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Abstract 

Background An appropriate prediction model for adverse prognosis before peritoneal dialysis (PD) is lacking. Thus, 
we retrospectively analysed patients who underwent PD to construct a predictive model for adverse prognoses using 
machine learning (ML).

Methods A retrospective analysis was conducted on 873 patients who underwent PD from August 2007 
to December 2020. A total of 824 patients who met the inclusion criteria were included in the analysis. Five commonly 
used ML algorithms were used for the initial model training. By using the area under the curve (AUC) and accuracy 
(ACC), we ranked the indicators with the highest impact and displayed them using the values of Shapley additive 
explanation (SHAP) version 0.41.0. The top 20 indicators were selected to build a compact model that is conducive 
to clinical application. All model-building steps were implemented in Python 3.8.3.

Results At the end of follow-up, 353 patients withdrew from PD (converted to haemodialysis or died), and 471 
patients continued receiving PD. In the complete model, the categorical boosting classifier (CatBoost) model 
exhibited the strongest performance (AUC = 0.80, 95% confidence interval [CI] = 0.76–0.83; ACC: 0.78, 95% CI = 0.72–
0.83) and was selected for subsequent analysis. We reconstructed a compression model by extracting 20 key features 
ranked by the SHAP values, and the CatBoost model still showed the strongest performance (AUC = 0.79, ACC = 0.74).

Conclusions The CatBoost model, which was built using the intelligent analysis technology of ML, demonstrated 
the best predictive performance. Therefore, our developed prediction model has potential value in patient screening 
before PD and hierarchical management after PD.
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Background
Peritoneal dialysis (PD) is one of the main renal 
replacement treatments for end-stage renal disease 
(ESRD, also known as uraemia) [1]. The average num-
ber of new ESRD diagnoses worldwide is 144 individu-
als per million of the general population [2], of which 
approximately 11% receive PD [3]. The international PD 
guidelines recommend family-based renal replacement 
therapy owing to the prevalence of coronavirus 2019, 
and it has become the first choice for dialysis patients 
because of its simplicity and low cost [4]. However, fac-
tors such as peritonitis and peritoneal fibrosis lead to 
the failure of PD technology. The failure of PD tech-
nology limits its application, leading to patient with-
drawal owing to the cost, and lowers patient survival 
rates, even leading to death [5, 6]. Early prediction may 
identify patients who are at high risk of PD technology 
failure in the short term and help determine whether to 
choose PD for renal replacement therapy.

With the exponential growth in healthcare data, 
machine learning (ML) is expected to provide more 
accurate and personalised services when processing 
large-scale medical data, predicting the development 
and prognosis of diseases, assisting doctors in formu-
lating treatment plans, and identifying new disease risk 
factors and treatment methods. ML is also expected 
to promote the progress and development of medi-
cal science. An ML algorithm was used to evaluate the 
accuracy (ACC) of predicting cardiovascular events in 
asymptomatic populations by comparing random sur-
vival forests (an ML technique) with standard cardio-
vascular risk scores [7]. The prognostic factors affecting 
kidney transplant surgery cover multiple fields of sur-
gery, immunology, epidemiology, and physiology; the 
large amount of data that is generated can precisely 
leverage the computational power of ML [8]. However, 
studies using ML algorithms for PD-related prognosis 
are limited.

ML technology was used to predict the progno-
sis, survival, and death risk factors of patients with PD 
and reported that deep neural networks demonstrated 
the best predictive performance (area under the curve 
[AUC]: 0.841) [9]. In patients with PD-associated peri-
tonitis, traditional microbiology and molecular biology 
methods are considerably slow and have limited clinical 
applications. ML has demonstrated the power of using 
nonlinear methods to mine complex biomedical datasets 
to rapidly predict the fine reactivity and specificity of the 
human immune system and target antibiotic medication 
for early patient treatment [10]. Myopenia is associated 
with cardiovascular risk and mortality in patients with 
PD, and the ML model can effectively predict PD myope-
nia using simple clinical indicators [11].

However, we lack an appropriate prediction  model 
for the adverse prognosis before PD; therefore, we con-
structed a prediction model for the adverse prognosis of 
PD using ML based on the data from our medical centre.

