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Abstract
Background The application of artificial intelligence (AI) in the ultrasound (US) diagnosis of breast cancer (BCa) is 
increasingly prevalent. However, the impact of US-probe frequencies on the diagnostic efficacy of AI models has not 
been clearly established.

Objectives To explore the impact of using US-video of variable frequencies on the diagnostic efficacy of AI in breast 
US screening.

Methods This study utilized different frequency US-probes (L14: frequency range: 3.0-14.0 MHz, central frequency 
9 MHz, L9: frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz and L13: frequency range: 3.6-13.5 MHz, central 
frequency 8 MHz, L7: frequency range: 3-7 MHz, central frequency 4.0 MHz, linear arrays) to collect breast-video 
and applied an entropy-based deep learning approach for evaluation. We analyzed the average two-dimensional 
image entropy (2-DIE) of these videos and the performance of AI models in processing videos from these different 
frequencies to assess how probe frequency affects AI diagnostic performance.

Results The study found that in testing set 1, L9 was higher than L14 in average 2-DIE; in testing set 2, L13 was 
higher in average 2-DIE than L7. The diagnostic efficacy of US-data, utilized in AI model analysis, varied across different 
frequencies (AUC: L9 > L14: 0.849 vs. 0.784; L13 > L7: 0.920 vs. 0.887).

Conclusion This study indicate that US-data acquired using probes with varying frequencies exhibit diverse average 
2-DIE values, and datasets characterized by higher average 2-DIE demonstrate enhanced diagnostic outcomes 
in AI-driven BCa diagnosis. Unlike other studies, our research emphasizes the importance of US-probe frequency 
selection on AI model diagnostic performance, rather than focusing solely on the AI algorithms themselves. These 
insights offer a new perspective for early BCa screening and diagnosis and are of significant for future choices of US 
equipment and optimization of AI algorithms.
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Introduction
Breast cancer (BCa) is the most prevalent cancer and the 
leading cause of cancer mortality in females worldwide 
[1, 2]. Early identification and intervention of BCa lead to 
significant improvements in 5-year relative survival rates 
[3, 4]. Ultrasound(US) is the imaging method of choice 
for the evaluation of breast disease because it is techni-
cally simple, cost-effective, and safe [5]. Also, the US is 
seen as a primary measure of BCa detection and mortal-
ity reduction [3]. However, US-image-based diagnosis of 
the breast greatly relies on the experiences of the sonog-
raphers [6], so it is significant to further explore the infor-
mation carried by US images to enhance the detection 
rate and diagnostic accuracy of BCa in its early stages.

In recent years, artificial intelligence (AI) has brought 
opportunities for the advancement of medical imag-
ing [7–10]. The algorithm is enabled to extract a large 
amount of information from medical images that can-
not be observed by the naked eye for diagnosis and 
improve the computer detection rate of nodules [11–13]. 
US-based AI studies rely on the sonographers-selected 
images during the scanning process or partially on 
responsibility frames selected from video [14–21]. There-
fore, the US image selection is particularly crucial in BCa 
AI diagnosis.

In information theory [22], entropy is the aver-
age amount of information contained in each received 

“message”. Image entropy (IE) is a statistical form of 
image features, reflecting the average amount of infor-
mation in the image, which can reflect the distribution 
complexity of each pixel point of the image [23]. Most 
previous studies were image-based that required high-
frequency probe acquisition as a dataset [24–26]. The 
principle of choosing a US probe is to ensure sufficient 
detection depth while maximizing the frequency to 
ensure the resolution of the US image [25]. Although the 
high-frequency probe images may aid the sonographer in 
making a diagnosis. Whether they are favorable for the 
training and diagnosis of AI models is not known yet. 
Earlier works [21] demonstrated that the richer the aver-
age information content of an image, the better its tumor 
classification. Thus, based on the principle that US low 
frequency corresponds to high penetration [27], US data 
obtained at different frequencies may carry different lev-
els of information, thereby impacting the diagnosis of the 
AI model.

Therefore, this study introduces the feature entropy 
of breast US to calculate the magnitude of the average 
two-dimensional image entropy(2-DIE) at different fre-
quencies. Further, to investigate whether the US images 
obtained at lower frequencies have higher average 2-DIE 
and are more beneficial to improve AI diagnosis.

Key points
1. The study explored the impact of ultrasound images with different frequencies on the diagnostic efficacy of 

artificial intelligence.
2. Ultrasound images obtained with different frequency probes exhibited variable levels of average two-

dimensional image entropy, influencing the diagnostic performance of artificial intelligence models in nuanced 
ways.

