1) 105 (2.8) < 0.001

Number of comorbidities (mean (SD)) 0.44 (0.7) 0.76 (0.9) < 0.001

Admission type N(%) 0.31

 Medical 9457 (98.3) 3668 (98.7)

 Urgent surgery 114 (1.2) 31 (0.8)

 Elective surgery 49 (0.5) 18 (0.5)

 Missing admission type or died before ICU admission 23 (3.6) 9 (0.2)

Mechanical ventilated in first 24 hrs of ICU admission 5672 (58.8) 2638 (70.8) < 0.001

APACHE III score 56.57 (18.3) 72.52 (23.8) < 0.001

ICU mortality N(%)

In-hospital mortality N(%) 0 (0) 3726 (100)

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
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that the 24 h tree is more specific because it contains 
more complex subgroups; age is included in both trees, 
but the number of comorbidities is not; and in the 24 h 
tree the APACHE score and maximum creatinine level 
(both not available at admission) are included as most 
important variables after age.

Model evaluation
The optimism-corrected AUROC of the admission tree 
was 0.72 (95%CI: 0.71–0.74), which means the model 
yielded acceptable discrimination. The admission 
tree yielded a Brier score of 0.175 (0.171–0.179). The 
calibration curve for the admission tree is included in 
Fig.  3, showing good calibration (curve closely follows 
the ideal curve).

For the 24 h tree, the optimism corrected AUROC 
was 0.74 (0.74–0.77), which means that also this model 
yielded fair discrimination. The 24 h tree yielded a Brier 
score of 0.168 (0.163–0.171), which is low and thus 
indicative of good calibration. The calibration curve for 
the 24 h tree is included in Supplementary Figure s1, 
also showing good calibration.

In the post hoc validation analyses, the admission tree 
achieved an AUROC of 0.71 and for the 24 h tree, the 
AUROC was 0.75.

Stability of variables selected in the tree
For both the admission and 24 h trees, variable frequen-
cies over the bootstrap samples are included in Table  3 
and Supplementary Table s4, respectively. The variables 
in the trees (0 h: patient age, number of chronic comor-
bidities; 24 h: patient age, APACHE score, and others) 
were selected in most samples. The next most frequently 
included variables were selected with a much lower 
frequency.

Subgroup analysis

1. The average length of stay (LoS, in days) is shown in 
Table  4 (0 h) and Supplementary Table s3 (24h) per 
patient subgroup per survival status for ICU and hos-
pital, respectively. (For convenience of referral, sub-
groups are numbered by tree leaf from left to right 
in the regression trees; see also Supplementary Table 
s1 and Supplementary Table s2). For the admission 

Fig. 1 Regression tree for survival (#ch.com is the number of chronic comorbidities) based on patient data available at admission. Each node shows 
the survival probabilities in that group as well as the number of patients in that group. Survival probabilities include a 95% confidence interval 
based on the percentile bootstrap method on 200 samples



Page 6 of 11Schut et al. BMC Medical Informatics and Decision Making            (2024) 24:7 

tree, we see that for surviving patients, subgroup 1 
has the shortest ICU LoS (11.7 days) and subgroup 
2 has the longest ICU LoS (20.6 days). For non-sur-
viving patients, these are subgroup 1 (shortest ICU 
LoS: 12.3 days) and 6 (longest ICU LoS: 18.4 days), 
respectively. In general, ICU LoS varies between 11 

and 25 days, and hospital stay is at least 4 days and at 
most 25 days after ICU discharge.

2. Within each leaf (patient subgroup), each COVID 
surge had a survival probability that was generally 
comparable to the survival probability in the leaf as 
a whole. Still, for leaves with smaller subgroup sizes, 

Fig. 2 Regression tree for survival based on patient data available 24 h after admission. Each node shows the survival probabilities in that group 
as well as the number of patients in that group. Survival probabilities include a 95% confidence interval based on the percentile bootstrap method 
on 200 samples

Fig. 3 Calibration curve for the regression tree based on patient data available at admission
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there was a larger variation in probabilities over the 
surges. The survival probabilities over all surges are 
included in Table 5 and Supplementary Table s5.

3. The 0 h and 24 h logistic regression (LR) models 
are reported in two other articles. The LR model at 
admission (0 h) is included in Supplementary Table 4 
of [9] and the LR model at 24 h is included in Sup-
plementary Table s2 of [10]. The probabilities of the 
regression tree are in good agreement with the means 
and medians of the predictions of the LR model. The 

LR model survival probabilities for all subgroups are 
included in Table 6 and Supplementary Table s6.

4. For both admission and 24 h data, the models with 
the ‘subgroup’ variable were significantly better than 
the models without this variable. Also, this ‘subgroup’ 
variable was selected after backward selection based 
on the AIC. This means that the subgroups have 
additional predictive value on the logistic regression 
model without this variable.