Materials and methods
Subjects
We retrospectively analysed 873 patients who underwent 
PD at our institution from August 2007 to December 
2020. The inclusion criteria were 1) diagnosis of chronic 
renal failure and regular PD treatment for over 1 month 
and 2) age of  16 years or older. The exclusion  criteria 
were 1) patients with acute kidney injuries, patients who 
received emergency PD, and patients in renal function 
recovery; 2) patients with incomplete  baseline data; 3) 
patients who received kidney transplantation during fol-
low-up; and 4) patients  who stopped communicating 
with our medical centre. On the basis of these  criteria, 
824  patients  were included in our subsequent analyses. 
This study was approved by the Medical Ethics Commit-
tee of Daping Hospital (YYLS2022-210), and all methods 
were carried out in accordance with relevant guidelines 
and regulations or declaration of Helsinki.

Demographic and clinical information
All  baseline  data  were collected  before PD, and the 
variable collection period was one week before the 
start of PD. The baseline variable was the last value of 
the patient before the start of PD. The patient demo-
graphic  data were as follows: age (years), sex (male/
female), height (cm), weight (kg), body surface area  (m2), 
body mass index (BMI) (kg/m2), Admitted_date (date of 
formal dwelling with peritoneal dialysate), marital sta-
tus (unmarried, married, divorced, widowed), education 
level (primary school and below, junior high school, high 
school, college, undergraduate, master’s degree or above), 
ethnicity (Han, other ethnic minorities), smoking his-
tory (yes/no), history of alcohol consumption (yes/no), 
systolic blood pressure (SBP) (mmHg), diastolic blood 
pressure (DBP) (mmHg), heart rate (beats/min), urine 
volume (ml/24 h), primary disease, comorbidities, dialy-
sis term (months), previous history of renal replacement 
therapy (including haemodialysis and kidney transplanta-
tion), and medication history. The laboratory data were 
as follows: haemoglobin (HGB), ferritin, serum iron, 
serum total iron binding capacity (TIBC), transferrin sat-
uration, blood calcium, blood phosphorus, intact para-
thyroid hormone (iPTH), calcium–phosphorus product, 
alkaline phosphatase, serum albumin, prealbumin, blood 
sodium, blood potassium, blood chlorine, carbon diox-
ide binding capacity, creatinine, urea nitrogen, uric acid 
β2 microglobulin, estimated glomerular filtration rate 
(eGFR), total cholesterol (TC), triglyceride, low-density 
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lipoprotein cholesterol (LDL-c), high-density lipoprotein 
cholesterol (HDL-c), TIBC, serum ferritin (SF), fasting 
blood glucose (FBG), glycosylated HGB, β-type natriu-
retic peptide, troponin, creatine kinase (CK), CK myoglo-
bin (CKMB), C-reactive protein (CRP), vitamin D (Vd), 
erythrocyte sedimentation rate (ESR), hepatitis B surface 
antigen, hepatitis C antigen/antibody, syphilis antibody, 
and human immunodeficiency virus antibody.

The imaging techniques were as follows: echocardiog-
raphy (left ventricular end-diastolic diameter, interven-
tricular septum thickness, left ventricular posterior wall 
thickness, and calculation of the left ventricular mass and 
left ventricular mass index), and carotid artery colour 
Doppler ultrasound (the presence of plaque formation).

The adverse prognosis was  defined  as the withdrawal 
from PD or all-cause mortality within 24 months of PD 
initiation. The patients were divided into PD withdrawal 
and PD continuation groups  according to whether an 
adverse prognostic event occurred. If a patient withdrew 
from PD during follow-up, the time and reason for with-
drawal (peritonitis, insufficient dialysis, ultrafiltration 
failure, thoracoabdominal fistula, catheter dysfunction, 
patient requirements, and other causes) were recorded. 
If a patient died, the dialysis duration and cause of death 
(cardiovascular death, other causes) were recorded. The 
study was terminated on 31 December 2020.

Statistical analysis
The measurement data are expressed as the mean ± stand-
ard deviation, and the counting data are expressed as a 
percentage. The measurement data between the groups 
were compared using the t-test, and the two group rates 
were compared using the chi-square test. The data were 
processed using the Statistical Package for the Social Sci-
ences version 20.0. ML methods were used to construct 
a predictive model for the adverse prognosis in patients 
with PD. During the model construction, the enrolled 
patients were randomly divided into two groups at a ratio 
of 7:3. The larger group was the training subset for ML, 
and the smaller group was the testing subset for model 
testing. A small number of missing continuous vari-
ables were supplemented using the median method, and 
the categorical variables were supplemented using the 
0-value method.