3. Datasets with higher average two-dimensional image entropy were associated with superior artificial 
intelligence breast diagnostic efficacy.

Summary
The research on artificial intelligence-assisted breast diagnosis often relies on static images or dynamic videos 
obtained from ultrasound probes with different frequencies. However, the effect of frequency-induced image 
variations on the diagnostic performance of artificial intelligence models remains unclear. In this study, we aimed 
to explore the impact of using ultrasound images with variable frequencies on AI’s diagnostic efficacy in breast 
ultrasound screening. Our approach involved employing a video and entropy-based feature breast network to 
compare the diagnostic efficiency and average two-dimensional image entropy of the L14 (frequency range: 
3.0-14.0 MHz, central frequency 9 MHz), L9 (frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz) linear array 
probe and L13 (frequency range: 3.6-13.5 MHz, central frequency 8 MHz), and L7 (frequency range: 3-7 MHz, central 
frequency 4.0 MHz) linear array probes. The results revealed that the diagnostic efficiency of AI models differed 
based on the frequency of the ultrasound probe. It is noteworthy that ultrasound images acquired with different 
frequency probes exhibit different average two-dimensional image entropy, while higher average two-dimensional 
image entropy positively affect the diagnostic performance of the AI model. We concluded that a dataset with 
higher average two-dimensional image entropy is associated with superior diagnostic efficacy for AI-based breast 
diagnosis. These findings contribute to a better understanding of how ultrasound image variations impact AI-
assisted breast diagnosis, potentially leading to improved breast cancer screening outcomes.
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Materials and methods
Participants
This retrospective research collected US videos examined 
at Shenzhen People’s Hospital from June 2021 to Decem-
ber 2021. As a retrospective study, informed consent was 
waived by the Medical Ethics Committee of Shenzhen 
People’s Hospital. All patient information was handled 
with strict confidentiality in compliance with ethical 
guidelines. The benignity and malignancy of the nodules 
obtained by the US were confirmed by pathology.

Inclusion criteria (a) Simultaneous acquisition of US 
video images of tumors in the same patient with two dif-
ferent frequency probes. (b) US-detected nodules must be 
classified as 0, 2, 3, 4a, 4b, 4c, or 5 following the BI-RADS. 
(c) No biopsy or surgical treatment of the breast nodules 
is to be evaluated before the US scan. (d) Patients were 
biopsied or surgically treated within 1 week of US data 
acquisition, while pathological results were obtainable.

Exclusion criteria (a) BI-RADS 6 in the US, DR (Digital 
mammography), or MRI (magnetic resonance imaging). 
(b) BI-RADS 1 in the US. (c) History of breast surgery. (d) 
Single-frequency US video data. (e) Missing pathological 
results. (f ) Poor image quality.
In this study, a total of 668 breast tumors (260 malig-
nancy and 408 benign) of US videos from 167 female 
patients were included and divided into 2 testing sets: 
(1) In testing set 1, breast US videos were obtained from 
Resona I9 (Mindray, China) with L14 (frequency range: 
3.0-14.0 MHz, central frequency 9 MHz), L9 (frequency 
range: 2.5-9.0  MHz, central frequency 6.5  MHz) linear 
array probe. (2) Testing set 2, the data were obtained 
from DC-65 (Mindray, China) with L13 (frequency range: 
3.6-13.5  MHz, central frequency 8  MHz), and L7 (fre-
quency range: 3.0-7.0 MHz, central frequency 4.0 MHz) 
linear array probe, which was aimed to further evaluate 
our theory and discoveries.

Ultrasound examination and video acquisition
In this study, all US videos were acquired by the same 
radiologist with more than 10 years of experience. The 
researchers utilized 3 markers to localize the location of 
the mass during the collection process. Specifically, the 
largest section of the target tumor was first located using 
one of the frequency probes and marked on the body sur-
face. Then a complete sweep was made horizontally along 
the largest section of the tumor to find two more markers 
≥ 2 cm from the tumor margin, respectively. Finally, the 
whole tumor is swept along the marked direction, and 
the operation is repeated, keeping the direction and posi-
tion of the probe consistent each time, until the US video 
acquisition of the four different frequencies is completed.