Discussion
Findings
In our analyses we used regression trees to show com-
binations of predictors that affect the patient’s survival 
chances. These trees show that age in isolation is a poor 
prognosticator of in-hospital mortality and is only use-
ful in very advanced age (age > = 78 years). However, 
the combination of age in combination with chronic 
comorbidities does have a clear prognostic value. The 
admission tree shows that for patients aged > = 59, the 
number of comorbidities has a major impact on the sur-
vival chances: with one comorbidity, the survival prob-
ability is 0.79 but with multiple (> = 2) comorbidities, 
survival chances drop to 0.63. On the other hand, the 

Table 3 Selected variables in number of bootstraps. Analysed 
model was based on admission data

Variable Frequency

Age 200

Number of comorbidities 198

Mechanical ventilated at admission 78

Surge 18

Gender 17

Admission source 10

Immunological Insufficiency 7

BMI 6

Hospital length of stay before ICU admission 5

Referring specialty 3

Table 4 Average Length-of-Stay (LoS, in days) in ICU and hospital per group per survival status. The hue is relative per column and is 
from shortest stay (white) to longest stay (red). Analysed model was based on admission data
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24 h tree shows that patients aged < 59 with an APACHE 
score < 72, have the highest survival probability (.92).

Regarding ICU and hospital length-of-stay (LoS), 
COVID-19 patients tend to stay long in ICU [11]. Such 
longer treatment time is deemed acceptable if the 
chances on patient survival are higher. We analysed the 
ICU and hospital LoS per patient subgroup per survival 
status and confirmed these rather long ICU stays: the 
average ICU LoS was 18 days and the average hospital 
LoS was 30 days. However, we could not discern a par-
ticular subgroup with an exceptionally short/long ICU/
hospital LoS.

Analysing the regression tree model over six (chrono-
logical) COVID-19 surges over a period of 1.5 years 
showed that the survival probabilities of the subgroups 
were generally stable. We only observed larger probabil-
ity variations for smaller subgroups. This stability means 
that despite the changes in triage decisions, treatments 
and developments of COVID-19 itself in the analysed 
time period, the regression tree models were not very 
sensitive to such dynamics [12].

As for the potential effectiveness of time-limited trial 
(TLT) admissions, we did obtain a regression tree when 
using data available at 24 h after admission that was more 
pronounced than when using data available at admission, 
but the difference in predictive performance between 
these trees was small and expectedly not clinically rele-
vant. Still, the 24 h regression tree itself showed selection 
of the most informative predictors (i.e., age, APACHE 

score, highest creatinine value, lowest platelets count) 
and combinations of these predictors.

Related work
Many prognostic models of mortality among COVID-
19 infected patients have been published, and an exten-
sive overview of such model studies is given in [13]. The 
overview shows that the predictive performance of these 
models is fair to excellent, but many studies lack tempo-
ral validation. An exception to this is [14] that does per-
form temporal model validation (albeit not over different 
surges but more traditional in the sense of using different 
time periods for model training and testing, respectively), 
but it has a relatively small population size (n = 679) and 
the timing of the prediction is on day 7 after admission, 
which is a later-in-disease-course-prediction than in our 
study. We did validate our models extensively over the 
different COVID-19 surges. And while there have been 
(national) initiatives to set up surveillance platforms to 
identify temporal trends and COVID-19 risk factors with 
patient-level data, e.g., [15], these studies tend to focus 
on trends in descriptive data and on the mere impromptu 
design and setup of such platforms. We looked at tempo-
ral validation of predictive models and used a quality reg-
istry that has already been in existence for over 25 years 
[5].

Other studies have also used machine learning algo-
rithms for predicting ICU admission and mortality 

Table 6 Variance of the survival chances in the leaves of the tree according to the best logistic regression (LR) model. Analysed model 
was based on admission data

Group N Survival chance in group (%) Average LR model prediction in 
group (%)

Median LM model prediction 
and 1st and 3d quantiles (%)

1 832 41.2 42.4 44.8 [36.2–52.5]

2 1392 48.6 49.2 51.0 [42.1–58.6]

3 1551 60.3 61.7 62.6 [57.4–67.1]

4 2280 66.4 66.3 69.4 [61.9–74.1]

5 594 63 67.5 68.7 [59–77.7]

6 2583 78.8 77.8 79.3 [74.5–82.9]

7 4137 91 90.1 90.7 [86.8–94.5]

Table 5 Survival probabilities over all surges. Analysed model was based on admission data

