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Abstract 

Background Invasive detection methods such as liver biopsy are currently the gold standard for diagnosing liver 
cirrhosis and can be used to determine the degree of liver fibrosis and cirrhosis. In contrast, non-invasive diagnostic 
methods, such as ultrasonography, elastography, and clinical prediction scores, can prevent patients from inva-
siveness-related discomfort and risks and are often chosen as alternative or supplementary diagnostic methods 
for liver fibrosis or cirrhosis. However, these non-invasive methods cannot specify the pathological grading and early 
diagnosis of the lesions. Recent studies have revealed that gut microbiome-based machine learning can be utilized 
as a non-invasive diagnostic technique for liver cirrhosis or fibrosis, but there is no evidence-based support. Therefore, 
this study conducted a systematic review and meta-analysis for the first time to investigate the accuracy of machine 
learning based on the gut microbiota in the prediction of liver fibrosis and cirrhosis.

Methods A comprehensive and systematic search of publications published before April 2th, 2023 in PubMed, 
Cochrane Library, Embase, and Web of Science was conducted for relevant studies on the application of gut microbi-
ome-based metagenomic sequencing modeling technology to the diagnostic prediction of liver cirrhosis or fibrosis. 
A bivariate mixed-effects model and Stata software 15.0 were adopted for the meta-analysis.

Results Ten studies were included in the present study, involving 11 prediction trials and 838 participants, 403 
of whom were fibrotic and cirrhotic patients. Meta-analysis showed the pooled sensitivity (SEN) = 0.81 [0.75, 0.85], 
specificity (SEP) = 0.85 [0.77, 0.91], positive likelihood ratio (PLR) = 5.5 [3.6, 8.7], negative likelihood ratio (NLR) = 0.23 
[0.18, 0.29], diagnostic odds ratio (DOR) = 24 [14, 41], and area under curve (AUC) = 0.86 [0.83–0.89]. The results 
demonstrated that machine learning methods had excellent potential to analyze gut microbiome data and could 
effectively predict liver cirrhosis or fibrosis. Machine learning provides a powerful tool for non-invasive prediction 
and diagnosis of liver cirrhosis or liver fibrosis, with broad clinical application prospects. However, these results need 
to be interpreted with caution due to limited clinical data.

Conclusion Gut microbiome-based machine learning can be utilized as a practical, non-invasive technique 
for the diagnostic prediction of liver cirrhosis or fibrosis. However, most of the included studies applied the random 
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forest algorithm in modeling, so a diversified prediction system based on microorganisms is needed to improve 
the non-invasive detection of liver cirrhosis or fibrosis.

Keywords Gastrointestinal microbiome, Prediction/diagnosis, Liver cirrhosis/fibrosis, Meta-analysis

Introduction
Liver fibrosis is a pathologic change characterized by an 
excessive accumulation of liver fibrous tissues result-
ing from multiple pathogenic factors, including alcohol, 
medicine, and the hepatitis virus. The unceasing progres-
sion of liver fibrosis will cause liver cirrhosis [1], which 
is a dynamic progress [2]. Unlike liver fibrosis, liver cir-
rhosis is non-reversible and often causes a poor outcome 
in cirrhotic patients [3]. Most patients with liver cirrho-
sis are clinically asymptomatic before the decompensa-
tory stage, so the disease goes undetected and cannot be 
promptly diagnosed [4]. Therefore, early identification of 
liver fibrosis is significant. Presently, the gold standard 
for diagnosing fibrosis is still liver biopsy. However, this 
invasive detection method may cause such complications 
as bleeding, biliary peritonitis, and pneumothorax dur-
ing operation; its histologic assessment may be affected 
by high sampling-rate errors [5, 6]. Additionally, the liver 
biopsy must be performed in strict accordance with rel-
evant operation specifications, and its implementation 
often depends on hospitals’ medical conditions and tech-
nological levels. Consequently, this approach cannot be 
used for large-scale disease screening or assessment in 
routine care. Although various imaging methods can, to a 
certain extent, show the grade of liver fibrosis and cirrho-
sis with relatively reliable accuracy [7], they cannot pre-
cisely identify early liver fibrosis [8, 9]. Furthermore, they 
have some shortages in diagnosis. For instance, magnetic 
resonance elastography (MRE) requires expensive equip-
ment and specialized knowledge; it sets varying cut-off 
values of diagnostic data for liver fibrosis caused by dif-
ferent causes. Transient elastography (TE) is less accurate 
in identifying patients with such complications as ascites 
and narrow intercostal space [10]. As a result, more 
accurate non-invasive techniques are urgently needed to 
address the clinical demand for early detection and sever-
ity assessment of liver fibrosis and cirrhosis.