The following five commonly used ML algorithms were 
used for the initial model training: categorical boost-
ing classifier (CatBoost) version 1.0.6, logistic regression 
(LR) version 1.0.2, light gradient boosting (LGB) version 
3.2.1, gradient boosting (GBT) version 1.0.2, and random 
forest (RFL) version 1.0.2. LR is a type of generalised lin-
ear regression. The advantage is that the rate function is 
derivable to any order and has good mathematical prop-
erties. Many existing numerical optimisation algorithms 

can be used to find the optimal solution. The disadvan-
tage is that LR cannot be used to solve nonlinear prob-
lems and cannot address the problem of data imbalance. 
In ML, the goal is to train the model successfully with 
multiple learning algorithms. Boosting is a method that 
is often used in practice and is not built in parallel but 
sequentially. The weak algorithm first trains the model 
and then reassembles the model according to the train-
ing results to improve the learning rate of the model. 
GBT is the most basic boosting model algorithm, which 
has no role in optimising complex data types and missing 
data. LGB is a highly effective way to reduce errors and 
improve ACC and speed; however, it does not support 
strings and requires a special algorithm to split the clas-
sified data. LGB performs better than CatBoost on large 
datasets and high-dimensional data, whereas CatBoost is 
better than LGB at handling category features and miss-
ing values. CatBoost is a symmetric decision tree–based 
learner, which relies on the GBT framework and a small 
number of parameters, supports categorical variables, 
and has high ACC. The optimisation algorithm formula 
of CatBoost is as follows:

where D is the set of all data available to train and evalu-
ate our ensemble. CatBoost chooses the data to use for 
fitting by placing an arbitrary order on the elements of D 
with a random permutation σ. Let σ(k) be the kth ele-
ment of D under σ, and Dk = {x1,  x2, …,  xk−1}, as ordered 
by the random permutation σ. Another concept for 
understanding how CatBoost encodes the values of cate-
gorical variables is the indicator function 1a=b , which is a 
function of one variable that has the value of one when 
a = b and zero otherwise. This indicator function plays an 
important role in the formula applied by CatBoost to 
map the values of a categorical feature to a numerical 
value. Specifically, this formula involves the indicator 
function 1xij=xik

 , which takes the value one when the ith 
component of input vector  xj of CatBoost is equal to the 
ith component of input vector  xk. p is the added prior 
term, and a is usually a weight coefficient greater than 
zero. For binary classification problems, the prior term is 
the prior probability of the positive example. These con-
cepts enable us to define the formula for the encoded 
value xik.

The AUC, ACC, F1 score, and precision recall curve 
were used as the primary evaluation indices to select the 
optimal model for further optimisation. We obtained 
the ranking of the indicators that had the most signifi-
cant impact on the model and displayed them using the 

x̂ik =

∑
xj∈Dk

1xij=xik
· yj + ap

∑
xj∈Dk

1xij=xik
+ a

,
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Shapley additive explanation (SHAP, version 0.41.0) 
values, from which the top 20 indicators were selected 
to build a compact model conducive to clinical applica-
tion. All the model-building steps were implemented in 
Python (version 3.8.3).

Results
According to the inclusion criteria, nine patients with a 
dialysis duration of less than one month at the time of 
withdrawal were excluded. During follow-up, 31 patients 
underwent kidney transplantation, and nine were lost. 
A total of 824 patients were included in the analysis 
at the end of  follow-up, 353 patients withdrew from PD 
(converted to haemodialysis or died), and 471 patients 
continued receiving PD.

Our cohort included 481 men and 343 women with an 
average age of 47.82 ± 15.45 years, and most were married 
(91.6%) and of the Han ethnicity (94.7%). The education 
level was mainly middle school (37.0%), with smokers 
accounting for 24.7% and alcohol consumption account-
ing for 15.6%. The three primary causes of chronic renal 
failure were chronic glomerulonephritis in 479 patients 
(58.1%), diabetic nephropathy in 112 patients (13.5%), 
and hypertensive renal injury in 21 patients (2.5%). The 
most common complications were hypertension (n = 454, 
55.0%). Significant differences in age, education level, uri-
nary output, history of kidney transplantation, primary 
renal disease, comorbidity, and history of medication 
were  identified  between  the  two  groups. Demographic 
data are presented in Table 1.

The PD withdrawal group had higher levels of ferri-
tin, blood calcium, alkaline phosphatase, eGFR, LDL-
c, FBG, glycated HGB, CRP, cardiac ejection fraction, 
blood phosphorus, iPTH, serum albumin, creatinine, 
urea nitrogen, and uric acid. β2 microglobulin was lower 
in the PD continuation group, and we observed no sta-
tistically significant differences in the other indicators 
(Table 2).

