
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Cheng et al. BMC Medical Informatics and Decision Making            (2024) 24:2 
https://doi.org/10.1186/s12911-023-02408-9

BMC Medical Informatics 
and Decision Making

*Correspondence:
Chan Zhang
zhangchanyzt@163.com
1Department of blood transfusion, The First People’s Hospital of Yunnan 
Province. The Affiliated Hospital of Kunming University of Science and 
Technology, No.157 Jinbi Road, 650034 Kunming, Yunnan, China

Abstract
Background Acute Myeloid Leukemia (AML) generally has a relatively low survival rate after treatment. There is an 
urgent need to find new biomarkers that may improve the survival prognosis of patients. Machine-learning tools are 
more and more widely used in the screening of biomarkers.

Methods Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature 
Elimination (SVM-RFE), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), lrFuncs, IdaProfile, caretFuncs, and 
nbFuncs models were used to screen key genes closely associated with AML. Then, based on the Cancer Genome 
Atlas (TCGA), pan-cancer analysis was performed to determine the correlation between important genes and AML or 
other cancers. Finally, the diagnostic value of important genes for AML was verified in different data sets.

Results The survival analysis results of the training set showed 26 genes with survival differences. After the 
intersection of the results of each machine learning method, DNM1, MEIS1, and SUSD3 were selected as key genes 
for subsequent analysis. The results of the pan-cancer analysis showed that MEIS1 and DNM1 were significantly highly 
expressed in AML; MEIS1 and SUSD3 are potential risk factors for the prognosis of AML, and DNM1 is a potential 
protective factor. Three key genes were significantly associated with AML immune subtypes and multiple immune 
checkpoints in AML. The results of the verification analysis show that DNM1, MEIS1, and SUSD3 have potential 
diagnostic value for AML.

Conclusion Multiple machine learning methods identified DNM1, MEIS1, and SUSD3 can be regarded as prognostic 
biomarkers for AML.
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Backgrounds
Acute myeloid leukemia (AML) is a malignant bone mar-
row disease characterized by clonal expansion and dif-
ferentiation arrest of bone marrow progenitor cells. Most 
AML cases still have no clear etiology [1]. AML is the 
most common acute leukemia in adults, and its survival 
time is short [2]. In recent years, with the rapid devel-
opment of molecular targeted therapy and combined 
therapy, and the widespread application of these two 
therapies in clinical practice, the survival and progno-
sis of AML patients have been relatively prolonged and 
improved [3]. Intensive chemotherapy and gene stem cell 
transplantation are usually applied to a small number 
of young patients, and for most patients, the prognosis 
and survival rate are poor [4]. Although the treatment 
strategies for AML have been continuously adjusted and 
improved over the past few decades, the effect of these 
treatment strategies on the survival and prognosis of 
patients is still minimal [5]. Therefore, the identification 
of new and effective prognostic biomarkers is crucial for 
accurately predicting the prognosis of AML patients and 
for a deeper and more comprehensive understanding of 
the pathogenesis of AML.

With the advancement of gene sequencing technol-
ogy, a series of gene databases have emerged, such as the 
Cancer Genome Atlas (TCGA) and the Gene Expres-
sion Omnibus (GEO). In addition, machine learning 
algorithms, as one of the main tools of data mining, are 
now widely used in the medical field. The algorithm 
establishes a risk model by learning the existing data of 
patients, which is used to predict the disease, diagnose 
the severity of the disease, and evaluate the prognosis of 
the disease [6, 7]. Its main types include the least abso-
lute shrinkage and selection operator (LASSO), ran-
dom forest graph (RF), support vector machine (SVM), 
decision tree, and other common algorithms. LASSO 
is the only property of the absolute value of the penal-
ized regression coefficient [8]. The greater the penalty, 
the greater the shrinkage of the coefficient, and then 
remove the unimportant covariates [9, 10]. Support vec-
tor machine recursive feature elimination (SVM-RFE) 
is a supervised machine learning technique widely used 
in classification and regression. Its purpose is to classify 
data points by maximizing the margin between classes 
in high-dimensional space. The features are classified 
according to the accuracy value, and several features with 

higher accuracy are selected [11]. The RF algorithm is a 
method of training and predicting samples by construct-
ing a decision tree. The features with high importance 
scores are obtained by calculating and sorting the impor-
tance scores of features [12]. These machine algorithms 
can learn and train from data to achieve accurate predic-
tions of future events [13]. These algorithms are gradually 
being used in the prognosis of lung cancer, breast cancer, 
liver cancer, gastrointestinal cancer, and other malignant 
tumors, which has become a hot spot in clinical research 
[14–17].