The gut microbiota, a new testing target, has been 
adopted to diagnose liver fibrosis or cirrhosis in recent 
years. Gut microbiota analysis, combined with other 
non-invasive tests, such as Fib-4 and the NAFLD fibro-
sis score, can detect and stage liver fibrosis or cirrhosis 
and identify patients at a high risk of progressing to the 
advanced stage. A previous study found that gut micro-
biome analysis may be a potential method for diagnos-
ing liver-related diseases with high accuracy [11]. For 

example, patients with advanced liver fibrosis have 
fewer clostridium and ruminococci, while cirrhotic 
patients have more prevotella [12–14]. During the 
progression of liver fibrosis and cirrhosis, the content 
of escherichia coli varies before portal hypertension, 
suggesting that changes in gut microbial are helpful 
for diagnosing liver fibrosis [15]. In addition, the gut 
microbiome may play a key role in the disease pro-
gression of liver fibrosis or cirrhosis. Muegg et al. [13] 
found that the α diversity in the gut microbiota signifi-
cantly declined with the progression of liver cirrhosis, 
indicating that the changes in the gut microbiota may 
be closely correlated with the severity of liver cirrhosis. 
Walker et al. [15] discovered that intrahepatic cholesta-
sis during the progression of liver cirrhosis may be cor-
related with abundant Gram-negative bacteria, a kind 
of Salmonella.

Changes in the gut microbiota play a crucial role in 
developing liver fibrosis or cirrhosis [16]. Recently, the 
development of machine learning (ML) techniques 
based on gut microbiome has brought prospects for 
liver fibrosis and cirrhosis prediction. Common ML 
algorithms include random forest (RF), logistic regres-
sion (LR), decision trees (DT), and support vector 
machines (SVM). RF, compared to other algorithms, is 
more advantageous due to high accuracy, a lower risk of 
over-fitting, automatic selection of important features, 
and efficient processing of large-scale data sets, which 
can improve the accuracy and reliability of the diagnos-
tic prediction and reduce the possibility of misdiagnosis 
[17, 18]. Traditional diagnostic methods for liver dis-
ease, such as liver puncture, are usually invasive, whereas 
ML-based intestinal flora analysis only requires patients’ 
stool samples and is noninvasive, reducing their discom-
fort and risks. In addition, it has the potential to iden-
tify early signs of liver cirrhosis or fibrosis, facilitate early 
intervention and treatment, and reduce the risk of dis-
ease progression and complications. Meanwhile, it can 
conduct personalized diagnoses based on each patient’s 
intestinal microbiome characteristics, helping to develop 
tailored treatment plans given individual differences 
[19]. Therefore, this study, for the first time, aims to 
assess the efficiency of the gut microbiome-based ML 
model in diagnosing liver cirrhosis and fibrosis, pro-
viding new insights into the accurate and non-invasive 
detection of liver fibrosis and cirrhosis.
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Materials and methods
This meta-analysis was conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses Statement. The study protocol was 
designed in the INPLASY - International Platform of 
Registered Systematic Review and Meta-analysis Proto-
cols (INPLASY202250133).

Literature search
A systematic search of publications published before 
April 2th, 2023 in PubMed, Cochrane, Embase, and Web 
of Science was conducted to collect studies on the appli-
cation of gut microbiome-based metagenomic sequenc-
ing modeling technology to diagnostic prediction of liver 
cirrhosis or fibrosis. Search terms mainly included Gas-
trointestinal Microbiome [Mesh], Liver Cirrhosis [Mesh], 
and Machine Learning [Mesh]. The detailed search strat-
egy is presented in Table S1.