Comparison of the five complete models
The performances of the different models are listed in 
Table  3. The CatBoost algorithm exhibited an excellent 
AUC of 0.80 (95% confidence interval [CI]: 0.76–0.83) 
and an ACC of 0.78 (95% CI: 0.72–0.83) values. The 
prediction performance of the traditional LR method was 
acceptable, with an AUC of 0.76 (95% CI: 0.73–0.80) and 
an ACC of 0.71 (95% CI: 0.64–0.77). The performances 
of the other three ensemble learning algorithms, LGB 
(AUC: 0.72; ACC: 0.74), GBT (AUC: 0.72; ACC: 0.76), 
and RFL (AUC: 0.72; ACC: 0.65), were relatively poor. 
The receiver operating characteristic (ROC) curve of 
the complete model is displayed in Fig. 1a. The CatBoost 

model exhibited the strongest performance and was 
selected for subsequent analysis.

Key features and compact model
After excluding 187 individuals  because 
of  missing  data  on covariates or  the  predictor 
variables  of  interest, 637  patients  were  included  in  the 
final  model  construction. The calculated SHAP values 
summarised the ranking of the features that had the 
strongest influence on the prediction results of the 
complete model. The feature names and the extent 
of their influence are presented in Fig.  2. Among the 
demographic characteristics, age, weight, BMI, and 
education level were selected as significant predictors 
of adverse PD prognosis. Iron metabolism was closely 
related to haematopoiesis, among which TIBC and SF 
were key predictors. Prealbumin and serum albumin 
levels, which were closely related to liver synthesis, also 
played important roles. There were also prominent roles 
for HDL-c, FBG, and TC in glycolipid metabolism. In 
addition, calcium and phosphorus metabolism (Vd, 
serum phosphorus, and iPTH), cardiovascular function 
(SBP, CKMB), ESR, and creatinine had some predictive 
effects.

We reconstructed a compression model by extracting 
20 key features ranked by the SHAP values. This simpli-
fied version of the model (AUC: 0.79; ACC: 0.74) was 
slightly weaker in performance than the full model but 
was more conducive to clinical application and data col-
lection (Fig. 1b). The complement model had a maximum 
Youden index of 0.48, which gives a sensitivity of 0.68 and 
a specificity of 0.80. The maximum Youden index of the 
compact model was 0.46, and the sensitivity and speci-
ficity were 0.71 and 0.75, respectively. The specific data 
parameters are listed in Table 4.

Model explanation
The summary plot of the SHAP values in Fig. 2 provides 
an overview of the impact of the features of the final 
model. Figure  3 illustrates two specific forecasting 
examples. The blue bars represent protective factors, 
where longer bars indicate that PD was less likely to 
fail. The red bars represent risk factors and indicate the 
opposite effect. As depicted in Fig.  3a, a 64-year-old 
patient with poor education, low TIBC, and prealbumin 
levels was suspected of having reduced hepatic 
compensatory function. The final model predicted that 
his PD would fail, and he became hospitalised with 
infectious peritonitis after 7.1  months of dialysis. For 
another 40-year-old patient, HGB, prealbumin, and 
albumin levels all appeared normal, indicating a strong 
compensatory capacity (Fig.  3b). The model predicted 
that the patient was suitable for PD, and the patient 
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Table 1 Patient demographics and clinical characteristics

Characteristics Total (N: 824) PD continuation group 
(N: 471)

PD withdrawal group 
(N: 353)

P

Age (years) 47.82 ± 15.45 45.36 ± 14.46 51.11 ± 16.12 < 0.001

Sex (male)/N (%) 481 (58.3%) 263 (55.8%) 218 (61.7%) 0.088

BMI, kg/m2 22.98 ± 3.62 22.89 ± 3.74 23.1 ± 3.46 0.421

Body surface area  (m2) 1.61 ± 0.19 1.6 ± 0.19 1.62 ± 0.18 0.350

Marital status 0.216

 Unmarried 62 (7.5%) 42 (8.9%) 20 (5.6%)

 Married 755 (91.6%) 426 (90.4%) 329 (93.2%)

 Divorced 6 (0.7%) 3 (0.6%) 3 (0.8%)

 Widowed 1 (0.1%) 0 1 (0.2%)

Education level 0.004

 < 6 years 185 (22.4%) 69 (14.6%) 116 (32.8%)

 6–9 years 305 (37.0%) 177 (37.5%) 128 (36.2%)

 9–12 years 151 (18.3%) 97 (20.8%) 54 (15.2%)

 12–17 years 81 (9.8%) 54 (11.4%) 27 (7.6%)

 > 17 years 3 (0.3%) 2 (0.4%) 1 (0.2%)