Processing of US-video and use of AI model
First, we conducted this study based on the constructed 
feature entropy breast network (FEBrNet), which inherits 
the pre-trained backbone of the fully connected layer and 
the weight-optimal model [21]. We use the AI model to 
select responsibility frames to reduce subjective depen-
dence. Our method of selecting pivotal frames draws 
inspiration from established applications of entropy in 
information theory, such as in decision trees. Specifi-
cally, the Iterative Dichotomiser 3 (ID3) decision tree 
algorithm utilizes entropy to ascertain the most suitable 
parent node and its division. In our methodology, we aim 
to minimize the discrepancy between the FScore of the 
video and that of the chosen frame collection, where a 
smaller disparity indicates that the information content 
of the chosen frames closely mirrors that of the entire 
video. By incrementally adding frames to this collection, 
starting from one and increasing to n, and at each incre-
ment selecting the frame that least differs, we gradually 
form an optimally representative set of frames, each con-
tributing unique features. Subsequently, for the final col-
lection of these optimal frames, our study computes the 
two-dimensional image entropy for each frame using the 
FEBrNet model. We then determine the video’s image 
entropy by calculating the average two-dimensional 
image entropy (2-DIE) of all the chosen frames. Finally, 
pathological results were used as the gold standard to 
compare the ability of using image entropy of different 
frequencies in the differential diagnosis of benign and 
malignant breast tumors. The processing and validation 
of the data are based on the pre-trained entropy-based 
model (FEBrNet). For specific information about the 
model refer to this literature [21] and supplementary 
materials. We investigate and verify the effect of entropy 
on the diagnostic performance of AI models from the 
perspective of IE. US images obtained from US probes of 
different frequencies are various. The researchers com-
pared the variations by collecting US data from the same 
patient at different frequencies simultaneously. This is 
used to research the difference in diagnostic efficacy of 
US images obtained at different frequencies for AI mod-
els. The flow chart is shown in Fig. 1.

Statistical analysis
Statistical analysis was performed using R 3.6.3 (Copy-
right (C) 2020 The R Foundation for Statistical Com-
puting). The significance level was set at P < 0.05. A 
normality test was performed for each variable. T-test 
is used for the normally distributed numerical variables, 
the rank sum test is used for the non-normally distrib-
uted numerical variables, and the Chi-square test is used 
for the disordered classification variables. The paired 
sample t-test was used to compare the differences within 
the group. The specificity, sensitivity, accuracy, receiver 
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operating characteristic curve (ROC), and area under the 
curve (AUC) were used to evaluate models.

Results
Participant characteristics
According to the inclusion and exclusion criteria, A total 
of 668 tumor videos from 167 patients were included in 
this study, including 260 videos of cancerous masses and 
408 videos of benign tumors. There are 280 videos in the 
testing set 1 and 388 videos in testing set 2. Table 1 show 
the baseline distribution characteristics of the collected 
patients, respectively.

Distribution of 2-DIE in various frequencies
The values of the average 2-DIE obtained at different 
frequencies are variable. For testing set 1, the 2-DIE of 
the L9 linear probe was higher than that of L14 (Mean 
± SD,11.49 ± 0.769 vs. 10.94 ± 0.835); For the testing set 
2, the 2-DIE of the L13 linear probe was higher than that 
of L7 (Mean ± SD,11.82 ± 0.356 vs. 12.27 ± 0.476). This 
result is summarized in Fig. 2.

Diagnosis performance of AI models
The diagnostic efficacy of US data for AI models varies 
at distinct frequencies. For the testing set 1, L9 attained 
the best AUC (0.849), with a sensitivity of 76.9%, speci-
ficity of 93.2%, and accuracy of 87.1%. For the testing set 
2, L13 reached the best AUC (0.920), sensitivity 89.7%, 

specificity 93.8%, as well as accuracy 91.0%. The detailed 
results are shown in Table 2; Fig. 3.

Discussion
In this study, we used a video and entropy-based deep 
learning model [21] to compare the diagnosis perfor-
mance of breast US. The assessment effect of variable 
frequencies on the AI model diagnosis validity was based 
on two retrospective data sets (Mindray L7/L13 and L9/
L14). In testing set 1, compared to L14 (frequency range: 
3.0-14.0 MHz, central frequency 9 MHz), the L9-had bet-
ter diagnosis performance and 2-DIE. However, in testing 
set 2, compared to L7 (frequency range: 3-7  MHz, cen-
tral frequency 4.0  MHz), the L13-had better diagnosis 
performance and 2-DIE. This observation suggests that 
US-data derived from probes operating at varying fre-
quencies can significantly impact the diagnostic effective-
ness of AI models. Another finding is that higher 2-DIE is 
accompanied by increased diagnostic efficacy.