Literature inclusion and exclusion criteria
The inclusion criteria were as follows:

(1) Study type: case-control study, cohort study, nest 
case-control study, and case-cohort study;

(2) Studies that completely constructed a ML model 
based on intestinal microorganisms for the diagno-
sis of liver fibrosis or cirrhosis;

(3) Studies without external validation were also 
included in our systematic review;

(4) Studies reported in English.

Exclusion criteria were as follows:

(1) Study type: meta-analysis, review, guide, and expert 
opinion;

(2) Although a ML model for diagnosing liver fibrosis 
and cirrhosis was constructed in original studies, its 
modeling variables did not include intestinal micro-
organisms;

(3) Studies that lack the following outcome indicators 
for the prediction accuracy of risk models: ROC, 
c-statistic, c-index, sensitivity, specificity, accuracy, 
recovery rate, precision rate, confusion matrix, 
diagnostic four-grid table, F1 score, and calibration 
curve;

(4) Research on single-factor analysis of diagnostic 
accuracy.

Literature screening and data extraction
The retrieved studies were imported into the EndNote 
software. Duplicate publications were marked automati-
cally and manually and then deleted. Titles and abstracts 
were checked to select potentially eligible studies. Their 

full texts were downloaded and reviewed to select eligi-
ble studies for our systematic review. A basic information 
spreadsheet was developed before data extraction. The 
extracted data mainly involved title, first author, publica-
tion date, study design, nation, diagnostic criteria, sample 
size, cohort, model types, external validation, number of 
types of intestinal microbiota, outcome measures, and 
information on participants such as mean age and gen-
der. The literature screening and data extraction were 
completed independently by two researchers, and their 
results were cross-checked. Any disputes were adjudi-
cated by a third researcher.

Quality assessment
Two researchers (Xiaopei Liu and Dan Liu) performed 
the quality assessment for the ten eligible articles using 
the Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) tool [20]. The QUADAS-2 tool consists of 
four domains: index test, patient selection, flow and time, 
and reference standard. Each domain can be graded as an 
unclear (yellow), high (red), or low (green) risk bias. Like-
wise, the applicability is also graded as unclear, high, or 
low risk in the first three domains [21].

Statistical methods
In a systematic review based on ML, inconsistent mode-
ling parameters in original studies are a primary source of 
heterogeneity. Therefore, the present study used the com-
mand of “Midas” (StataCorp LLC, College Station, TX) 
in Stata 15.0 to fit the bivariate mixed-effects model for 
assessing the sensitivity (SEN), positive likelihood ratio 
(PLR), specificity (SEP), diagnostic odds ratio (DOR), 
and negative likelihood ratio (NLR). Furthermore, we 
calculated estimates with 95% confidence intervals (95% 
CIs), drew the summary receiver operating characteris-
tic curves (SROC), and calculated the area under curve 
(AUC) with 95% CI. Deek’s funnel plot was employed 
to detect publication bias, and Q statistic and  I2 statistic 
were used for the heterogeneity test. An I2 > 50% indi-
cated significant heterogeneity. A value of p less than 0.05 
was considered statistically significant. A value of p more 
than or equal to 0.05 indicated no statistical difference.

Results
Literature retrieval results
Initially, 402 articles were identified in database searches, 
and duplicates were removed using the EndNote soft-
ware. After the titles and abstracts screening, there were 
26 articles left. Based on a full-text review, ten studies 
comprising 11 prediction trials were finally included [22–
31]. The literature selection process is shown in Fig. 1.
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Basic characteristics and quality assessment of included 
literature
This meta-analysis included ten articles involving 11 tri-
als and 838 patients. The main ML algorithm was RF. Five 
trials conducted external validations, and all the included 
trials were considered high quality. The basic characteris-
tics of included trials are presented in Tables 1 and 2. The 
quality assessment results are shown in Fig. 2.

Results of meta‑analysis
Overall statistics of liver fibrosis and cirrhosis
A bivariate random-effects model was employed to 
pool statistics. The results were: SEN = 0.81 (95% CI: 
0.75–0.85), SPE = 0.85 (95% CI: 0.77–0.91), PLR = 5.55 
(95% CI: 3.55–8.66), NLR = 0.23 (95% CI: 0.18–
0.29) (Fig.  3a-c), DOR = 24.39 (95% CI:14.46–41.13) 
and SROC = 0.86 (95% CI: 0.83–0.89). The results 

suggested that the overall diagnostic accuracy was 
high (Fig. 3d).