Machine learning algorithms contain a variety of types, 
and each model has its scope of application. Different 
types, different volumes, and different characteristics of 
data have different prediction performance. Therefore, 
this study aims to screen genes related to AML prog-
nosis based on multiple types of machine learning, and 
then take the intersection gene of each machine learning 
result as the key gene for subsequent research. Finally, 
pan-cancer analysis was performed on key genes to fur-
ther clarify the correlation between key genes and the 
occurrence and development of AML or other cancers 
and then to clarify the diagnostic value of key genes for 
AML. This study will provide new ideas for the prognosis 
evaluation of AML patients, and then promote the effi-
cient and accurate individualized treatment of AML.

Methods
Acquisition of data sets
Data on acute myeloid leukemia were obtained from 
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi). Due to the 
excessive amount of search data, we set some condi-
tions to select candidate data sets. The specific screen-
ing criteria for the dataset used in this study were acute 
leukemia, United States, Homo sapiens, adults, and 
with a total sample size greater than 100 people. Finally, 
three data sets were selected for subsequent research 
(GSE63270, GSE15061, and GSE48558). The basic infor-
mation of each data set is shown in Table  1. The gene 
set of GSE15061 was obtained for expression difference 
analysis (setting the threshold: |logFC| > 1.5, P < 0.05). 
The differential volcano map (http://sangerbox.com/tool.
html) was drawn using the SangerBox website.

Screening the key genes related to the prognosis of AML 
based on multiple machine-learning methods
Kaplan-Meier (KM) survival analysis of differentially 
expressed genes in the training set was performed using 
the R-4.1.1 software package (“survival” and “survminer”).

Subsequently, R-4.1.1 different software packages were 
used to perform machine learning such as LASSO (R 
package: “glmnet”, “survival”, “survminer”), RF (R pack-
age: “randomForest”, “caret”, “varSelRF”), SVM-RFE 

Table 1 Basic information for all data sets used in this study
Data sets ID Platforms Samples Application

Control AML cases
GSE15061 GPL570 138 404 Test set
GSE63270 GPL17810 42 62 Verification set
GSE48558 GPL6244 49 39 Verification set
AML: acute myeloid leukemia

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
http://sangerbox.com/tool.html
http://sangerbox.com/tool.html
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(R package: “svm”, “caret”, and “randomForest”), and 
XGBoost (R package: “xgboost”, and “caret”) on genes 
related to AML prognosis in the training set. In this 
study, we using the different functions in caret pack-
age of the R software (lrFuncs, IdaProfile, caretFuncs, 
and nbFuncs) to screened the optimal genes. The spe-
cific operation process and screening criteria were car-
ried out according to the official manual of R software 
(http://topepo.github.io/caret/recursive-feature-elimina-
tion.html#recursive-feature-elimination-via-caret). The 
parameters of the machine learning algorithms used in 
this study were set according to previous studies [18–20].

Finally, the key genes were obtained after the intersec-
tion of the genes screened by the above machine-learning 
methods for subsequent analysis.

Pan-cancer analysis of key genes
Using the UCSC XENA database (http://xenabroswer.
net/hub), which integrates public data from multiple 
databases, downloaded data sets that have been uni-
formly standardized (including the Cancer Genome 
Atlas (TCGA), Genotype Tissue Expression (GTEx). 
We extracted the expression of key genes in 33 cancer 
types, immune subtypes, clinical information, and other 
data from the downloaded data set. Then SangerBox 
(http://sangerbox.com/tool.html) was used to analyze 
the expression of key genes in cancer, survival analysis, 
immune analysis, and so on.

The correlation matrix heat map was drawn by Sanger-
Box to explore the expression differences at immune 
checkpoints. The box plot was drawn by the R package 
(“ggplot2”, “ggsignif”, “ggpubr”, and “RColorBrewer”) to 
analyze the correlation between key genes and different 
subtypes of immune cells.

Gene set enrichment analysis (GSEA) of key genes
To identify pathways associated with key genes, we per-
formed GSEA enrichment analyses. GSEA does not 
require genetic screening, thereby preserving genes that 
are not significantly different in expression but are func-
tionally important [21]. GSEA analysis was performed 
by Sangerbox online bioinformatics tool (http://sanger-
box.com/tool.html) based on AML mRNA data in the 
training set (GSE15061), which will identify the signal-
ing pathways that potentially be related to the key genes 
screened by the machine learning algorithm.