In recent years, many AI-based studies have inves-
tigated the benign and malignant categorization of 
US breast nodules [18, 28–37]. The accuracy of their 
models fluctuates from 80 to 95%. While the litera-
ture recommends a frequency range of 5–17 [38] for 
breast US screening, it does not specify which one to 
use. Also, there is no literature examining the distinc-
tion in the diagnostic utility of AI for images acquired 
by various probes. The probe frequencies used in the 

Fig. 1 The flow charts of this Study
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studies in the literature mentioned above ranged from 
1 to 42  MHz. Therefore, one reason for the variation 
in accuracy between these surveys may be the variance 
in the frequency of the probes utilized. So, we did this 
experience and discovered that the L9 (frequency range: 
2.5-9.0  MHz, central frequency 6.5  MHz) had better 
diagnosis performance and higher 2-DIE. This may be 
contradicted by our clinical experience but offers another 
probability. While high-frequency US probes typically 
require more sophisticated technology and may be cost-
lier, their application might not always correspond to 
improved diagnostic performance in AI models. Fur-
thermore, primary hospitals may be unable to afford the 
purchase and maintenance of high frequency probe. The 
results of this experiment may now solve this challenge 

– using AI to aid diagnosis and compensate for the low 
accuracy of clinicians when using low frequency probe. 
On the other hand, excessively low-frequency probes do 
not enhance the diagnostic performance of AI models. In 
the testing set 2, we found that the L13 (frequency range: 
3.6-13.5 MHz, central frequency 8 MHz) had better diag-
nosis performance. This is inconsistent with the results of 
our testing set 1. Possible reasons for this result include 
(a. The penetration is excessive, resulting in images that 
contain more confounding information unrelated to the 
lesion. b. The high frequency probe provides excellent 
spatial and soft-tissue resolution, greatly improving the 

Table 1 The distribution of baseline characteristics based on 
testing sets
Testing set 1
Variables Total

(n = 70)
Benign
(n = 44)

Malignant
(n = 26)

p

Age, Mean ± SD 43.29 ± 
12.9

38.89 ± 
11.42

50.73 ± 11.99 < 
0.01

Height, Mean ± SD 159.17 ± 
3.86

159.57 ± 
3.86

158.5 ± 3.85 0.27

Weight, Mean ± SD 57.49 ± 
6.97

56.27 ± 6.42 59.54 ± 7.5 0.07

BI-RADS, n (%) < 
0.001

2 14 (20) 14 (32) 0 (0)
3 14 (20) 14 (32) 0 (0)
4 A 11 (16) 9 (20) 2 (8)
4B 14 (20) 7 (16) 7 (27)
4 C 8 (11) 0 (0) 8 (31)
5 9 (13) 0 (0) 9 (35)
Max. size, Median 
(Q1, Q3)

8 (6, 14) 7 (5.75, 11) 12.5 (8, 15) 0.001

Testing set 2
Variables Total

(n = 97)
Benign
(n = 58)

Malignant
(n = 39)

p

Age, Median (Q1, Q3) 40 (31, 50) 36 (28.5, 41) 49 (43, 58.5) < 
0.01

Height, Median (Q1, 
Q3)

158 (155, 
162)

159 (156, 
2.75)

158 (155, 
162)

0.87

Weight, Median (Q1, 
Q3)

57 (52, 62) 55.5 (51, 60) 60 (56.5, 
64.5)

< 
0.01

BI-RADS, n (%) < 
0.01

2 20 (21) 20 (34) 0 (0)
3 19 (20) 19 (33) 0 (0)
4 A 14 (14) 13 (22) 1 (3)
4B 15 (15) 6 (10) 9 (23)
4 C 15 (15) 0 (0) 15 (38)
5 14 (14) 0 (0) 14 (36)
Max. size, Median 
(Q1, Q3)

13 (9, 23) 11.5 (7, 
18.75)

17 (12.5, 24) < 
0.01

Note: BI-RADS: Breast Imaging-Reporting and Data System

Table 2 Comparison of the efficacy of AI models
Model AUC

(95%CI)
Sensitiv-
ity
(%)

Specific-
ity
(%)

Accu-
racy
(%)

P 
value

L9 0.849
(0.735–
0.962)

76.9 93.2 87.1 0.4185#

L14 0.784
(0.655–
0.913)

65.4 90.9 81.4

L7 0.887
(0.820–
0.953)

71.8 93.4 85.0 0.0383*

L13 0.920
(0.851–
0.989)

89.7 91.8 91.0

Note: AUC: area under the curve; 95% CI: 95% confidence interval; L9: L9 linear 
array probe, frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz; L14: L14 
linear array probe, frequency range: 3.0-14.0 MHz, central frequency 9 MHz; L7: 
L7 linear array probe, frequency range: 3-7 MHz, central frequency 4.0 MHz; L13: 
L13 linear array probe, frequency range: 3.6-13.5 MHz, central frequency 8 MHz; 
P value #: L9 vs. L14; *: L7 vs. L13