Summary statistics for liver fibrosis and cirrhosis as well 
as liver biopsy diagnoses
A bivariate random effects model was adopted to pool the 
statistics. The results were as follows: (1) Liver fibrosis: 
SEN = 0.77 (95% CI: 0.69–0.82), SPE = 0.84 (95% CI: 0.71–
0.92), and SROC = 0.80 (95% CI: 0.76–0.83); (2) Liver 
cirrhosis: SEN = 0.84 (95% CI: 0.77–0.891), SPE = 0.85 
(95% CI: 0.74–0.92), and SROC = 0.91 (95% CI: 0.88–
0.93); (3) Liver biopsy: SEN = 0.82(95% CI: 0.76–0.88), 
SPE = 0.87(95% CI: 0.76–0.93), and SROC = 0.89(95% CI: 
0.86–0.92). (Figure S1a-d and Figure S2a, b). The results 
indicated that gut microbiome-based ML was more effi-
cient in diagnosing liver cirrhosis than liver fibrosis. 
Excluding studies with non-liver biopsy diagnosis had no 
significant impact on the original results.

Fig. 1 Flowchart of the literature selection
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Heterogeneity test
The heterogeneity was considered significant  [I2 = 91%, 
(95%CI: 83–100)]. As shown in Fig.  4a, two of the 11 
included trials were located outside the box diagram, 
indicating that these two trials might be the primary 
sources of heterogeneity. To further examine whether 
different diagnostic criteria have an impact on hetero-
geneity, heterogeneity test was performed again after 
excluding non-liver biopsy studies. The results showed 
 I2  = 93, 95% CI = [86–99], as shown in Supplementary 
Fig. S4.

Publication bias
According to Deek’s funnel plot (Fig.  4b), no significant 
publication bias was observed (p = 0.56). This suggested 
that our meta-analysis results were reliable.

Verification for diagnostic efficiency
The posterior probability was calculated according to the 
Fagan diagram (Fig. 4c). If the immediate probability was 
20%, the probability of gut microbiome-based ML for 
diagnosing liver fibrosis and cirrhosis was 58%. If a nega-
tive result was reached, the probability of existing liver 

Table 1 Baseline characteristics

DET Designing Types, DIT Diagnostic Target, NO. TC Number of cirrhosis/fibrosis cases in training cohort, NO. TTC  The total number of cases in the training cohort, 
DM Detection method, ES Enterobacteriaceae species, AM Assessment Method, MRI Magnetic Resonance Imaging, UE Ultrasound Elastography, CT Computed 
Tomography

Author year country DET DIT NO.TC NO.TTC DM ES AM

Caussy 2019 USA cohort study cirrhosis 26 72 16S rRNA 27 Genus MRI

Dong 2020 USA control trial fibrosis 50 75 16S rRNA 26 Genus UE

Chen 2020 CHN control trial cirrhosis 25 97 16S rRNA 32 Genus MRI + CT

Gyu Oh 2020 USA cohort study cirrhosis 27 81 Shotgun metagenomic 37 Genus Liver Biopsy

Loomba 2017 USA cohort study fibrosis 14 86 Whole genome shotgun 37 Genus Liver Biopsy

Lang 1A 2020 USA cohort study cirrhosis 44 73 Shotgun metagenomic 420 Species Liver Biopsy

Lang 1B 2020 USA cohort study fibrosis 29 73 Shotgun metagenomic 420 Species Liver Biopsy

Lang 2 2020 DEU cohort study fibrosis 13 96 16S rRNA 37 Genus Liver Biopsy

Lapidot 2020 ISR control trial cirrhosis 68 95 16S rRNA / Based on histological 
and/or clinical find-
ings

Lee 2020 Kr control trial fibrosis 64 117 16S rRNA 2 Family Liver Biopsy

Schwimmer 2019 USA control trial cirrhosis 87 124 16S rRNA and Metagenomics 3 Phylum Liver Biopsy

Table 2 Baseline characteristics

Sex Male/Female, MT Model type, ROC External Verification (Roc), TN True negative, TP True positive, FN False negative, FP False positive, ODM Overfitting detection 
method