Validation of diagnostic value of key genes
To verify the diagnostic value of key genes for acute 
myeloid leukemia, GSE63270 and GSE48558 data sets 
were used for verification. The “barplot” software pack-
age in R was used to verify the differential expression 
of key genes in AML patients, and the ROC (receiver 

operating characteristic curve) curve was drawn to evalu-
ate the diagnostic value of key genes.

Results
Survival analysis of differentially expressed genes
The difference expression analysis of the training set 
GSE15061 was performed, and the threshold was set: 
|logFC| > 1.5, P < 0.05. The results showed that (Fig.  1) 
there were 171 differentially expressed genes, including 
151 down-regulated genes and 20 up-regulated genes. 
Subsequent survival analysis of differentially expressed 
genes showed that a total of 26 differentially expressed 
genes had prognostic differences in the training set (Sup-
plemental Fig. 1).

Screening key genes related to AML prognosis based on 
multiple machine learning
Firstly, LASSO regression analysis was used to screen 26 
genes with prognostic value, and 10-fold cross-validation 
was performed. According to LASSO regression machine 
learning (Fig. 2A–B), a total of 20 genes were screened. 
Then, we use the RF algorithm (parameter settings: 
ntree = 2000, mtry = 6) to obtain the importance of input 
variables and screen out the top five genes (Fig. 2C–D). 
The SVM-RFE algorithm was used to remove the last 
few feature genes in the weight ranking of the training 
set in one round, and 22 genes were screened (Fig. 3A). 
According to the XGBoost model (Fig. 3B), 19 genes were 
screened and showed good discrimination, with an AUC 
of 0.964 (Fig. 3C). Finally, the recursive feature elimina-
tion in the ‘caret’ package was used to construct differ-
ent models. The results showed that lrFuncs screened 15 
genes (Fig.  4A), IdaProfile screened 26 genes (Fig.  4B), 
caretFuncs screened 12 genes (Fig.  4C), and nbFuncs 
screened 24 genes (Fig. 4D).

The important genes screened by each machine learn-
ing algorithm have been obtained (Table  2). And the 
intersection genes of important genes screened by these 
machine-learning algorithms are also summarized in 
Table  2. Figure  5 is the Upset diagram, which illustrat-
ing shared genes in important genes screened by differ-
ent machine learning algorithm. The results showed that 
DNM1, MEIS1, and SUSD3 can be regarded as key genes 
for subsequent studies.

Pan-cancer analysis for key genes associated with AML 
prognosis
For the three key genes screened by machine learning 
tools, single gene pan-cancer analysis was performed 
respectively. The results showed that DNM1, MEIS1, and 
SUSD3 were differentially expressed between various 
cancers and normal tissues. MEIS1 and DNM1 are highly 
expressed in AML (Fig.  6A and B), while SUSD3 is not 
significantly different in AML (Fig. 6C).

http://topepo.github.io/caret/recursive-feature-elimination.html#recursive-feature-elimination-via-caret
http://topepo.github.io/caret/recursive-feature-elimination.html#recursive-feature-elimination-via-caret
http://xenabroswer.net/hub
http://xenabroswer.net/hub
http://sangerbox.com/tool.html
http://sangerbox.com/tool.html
http://sangerbox.com/tool.html
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To study the relationship between the expression lev-
els of DNM1, MEIS1, and SUSD3 and the prognosis of 
33 kinds of cancer, we carried out a survival correlation 
analysis. Cox proportional hazard model analysis showed 
that MEIS1 was not only associated with poor progno-
sis of AML (p = 8.0e-3, HR = 1.15), but also associated 
with poor prognosis of GBML, LGG, KIRP, and THCA 
(Fig. 7A). At the same time, MEIS1 was significantly cor-
related with the prognosis of HNSC, ACC, and KIRC. 
In addition to the poor prognosis of AML (p = 6.6e-3, 
HR = 1.25), SUSD3 was also significantly associated with 
the poor prognosis of GBML, LGG, and ACC (Fig. 7B). 
At the same time, SUSD3 was significantly associated 
with a better prognosis of various types of cancer (SKCM, 
SKCM-M, BRCA, KIPAN, MESO, SARC, LUAD). DNM1 
was significantly associated with a better prognosis of 
AML (p = 0.04, HR = 0.88) and PAAD (p = 0.02, HR = 0.79) 
(Fig. 7C). In addition, DNM1 was also significantly asso-
ciated with poor prognosis in a variety of types (THCA
、ACC、LIHC、MESO、COADREAD、BLCA、C
OAD).