Fig. 2 The results of the average 2-DIE of the two testing sets. Note: 2-DIE: 
two-dimensional image entropy (unless otherwise stated, the above mea-
surements are average values); L9: L9 linear array probe, frequency range: 
2.5-9.0  MHz, central frequency 6.5  MHz; L14: L14 linear array probe, fre-
quency range: 3.0-14.0 MHz, central frequency 9 MHz; L7: L7 linear array 
probe, frequency range: 3-7 MHz, central frequency 4.0 MHz; L13: L13 lin-
ear array probe, frequency range: 3.6-13.5 MHz, central frequency 8 MHz; 
P: L9 vs. L14, L7 vs. L13
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differentiation of lesion saliency. However, the results for 
the 2-DIE of the L13 are higher than those of the low-fre-
quency ones, which remains consistent with our previous 
findings.

Also, previous studies [21] by our team demonstrated 
that the richer the 2-DIE contained in US images, the 
more favorable the prediction of breast tumor benig-
nity-malignancy. That is, a high 2-DIE in US images 
corresponds to rich image information. Meanwhile, US 
features varied depending on the pathological heteroge-
neity of the breast tumor [39]. The richer the information 
contained in the US image, the more comprehensive the 
information it may contain about the tumor character-
istics. Moon et al. [34] also indicated that images with 
more information would help improve the diagnostic 
efficacy of the model. The results of this experiment are 
consistent with previous studies – both in the two sets, 
the higher the 2-DIE, the better the diagnostic perfor-
mance. Because of the higher penetration of the low 
frequency probe, visualization of deep posterior tissues 
is made easy. More information related to the nodules 
may be captured. This information may not be recog-
nized by the naked eye but facilitates machine learning. 
Accompanying the development of AI and the concept 
of medical-industrial integration, the application of AI-
assisted diagnosis may become more extensive. However, 
previous research has focused more on the innovation 
and refinement of algorithms and hardware, ignoring the 
differences in images of different frequencies. Therefore, 

it is necessary to investigate the diagnostic efficacy of dif-
ferent frequency datasets on AI models. Images acquired 
at more appropriate frequencies will help improve diag-
nostic performance and provide a reference for future US 
image acquisition for AI models.

There are some limitations in this study. First, the study 
was a retrospective single-center study with smaller 
sample size and uneven image quality. Second, Lack of 
comparison of diagnostic efficacy of different frequen-
cies for AI models. Therefore, we will further investigate 
the effect of other frequencies on AI diagnostic efficacy 
in the next research plan. Finally, Variations in sensitivity 
and inter-machine variability of various US devices were 
not considered.

Conclusion
This study indicate that US-data acquired using probes 
with varying frequencies exhibit diverse average 2-DIE 
values, and datasets characterized by higher average 
2-DIE demonstrate enhanced diagnostic outcomes in AI-
driven BCa diagnosis. Unlike other studies, our research 
emphasizes the importance of US-probe frequency selec-
tion on AI model diagnostic performance, rather than 
focusing solely on the AI algorithms themselves. These 
insights offer a new perspective for early BCa screen-
ing and diagnosis and are of significant guidance for 
future choices of US equipment and optimization of AI 
algorithms.

Fig. 3 Comparison of diagnostic performance of the testing sets. Note: AUC: area under the curve; 95% CI: 95% confidence interval; L9: L9 linear array 
probe; L14: L14 linear array probe; L7: L7 linear array probe; L13: L13 linear array probe. (A): Testing 1; (B): Testing 2
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Abbreviations
BCa  breast cancer
2-DIE  two-dimensional image entropy
US  ultrasound
AI  artificial intelligence
IE  Image entropy
DR  Digital mammography
MRI  magnetic resonance imaging
L9  L9 linear array probe (frequency range:2.5-9.0 MHz, central 

frequency 6.5 MHz)
L14  L14 linear array probe (frequency range:3.0-14.0 MHz, central 

frequency 9 MHz)
L7  L7 linear array probe (frequency range:3-7 MHz, central frequency 

4.0 MHz)
L13  L13 linear array probe (frequency range:3.6-13.5 MHz, central 

frequency 8 MHz)
BI-RADS  Breast Imaging-Reporting and Data System
ROC  receiver operating characteristic curve
CI  confidence interval
AUC  area under the curve
IQR  interquartile range
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