Author Year Sex Age (year) MT ODM ROC TP FP FN TN

Caussy 2019 9/29 65.1 ± 9.8 Random forest / / 22 7 4 39

Dong 2020 19/0 66.2 ± 6.8 Random forest 10-fold cross-validation 0.82 36 9 14 16

Chen 2020 20/5 51.24 ± 6.91 Random forest 10-fold cross-validation / 20 5 5 46

Gyu Oh 2020 5/22 64.74 ± 9.80 Random forest 10-fold cross-validation Italy 
0.89China 
0.88

23 8 4 19

Loomba 2017 2/13 63.4 ± 3 Random forest/ 
Support Vector 
Machines

Separation of training set and test set / 13 4 1 68

Lang 1A 2020 20/24 58.9 (20.2–79.6) Logistic model Leave-One-Out Cross-Validation / 8 9 1 55

Lang 1B 2020 16/13 51.9 (28.8–74.2) Logistic model Leave-One-Out Cross-Validation 0.71 21 5 8 39

Lang 2 2020 8/5 64.0 ± 7.0 Random forest Separation of training set and test set / 12 17 1 66

Lapidot 2020 46/22 65.9 Random forest 20-fold cross-validation / 62 10 6 17

Lee 2020 27/37 58.7 ± 10.7 / / 0.721 48 6 16 101

Schwimmer 2019 62/65 12 ± 10.7 Classification 
Regression Tree/
Decision Tree

10-fold cross-validation / 65 1 22 36
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fibrosis or cirrhosis was 5%. The results indicated that gut 
microbiome-based ML could be remarkably accurate in 
diagnosing liver fibrosis or cirrhosis.

Discussion
Gut microbiota, also known as intestinal flora or intesti-
nal microecosystem, refers to the microbial community 
in the intestines, including bacteria, fungi, viruses, and 
other microorganisms [32]. Researchers have become 
increasingly interested in the association between gut 
microorganisms and liver diseases. That is because the 
liver has the closest correlation with the gut and is easily 
exposed to many bacterial components and metabolites. 
Gut microbes interact and restrict each other to maintain 

the homeostatic balance of intestinal flora. When the 
homeostasis becomes unbalanced, the disordered flora 
can interact with the host immune system through the 
portal vein and bile secretion system, resulting in the 
occurrence and progression of hepatitis, fibrosis, and cir-
rhosis [32, 33]. The changes in the intestinal flora may 
provide novel insights into the exploration of new medi-
cal interventions. Several studies have proved that gut 
microbiota can be a diagnostic and therapeutic target 
for liver diseases [34, 35]. These findings suggest that gut 
microbiome-based ML models have enormous potential 
for the diagnosis of liver fibrosis and cirrhosis. Com-
pared to non-invasive diagnostic methods such as ultra-
sonography, elastography and clinical predictive scoring, 

Fig. 2 Quality assessment of the included studies. Risk bias and applicability concerns graph (a). Risk bias and applicability concerns summary (b). 
The red, yellow, and green colors indicate high, unclear, and low risk, respectively
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gut microbiome-based diagnostic techniques have some 
potential advantages in diagnosing liver fibrosis and cir-
rhosis. Especially, such techniques can provide early bio-
markers to facilitate early diagnosis and intervention, 
whereas traditional methods may be not able to detect 
diseases until they progress to a later stage or symptoms 
appear [19].

Main findings
Ten studies were included in this systematic review, and 
one of them involved two prediction trials. Therefore, 
the present study involved 11 prediction trials and 838 

patients, including 403 patients with liver cirrhosis or 
fibrosis and 435 patients with other diseases. The present 
study showed the gut microbiome-based ML method 
has high sensitivity, specificity, and accuracy in predict-
ing liver fibrosis or cirrhosis (sensitivity: 0.81, specificity: 
0.85, AUC: 0.86). In clinical practice, a high AUC (Area 
Under the Curve) value indicates better predictive per-
formance of the model. However, it is essential to con-
sider sensitivity and specificity along with it. An AUC of 
0.86, a sensitivity of 0.81, and a specificity of 0.85 indicate 
excellent predictive capabilities, leading to improved clin-
ical diagnostic performance. This suggests that machine 