To explore the relationship between the expression 
levels of key genes and AML immune subtypes, we 
analyzed the correlation between key genes and AML 
immune subtypes based on the TCGA data set. The 
results showed that DNM1 (p < 0.001), MEIS1 (p < 0.001), 
and SUSD3 (p < 0.001) were significantly associated 
with AML C1-C6 immune subtypes (Fig. 8A). Based on 
the TCGA database, the correlation between key gene 

expression levels and immune checkpoints was explored. 
The results showed that the expression levels of DNM1, 
MEIS1, and SUSD3 were associated with many can-
cer immune checkpoints (Fig.  8B–D). Specifically, the 
expression level of MEIS1 was not correlated with the 
AML immune checkpoint (Fig. 8B). Figure 8C shows that 
the expression level of DNM1 is significantly correlated 
with the two immune checkpoints of AML (HAVCR2 
and PDCD1LG2). Figure  8D showed that the SUSD3 
expression level was significantly correlated with the five 
immune checkpoints of AML (CD274, CTLA4, LAG3, 
PDCD1, and TIGIT).

Gene set enrichment analysis (GSEA) of key genes
GSEA analysis showed that genes related to DNM1 in 
the training set were mainly enriched in aminoacyl tRNA 
biosynthesis, acute myeloid leukemia and other pathways 
(Fig. 9A). Genes related to MEIS1 were mainly enriched 
in pathways such as cell cycle, P53 signaling pathway, o 
glycan biosynthesis, etc. (Fig. 9B). Genes associated with 
SUND3 are mainly enriched in tryptophan metabolism, 
NOD-like receptor signaling pathway, chemokine signal-
ing pathway etc. (Fig. 9C).

Validation of diagnostic value of key genes
To further explore the role of key genes as AML bio-
markers, we selected two data sets to verify their diag-
nostic value. The results showed that in the GSE48588 
(Fig.  10A–B) and GSE63270 (Fig.  10C–D) datasets, the 

Fig. 1 Differentially expressed genes in training set GSE15061. (A) Volcano maps showed the expression patterns of differentially expressed genes in the 
training set; (B) Heat maps of differentially expressed genes in the training set
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Fig. 3 Screening important genes associated with the prognosis of AML patients based on SVM-RFE and XGBoost models. (A) indicates that the SVM-RFE 
algorithm identified 22 important genes. The SVM-RFE algorithm filtered 26 genes with prognostic value to determine the best combination of feature 
genes. Finally, 22 genes (maximum accuracy = 0.9797) were identified as the optimal feature genes. (B) and (C) indicate that the XGBoost algorithm 
identified 19 important genes. (B) Importance scores of the top 19 important genes and corresponding variables screened by XGBoost. X-axis indicates 
the importance score which is the relative number of a variable that is used to distribute the data, Y-axis indicates the top 19 weighted variables (C) The 
ROC curve of the XGBoost model, The AUC (area under the ROC curve) value is 0.964, which indicates that the predictive performance of the XGBoost 
model is good

 

Fig. 2 Screening important genes related to the prognosis of AML patients based on LASSO and RF models. (A) and (B) indicate that LASSO (least ab-
solute shrinkage and selection operator) screened 20 important genes associated with AML prognosis. The method uses an L1 penalty to shrink some 
regression coefficients to exactly zero. (A) Ten time cross-validation for tuning parameter selection in the LASSO model; The binomial deviance curve was 
plotted versus log (λ), where λ is the tuning parameter. (B) LASSO coefficient profiles; LASSO coefficient profiles of clinic pathologic variables. (C), (D) and 
(E) indicate that the RF (random forest) algorithm screened the top five genes ranked by importance, which were related to AML prognosis. (C) The effect 
of the number of decision trees on the error rate (when the number of decision trees is about 2000, the error rate is relatively stable); The x-axis represents 
the number of decision trees and the y-axis represents the error rate. (D) Gini coefficient method in random forest classifier. x-axis: the genetic variable; 
y-axis: the importance index. (E) The ROC curve of the RF model, The AUC (area under the ROC curve) value is 0.977, which indicates that the predictive 
performance of the RF model is good
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expression levels of DNM1 and MEIS1 in AML were sig-
nificantly higher than those in the control group, while 
the expression levels of SUSD3 in AML were significantly 
lower than those in the control group. ROC results sug-
gested that the expression differences of DNM1, MEIS1, 
and SUSD3 have potential diagnostic value for AML.