Group Surge Average Stdev
0 1 2 3 4 5 6

1 0.49 0.28 0.37 0.47 0.44 0.68 0.42 0.45 0.12

2 0.42 0.49 0.49 0.42 0.52 0.57 0.55 0.49 0.06

3 0.57 0.59 0.62 0.55 0.64 0.55 0.52 0.58 0.04

4 0.69 0.64 0.63 0.64 0.71 0.65 0.58 0.65 0.04

5 0.59 0.67 0.61 0.55 0.68 0.60 0.54 0.60 0.05

6 0.77 0.77 0.78 0.80 0.80 0.79 0.67 0.77 0.05

7 0.93 0.89 0.89 0.90 0.92 0.93 0.94 0.91 0.02
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among COVID-19 patients. So did [16] compare the per-
formance of 18 machine learning algorithms and [9] used 
automated machine learning with 20 algorithms for ICU 
triage prediction of in-hospital mortality of COVID-19 
patients. Still, since our objective was to deliver simple 
interpretable models that could be easily used in practice, 
more advanced machine learning methods were not in 
scope for this study.

Regarding the development of such practical models, 
there still have been several studies with similar aims. 
In [17] simple and valid models were developed for pre-
dicting mortality and need for intensive care unit (ICU) 
admission in patients who present at the emergency 
department (ED) with suspected COVID-19; however, 
their use of regression models prevents the straightfor-
ward and automatic discovery of combinations of predic-
tors like our decision tree model does. Likewise, in [18] a 
pragmatic risk score is developed and validated to predict 
mortality in patients admitted to hospital with COVID-
19. Still, the study includes (tree-based) machine learning 
methods to account for complex underlying interactions. 
However, the models have not been temporally validated, 
like we do over different COVID-19 surges. Finally, one 
study [19] used machine learning on routinely collected 
clinical data and assess temporal patterns with a meth-
odology that was very comparable to ours. However, they 
aimed at identifying biologically distinct sub-phenotypes 
while we focused on patient characteristics.

In this work we focused on regression trees because 
the aim and scope of this study is to provide insight into 
the task at hand, and to comply with the stated model 
requirements. If, however, performance was the most 
important requirement then non-parametric models 
such as random forests and XGB models could be investi-
gated. However, these models would require a computer 
to provide the predictions.

Strengths
We developed simple but effective tree models that 
deliver transparent decision rules that could be used for 
triage purposes. The dataset that we used was extensive 
with national coverage of over almost 2 years.

We used regression trees that predict the probability 
of an event which are more useful than trees that deter-
ministically predict the event (i.e., classification), because 
deterministic predictions communicate a single outcome 
but with no information about risk.

Limitations
This study has some limitations. Firstly, the used reg-
istry data did not contain certain information that may 
have been relevant. We had no information on vaccina-
tion status, which could have influenced the stability 

of the tree at the later surges. We also did not include 
information on the COVID-19 virus variants, e.g., alpha, 
delta and omicron. Secondly, we did not have access to 
data on quality of life (QoL) in the survivors while this 
outcome measure is of utmost importance. For criti-
cally ill old intensive care patients, the quantification of 
health related QoL as suggested by [20] can be used on 
admission to inform patients of unfavourable qualita-
tive outcomes if such patients survive. Finally, a limita-
tion of trees is that all rules use the same variable that 
is in the top of the tree. We used the following analysis 
to give a chance to other variables to be selected (results 
not shown). After learning the original tree, we removed 
the data of the patients in the highest risk group and 
learned another tree on the remainder of the data. We 
repeated this procedure and upon completion of learn-
ing the trees, we identified the patient subgroups from all 
trees and compared these groups with the groups of the 
original tree. This analysis resulted in a series of trees that 
together had the same groups as our original tree, hence 
the impact of this limitation is small.

Implications
The simple-to-interpret regression trees seem to be valu-
able in discussions with patients and their family. This 
study showed that these models remain stable over time 
which is an important feature. The results may also be 
useful for triage, but not solely based on this study: fur-
ther study on validation, robustness, feasibility, impact et 
cetera is needed then.

Future work
Further and continuous development and validation of 
the regression trees (and alternative models like Ran-
dom Forests and eXtreme Gradient Boosting models) 
form future work. Likewise, different disease variations, 
changes in treatment and/or triage, and the availability 
of more patient characteristics, e.g., vaccination status, 
will affect the trees and their predictive performance 
and require model revalidation. Also, in case of future 
COVID-19 surges, the trees need to be validated to con-
firm the model stability we found over the past six surges.

Conclusion
We used registry patient data to develop and evaluate 
two regression tree predictive models for in-hospital 
survival of COVID-19 patient at admission and 24 h 
after admission. The trees achieved acceptable predic-
tive performance (fair discrimination, good accuracy and 
calibration, on par with full-fledged logistic regression 
models) and were generally stable (in terms of selected 
variables and over the COVID-19 surges). We analysed 
the regression trees to obtain subgroups of patients that 
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have the same survival chances, and which are described 
by constraints on the predictors (patient characteristics) 
and that can be interpreted as clinical decision rules and 
used in shared decision making.
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