Fig. 3 Forest plot of SEN and SPE for the diagnosis of liver fibrosis and cirrhosis using gut microbiome-based ML (a); Forest plot of likelihood ratios 
for the diagnosis of liver fibrosis and cirrhosis gut microbiome-based ML (b); Forest plot of DOR for the diagnosis of liver fibrosis and cirrhosis using 
gut microbiome-based ML (c); Forest plot of SROC for the diagnosis of liver fibrosis and cirrhosis using gut microbiome-based ML (d). In figure (d), 
the full line represents the SROC curve; numerical circles represent the included prediction trials; the red rhombus indicates the point estimate 
of sensitivity/specificity; and the dotted line indicates the 95% confidence intervals (95% CI: 0.83–0.89)
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learning methods based on gut microbiota show strong 
predictive performance for liver cirrhosis and fibrosis. It 
implies that a machine learning-based gut microbiome 
analysis, as a non-invasive diagnostic approach for liver 
cirrhosis and fibrosis, holds significant clinical applica-
bility and can offer better decision-making support for 
healthcare professionals.

According to the verification results, in the case of liver 
fibrosis or cirrhosis diagnosis based on gut microbes, the 
probability of liver fibrosis or cirrhosis is 85%; otherwise, 
a negative result indicates a 19% chance of liver fibrosis 
or cirrhosis. The results reveal that the gut microbiome-
based ML method is highly precise for diagnosing liver 
fibrosis or cirrhosis. The subgroup analysis by liver cir-
rhosis and fibrosis showed that the SEN, SPE, and SROC 
for liver fibrosis were 0.77, 0.87, and 0.80, respectively; 
the SEN, SPE, and SROC for liver cirrhosis were 0.84, 
0.85, and 0.90, respectively. These results reveal that the 
gut microbiome-based ML method is more accurate in 

diagnosing liver cirrhosis than liver fibrosis. This finding 
is also confirmed by the research of Tien S. Dong et  al. 
[23]. They compared patients with advanced liver fibrosis 
with those with mild liver fibrosis and found that patients 
with advanced fibrosis had obvious microbiota character-
istics, and this result was not affected by the cause of liver 
disease. After adjusting for other covariates, this conclu-
sion is established. The SEN, SPE, and SROC for liver 
biopsy were 0.82, 0.87, and 0.89, respectively. However, 
there was no significant difference between the diagnos-
tic performance of liver biopsy and overall diagnostic 
performance, suggesting that excluding studies with non-
liver biopsy diagnostic criteria had no significant impact 
on the diagnostic performance of gut microbiome-based 
machine learning methods. These results are visualized 
in a histogram (Figure S3), which can intuitively reflect 
their differences.

In contrast, non-invasive diagnostic methods, such as 
ultrasonography, elastography, and clinical predictive 

Fig. 4 Bivariate box plot for the diagnosis of liver fibrosis and cirrhosis using gut microbiome-based ML (a); Deek’s funnel plot for the diagnosis 
of liver fibrosis and cirrhosis gut microbiome-based ML (b); Fagan diagram for the diagnosis of liver fibrosis and cirrhosis using gut 
microbiome-based ML (c). In figure (b), numerical circles represent the included prediction trials; the dotted line represents the regression 
line. In figure (c), the green rhombus represents the prior probability; the full red line represents the probability of the diagnosis of liver fibrosis 
and cirrhosis; the gray dotted line represents the probability of having liver fibrosis or cirrhosis
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scoring systems, protect patients from invasiveness-
related discomfort and risks and are often used as 
alternative or complementary tools for diagnosing liver 
fibrosis or cirrhosis. Elastography has become a pre-
ferred non-invasive imaging technique for the clinical 
assessment of liver fibrosis and cirrhosis. Liver stiffness 
measurement (LSM) provided by elastography is an 
alternative quantitative biomarker for fibrosis and cir-
rhosis burden in chronic liver disease. Elastography can 
be performed with ultrasound or MRI. TE (FibroScan, 
Echosens) is an ultrasound-based imaging technology 
most commonly used to assess fibrosis in patients in 
clinical practice. The AUROC value of TE for cirrho-
sis diagnosis (0.95–0.97) was higher than that for sig-
nificant fibrosis (0.80) [36], which is consistent with the 
results of our subgroup analysis (Supplementary Fig. 
S1). Magnetic resonance (MR) elastography has been 
shown to accurately diagnose liver fibrosis and cirrho-
sis. MR elastography is similarly accurate in diagnos-
ing significant fibrosis and cirrhosis. A meta-analysis of 
nearly 700 patients found that the mean AUCs of MR 
Elastography were 0.84, 0.88, 0.93, and 0.92 for stages 
1–3 fibrosis as well as cirrhosis, respectively [37]. In 
summary, in addition to gut microbiome-based ML 
methods, other non-invasive diagnostic techniques 
are also accurate in the diagnosis of liver fibrosis and 
cirrhosis.