Discussion
The prognosis of AML is poor. Young and elderly patients 
have a high risk of recurrence of chemotherapy resis-
tance, and alternative and targeted drugs are needed to 
improve their survival rate [22]. At present, the treatment 
of AML mainly includes chemotherapy and molecu-
lar targeted therapy, such as FMS-like tyrosine kinase 

3 (FLT3) inhibitors, IDH [isocitrate dehydrogenase 
(NADP+)] inhibitors, and monoclonal antibodies [23]. 
Despite many treatments, the prognosis of AML is still 
poor. High-throughput genomic screening methods and 
computer-aided techniques can be used to predict bio-
markers related to disease occurrence and assist in the 
design of new targeted drugs [24]. Therefore, screening 
biomarkers related to the prognosis of AML patients 
through machine learning methods will provide a valu-
able reference for individualized targeted therapy and 
prognosis prediction of AML in clinical practice.

In this study, 26 genes with survival differences were 
screened from the differentially expressed genes in the 
training set. To further screen out the key genes closely 

Fig. 4 Screening important genes related to the prognosis of AML patients based on recursive feature elimination (RFE) algorithm. Feature selection is 
performed using multiple functions in the R package caret (lrFuncs, IdaProfile, caretFuncs, and nbFuncs). (A) lrFuncs model identified 15 genes as the 
optimal characteristic genes (maximum accuracy = 0.9595). (B) 26 genes were identified as the optimal feature genes by the IdaProfile model (maximum 
accuracy = 0.9595); (C) caretFuncs model identified 12 genes as the optimal characteristic genes (maximum accuracy = 0.9853); (D) nbFuncs model identi-
fied 24 genes as the optimal feature genes (maximum accuracy = 0.8856)
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related to the prognosis of AML, this study screened key 
genes based on a variety of machine learning. The results 
showed that the machine learning method used in this 
study identified DNM1, MEIS1, and SUSD3 as key genes 
significantly associated with AML prognosis based on 
different screening criteria. To further clarify the corre-
lation between key genes and the occurrence and devel-
opment of AML and various cancers, this study also 
performed a single-gene pan-cancer analysis of three key 
genes based on the TCGA database. The expression of 
MEIS1 and DNM1 in AML and normal controls was sig-
nificantly different. MEIS1, SUSD3, and DNM1 were sig-
nificantly associated with the prognosis of AML patients. 
Three key genes were significantly associated with AML 
immune subtypes, and DNM1 and SUSD3 were signifi-
cantly associated with multiple immune checkpoints of 
AML. In addition to the strong association between the 
three key genes and AML, this study also found evi-
dence that they are closely related to the prognosis and 
immunity of various cancers. More importantly, we also 
selected two validation datasets to verify the diagnostic 
value of key genes for AML, and the results showed that 
DNM1, MEIS1, and SUSD3 had good diagnostic values 
for AML.

The myeloid tropism leukemia virus integration site 1 
(MEIS1) gene is located on 1p13-14 of human chromo-
some 2 and is widely expressed in various tissues includ-
ing blood, liver, and brain [25]. MEIS1 is related to the 
differentiation of leukemia stem cells and the prolif-
eration of leukemia cells [26]. Studies have shown that 
MEIS1 is often up-regulated in AML patients and can 
participate in disease progression through a variety of 
mechanisms [27, 28]. Thorsteinsdottir, U. et al. high-
lighted the role of Meis1 in regulating human AML cell 
maintenance and survival in vitro knockdown experi-
ments [29]. Similar to the above study is that our study 
has also found evidence that MEIS1 expression is associ-
ated with AML prognosis, immunity, etc., which further 
proves that MEIS1 may be a biomarker for predicting 
AML prognosis.

Dynamins 1 (DNM1) is a member of the GTP-binding 
protein family. DNM1 is highly expressed in the nervous 
system of the human body and can regulate nerve activ-
ity [30, 31]. Therefore, DNM1 is often reported to play 
a role in nervous system diseases [32, 33]. However, in 
addition to neurological diseases, more and more stud-
ies have shown that DNM1 plays a role in the develop-
ment of many cancers [34–36]. Previous studies have 

Table 2 The results of all machine learning algorithms used for screening important genes related to AML prognosis
Items Machine learning algorithms Intersection genes

LASSO RF SVM XGBOOST IdaProfile nbFuncs caretFuncs lrFuncs
Important genes TFF3 TFF3 TFF3 TFF3 TFF3 TFF3 TFF3 HK3 DNM1

CTSE HOXA7 SUSD3 HOXA7 SUSD3 SUSD3 HOXA7 CTSE SUSD3
SLC25A21 MEIS1 S100P MEIS1 S100P S100P DNM1 PF4 MEIS1
BMX SUSD3 CTSE CTSE CYP4F2 CYP4F2 MEIS1 SPINK2 -
SUSD3 DNM1 CYP4F2 PF4 CTSE CTSE SPINK2 DNM1 -
CYP4F2 - BMX DNM1 BMX BMX CTSE NMU -
HOXA7 - SLC25A21 VNN2 SLC25A21 SLC25A21 SLC25A21 S100P -
DNM1 - DNM1 SUSD3 DNM1 DNM1 BMX FGF13 -
FGF13 - HOXA7 RFESD C17orf99 C17orf99 CYP4F2 EPB42 -
C17orf99 - C17orf99 HOXA5 HOXA7 HOXA7 HOXA5 CYP4F2 -
CA3 - RFESD SLC25A21 LIN7A LIN7A SUSD3 CLEC5A -
SPINK2 - SPINK2 CYP4F2 RFESD FGF13 S100P SUSD3 -
S100P - LIN7A RTN1 FGF13 RFESD - MEIS1 -
MEIS1 - FGF13 SPINK2 HK3 HK3 - CA3 -
NKX2.3 - HK3 BMX SPINK2 SPINK2 - BMX -
RTN1 - CA3 HK3 CA3 CA3 - - -
CLEC5A - MEIS1 NKX2.3 CLEC5A CLEC5A - - -
PF4 - HOXA5 CA3 MEIS1 MEIS1 - - -
HOXA5 - CLEC5A S100P NMU NMU - - -
EPB42 - NMU - HOXA5 HOXA5 - - -
- - VNN2 - VNN2 VNN2 - - -
- - PF4 - PF4 PF4 - - -
- - - - RTN1 RTN1 - - -
- - - - NKX2.3 NKX2.3 - - -
- - - - EPB42 - - - -
- - - - IL1R2 - - - -

AML: acute myeloid leukemia
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found that high expression of DNM1 is an independent 
prognostic biomarker for poor OS in patients with hepa-
tocellular carcinoma [36]. DNM1 is overexpressed in 
many lung cancers, enhances the growth, migration, and 
invasion of cancer cells, and reduces the survival rate of 
lung cancer patients. Activated DNM1 selectively regu-
lates tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL-R2) -mediated endocytosis, allowing can-
cer cells to escape death [37]. Based on the above, DNM1 
may be used as a biomarker to predict the prognosis of 
patients with multiple cancers. In this study, we found for 
the first time evidence that DNM1 is potentially related 
to the prognosis of AML patients, further indicating that 

DNM1 plays a potential role in the occurrence and devel-
opment of AML, and the specific mechanism of action is 
worthy of further discussion.

At present, there are few reports on Sushi domain-con-
taining protein 3 (SUSD3), mainly focusing on the mech-
anism of SUSD3 in the occurrence and development of 
breast cancer. SUSD3 has extracellular, transmembrane, 
and cytoplasmic domains. It is highly expressed in breast 
cancer and estrogen-sensitive tissues such as the liver, 
breast, myometrium, endometrium, and ovary. Experi-
ments have shown that SUSD3 has a higher level of 
expression in estrogen receptor (ER) -positive breast can-
cer cells, and estrogen treatment can further increase its 

Fig. 5 The distribution of important genes screened by each machine learning. The lower left band shows the number of important genes contained 
in each machine learning type. The points and lines in the lower right corner represent a subset of machine learning events. The eight dots and lines 
connected simultaneously indicate the common intersection of these eight machine learning events. The number of related genes in each subset is 
represented in the histogram
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expression [38]. SUSD3 has been reported as one of the 
potential biomarkers for the prognosis of breast cancer 
[39, 40]. This study found for the first time that SUSD3 
is potentially related to the prognosis of AML and is 
expected to be a prognostic marker for AML patients.