Although microflora is largely influenced by genetics 
[38], dynamic environment [39], seasons [40], diet [41], 
and smoking [42], the gut microbes are specific in pre-
dicting liver fibrosis and cirrhosis. Boursier et  al. [43] 
discovered that patients with non-alcoholic steatohepa-
titis (NASH) or fibrosis had considerably higher levels 
of ruminococcus. This result was proved by Bajaj JS 
[44]. Oh et al. [25] found that a core set of gut microbi-
ome species can detect cirrhosis in patients from geo-
graphically separated regions, free from the effects of 
disease etiology, environmental factors, and host genet-
ics on the gut microbiome. Five of the included studies 
[23, 25, 26, 28, 30] contain six cohorts, and all of them 
conducted external validations of diagnostic efficiency. 
The AUCs of the six cohorts are 0.82, 0.89, 0.88, 0.81, 
0.71, and 0.721, respectively. These cohorts comprise 
patients of different ethnic groups, environments, and 
etiologies. This indicates that gut microbiota signa-
tures are robust in detecting liver fibrosis and cirrhosis 
in patients of different settings and etiologies. The gut 
microbiome-based ML method is universal and stable 
in diagnosing liver fibrosis and cirrhosis. Furthermore, 
a Deek’s funnel plot was drawn to evaluate the publi-
cation bias. The nearly symmetrical plot indicates no 
publication bias (P = 0.56 > 0.10), suggesting that our 
results are reliable.

Implications for clinicians, policymakers and other 
researchers
Although there are few studies on the application of gut 
microbiota in diagnosing liver cirrhosis or liver fibrosis, 
we still found that the gut microbiota has a strong asso-
ciation with the pathological grading of liver cirrhosis or 
liver fibrosis, indicating its great performance in diagnos-
ing liver fibrosis and early liver cirrhosis. In addition to 
offering references for non-invasive diagnoses of liver cir-
rhosis and fibrosis, it can be combined with other non-
invasive serum/plasma or imaging tests to stage liver 
fibrosis and cirrhosis clearly or to evaluate the effects of 
treatment dynamically. However, the clinical application 
of this technique requires clinicians equipped with exten-
sive experience. Therefore, it is advised to strengthen 
operator training, improve the quantity and quality of 
original studies, including randomized controlled tri-
als and multi-centered studies with large sample sizes 
and diversified ML algorithms, optimize predictive effi-
ciency, and reduce the bias due to modeling with a single 
algorithm. In this way, research evidence would be more 
scientific, accurate, and of high quality, providing mean-
ingful guidelines for clinical decision-making.

Research limitations
The application of the gut microbiome-based ML method 
in diagnosing liver fibrosis or cirrhosis is recommend-
able, but the present study still has some limitations.

(1) The difference between operators affected the pre-
dictive results. Removing the examination results 
by inexperienced operators could avoid artificial 
influences caused by the batch processing effect 
in any single data set, which can improve accu-
racy and diagnostic performance. In an analysis of 
fecal NAFLD metagenomes based on three pub-
licly available studies, Wang et al. [16] reported that 
the differences in metagenomic methods and study 
designs (e.g., sample collection and preservation, 
sequencing platforms, and DNA extraction meth-
ods) could impact the constitution of downstream 
sequential data. The three studies (Illumina HiSeq) 
used the same sequencing platforms, but their 
DNA extraction methods differed. As all three stud-
ies explained that their samples were extracted by 
fast freezing to − 80 °C, there are still technical vari-
ances due to human factors.

(2) Differences in sequencing methods had an impact 
on the results. High-throughput sequencing of the 
culture-independent 16S rRNA gene is the pri-
mary research method. However, with the sequenc-
ing costs increasing and the data analysis methods 
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maturing, metagenomic shotgun sequencing is 
expected to become an essential means of studying 
the gut microbiome due to its advantages of pro-
cessing larger-scale and comprehensive informa-
tion. Most included studies adopted the 16S ribo-
somal RNA sequencing method; one used shotgun 
metagenomic sequencing [24]; and two used whole-
metagenome shotgun sequencing [23, 25]. Different 
sequencing methods also caused heterogeneity in 
research results, which was reported in the study by 
Bajaj JS et al. [44].

(3) Undiversified models may also affect the research 
results. The main ML algorithm used in the 
included studies was RF. As a dynamic and com-
plex ecosystem in the human body, the gut micro-
biota is affected by the interactions within microbial 
colonies as well as between microbial colonies and 
hosts. It is difficult for undiversified models to pre-
sent such complicated interactions. Therefore, the 
multi-omics integration strategy will be a promis-
ing approach to understanding the gut microbiota 
composition and physiological functions.

(4) The research results were also affected by sample 
size. The application of gut microbiota in diag-
nosing liver cirrhosis or liver fibrosis is still in the 
primary stage. At present, only few studies have 
been published on the gut microbiome-based 
ML method predicting liver fibrosis and cirrhosis. 
Thereby, there was a small sample size in the pre-
sent study, and it is impossible to perform subgroup 
analysis according to microbial species. More stud-
ies with a larger sample size are needed, and we 
will supplement and update the analysis in a timely 
manner.

(5) The impact of heterogeneity on research results

The heterogeneity test indicates the existence of het-
erogeneity (I2  =  63,95% CI = [16–100]). As shown in 
the bivariate box plot, 2 of the 10 included studies were 
located outside the box plot, suggesting that these two 
studies may be the main source of heterogeneity. After 
carefully reading these two studies, we found that their 
sample size and distribution were different, which may 
affect the performance and applicability of each model. 
Furthermore, the feature selection method, study type, 
and study population may all cause heterogeneity. In 
some countries, liver fibrosis or cirrhosis is not diagnosed 
by liver biopsy, for example, the three included studies 
by Caussy, Dong, and Chen. To delve into whether they 
have an impact on heterogeneity, we used the numeri-
cal method and a bivariate box plot to test heterogene-
ity after excluding the three studies that did not use liver 
biopsy to diagnose liver fibrosis or cirrhosis. The results 

showed  I2 = 93, 95% CI = [86–99], suggesting that these 
three studies may not be the source of heterogeneity, 
and differences in diagnostic criteria have no significant 
impact on the study results.

(6) Impact of external validation on results

In bioinformatics studies, external validation is an 
important step to ensure the reliability and applicability of 
research results, making such studies more scientific and 
practical. In our analysis, most included studies only used 
K- fold cross validation or random sampling methods to 
generate validation sets, but did not evaluate the generali-
zation ability of their models or results in new data sets. 
This may limit the interpretation of the results. Therefore, 
more follow-up studies are needed to verify our findings.

Conclusion
The gut microbiome-based ML method can effec-
tively predict liver cirrhosis and fibrosis. It is an optimal 
approach for non-invasive diagnosis of liver cirrhosis and 
fibrosis with a high clinical application value. Neverthe-
less, the present study merely included few studies and 
undiversified models. Therefore, developing a diversified 
prediction system based on microorganisms is necessary 
to enrich the efficient non-invasive detection methods 
for liver cirrhosis or fibrosis.

The introduction of diverse gut microbiome in machine 
learning will enhance model performance, robustness, 
and applicability, reduce potential bias in models, improve 
the interpretability of models, provide more information, 
and help clinicians make more comprehensive decisions.

Outlook
In summary, ML methods based on intestinal micro-
organisms have broad potential and prospects in the 
diagnosis of cirrhosis and liver fibrosis due to noninva-
siveness, early diagnosis, personalized diagnosis and 
treatment, data integration, reduced medical costs, and 
interdisciplinary cooperation. However, challenges such 
as data quality, model interpretation, and clinical valida-
tion still need to be addressed in the future. Overall, with 
constant advances in technology and deepening research, 
ML will continue to play a key role in improving the diag-
nosis and treatment of liver diseases.
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