In addition, we explored potential pathways associ-
ated with genes closely related to key genes in the train-
ing set through GSEA. Many pathways were found to be 
potentially related to the development of AML. Previous 
study has reported that the dysfunction of the typical 
metabolomics pathway Aminoacyl − tRNA biosynthesis 
indicates that mitochondrial dysfunction, which leads 
to a decrease in the detoxification ability of reactive oxy-
gen species produced by AML chemotherapy and radio-
therapy [41]. P53 plays a key role in normal and leukemia 
hematopoiesis and is the core of the complex network 

of AML-related signaling pathways [42]. NLRP3 inflam-
masome, a major factor in NOD-like receptor signaling 
pathway, promotes the progression of AML in an IL-1β-
dependent manner. Targeting NLRP3 inflammasome may 
provide a new therapeutic option for AML [43]. Based 
on the above, it can be seen that the potential pathways 
related to DNM1, MEIS1 and SUSD3 participate in the 
occurrence and development of AML. We hypothesized 
that DNM1, MEIS1, and SUSD3 are closely related to the 
prognosis of AML, which may be mediated by the above 
pathways. However, the above is only speculation, and 
further functional verification experiments are needed 
to explore the mechanism of these three key genes in the 
occurrence and development of AML.

Based on a variety of machine learning, this study 
has explored three new biomarkers for AML prognosis, 

Fig. 6 MEIS1, DNM1, and SUSD3 gene expression levels in cancers based on TCGA and GTEx. (A) MEIS1 gene expression levels. (B) DNM1 gene expression 
levels. (C) SUSD3 gene expression levels. N: Normal tissues; T: Tumor tissues; Numerical values pertaining to N and T indicate the sample size of normal or 
tumor tissue in different cancer types. *p < 0.05; **p < 0.01; ***p < 0.001
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which provides a new idea for the clinical development 
of individualized targeted therapy and prognosis predic-
tion of AML. However, this study still has some short-
comings. First, all the analyses in this study are based on 
retrospective data in public databases, and large-scale 
prospective studies and additional functional verifica-
tion experiments are needed to confirm our findings. 
Secondly, it is necessary to further explore the specific 
mechanism of the three key genes in AML and their 
influence on the prognosis of AML in future research, so 
as to better explore the molecular mechanism involved in 
tumorigenesis and AML development.

Conclusion
This study found that DNM1, MEIS1, and SUSD3 were 
abnormally expressed in AML and were potentially 
related to its prognosis. They are expected to become 
new biomarkers and potential therapeutic targets for 
predicting the prognosis of AML patients. This study will 
provide a new theoretical basis for the basic research of 
AML.

Fig. 7 Forest plot for the overall survival prognostic analysis of MEIS1, DNM1, and SUSD3 gene expression in human cancers based on TCGA and GTEx. 
(A) The correlation between the expression levels of MEIS1 genes and the prognosis of various cancers. (B) The correlation between the expression levels 
of SUSD3 genes and the prognosis of various cancers. (C) The correlation between the expression levels of DNM1 genes and the prognosis of various 
cancers
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Fig. 8 Correlation analysis between gene expression level and immune subtypes or immune checkpoint genes in pan-cancer (A) The relationship 
between MEIS1, DNM1, and SUSD3 expression and pan-cancer immune subtypes. (C1, wound healing; C2, IFN-gamma dominant; C3, inflammatory; C4, 
lymphocyte depleted; C5, immunologically quiet; C6, TGF-b dominant) (B) The relationship between MEIS1 expression and pan-cancer immune check-
point genes. (C) The relationship between DNM1 expression and pan-cancer immune checkpoint genes; (D) The relationship between SUSD3 expression 
and pan-cancer immune checkpoint genes. *P < 0.05; **P < 0.01; ***P < 0.001

 



Page 12 of 15Cheng et al. BMC Medical Informatics and Decision Making            (2024) 24:2 

Fig. 9 Gene Set Enrichment Analysis (GSEA) for key genes. (A) the potentially enriched pathways related to genes, which are closely associated with 
DNM1 in the training set (GSE15061); (B) the potentially enriched pathways related to genes, which are closely associated with MEIS1 in the training set; 
(C) the potentially enriched pathways related to genes, which are closely associated with SUSD3 in the training set
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