Ethnicity, Han/N (%) 781 (94.7%) 449 (95.3%) 332 (94.0%) 0.414

Smoking history/N (%) 204 (24.7%) 115 (24.4%) 89 (25.2%) 0.793

Drinking History/N (%) 129 (15.6%) 73 (15.4%) 56 (15.8%) 0.887

Systolic blood pressure (mmHg) 150.47 ± 26.13 150.14 ± 25.34 150.92 ± 27.19 0.672

Diastolic blood pressure (mmHg) 86.23 ± 18.79 87.12 ± 18.08 85.03 ± 19.67 0.115

Heart rate (bpm) 86.28 ± 13.86 87.09 ± 14.28 85.19 ± 13.22 0.052

Urinary output (ml/24 h) 1013.71 ± 473.18 1048.09 ± 448.97 967.84 ± 500.65 0.016

History of kidney transplantation/N (%) 8 (0.9%) 1 (0.2%) 7 (1.9%) 0.027

History of haemodialysis/N (%) 36 (4.3%) 17 (3.6%) 19 (5.3%) 0.218

Primary renal disease 0.001

 Glomerulonephritis 479 (58.1%) 298 (63.2%) 181 (51.2%)

 Diabetic kidney disease 112 (13.5%) 42 (8.9%) 70 (19.8%)

 Hypertension 21 (2.5%) 9 (1.9%) 12 (3.3%)

 Obstructive nephropathy 10 (1.2%) 6 (1.2%) 4 (1.1%)

 Lupus nephritis 8 (0.9%) 3 (0.6%) 5 (1.4%)

 Cystic kidney disease 5 (0.6%) 3 (0.6%) 2 (0.5%)

 Renal vasculitis 5 (0.6%) 3 (0.6%) 2 (0.5%)

 Others 28 (3.3%) 13 (2.7%) 15 (4.2%)

 Unknown 156 (18.9%) 94 (19.9%) 62 (17.5%)

Comorbidity/N (%)

 Diabetes mellitus 135 (16.3%) 58 (12.3%) 77 (21.8%) < 0.001

 Hypertension 454 (55.0%) 257 (54.5%) 197 (55.8%) 0.723

 Coronary heart disease or myocardial infarction 48 (5.8%) 25 (5.3%) 23 (6.5%) 0.464

 Congestive heart failure 17 (2.0%) 7 (1.4%) 10 (2.8%) 0.178

 Cardiac arrhythmias 14 (1.6%) 9 (1.9%) 5 (1.4%) 0.587

 History of stroke or cerebral vascular diseases 25 (3.0%) 8 (1.6%) 17 (4.8%) 0.010

 Malignancies 7 (0.8%) 3 (0.6%) 4 (1.1%) 0.442

 Peripheral arterial disease 8 (0.9%) 3 (0.6%) 5 (1.4%) 0.259

 Urology procedures 12 (1.4%) 6 (1.2%) 5 (1.6%) 0.860

History of medication

 ARB 376 (45.6%) 220 (46.7%) 156 (44.1%) 0.473

 ACEI 40 (4.8%) 11 (2.3%) 29 (8.2%) < 0.001

 CCB 654 (79.3%) 369 (78.3%) 285 (80.7%) 0.401

 Diuretic 160 (19.4%) 99 (21.0%) 61 (17.2%) 0.179
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continued PD after the follow-up period for over five 
years.

Discussion
PD-associated peritonitis is one of the leading causes of 
PD withdrawal and death [12, 13]. ML algorithms are 
becoming increasingly popular in medical research and 
can be applied to disease screening, diagnosis, and prog-
nosis. We used ML intelligent analysis technology to con-
struct a predictive model for the adverse prognosis of PD 
and demonstrated that age, body weight, and albumin 
levels are important predictive factors for the adverse 
prognosis of PD. We developed five predictive models; in 
the complete model, the calculated SHAP values summa-
rised the strongest predictive indicators and sorted and 
extracted the 20 key features to reconstruct the model. 
Collectively, our findings suggested that the CatBoost 
model demonstrated the strongest performance.

We ranked the factors closely related to the adverse 
prognosis of patients by the SHAP values, with the top 
20 key factors including age, body weight, albumin, and 
blood lipids. The meta-analysis revealed that age is a 
risk factor for all-cause cardiovascular death in dialysis 
patients [14]. In this study, we observed that the age of 
patients in the PD continuation group was significantly 
lower than that in the adverse prognosis group (45.36 
vs 51.11 years, P < 0.001). In the complete model, the 
calculated SHAP values confirmed that age had the 
strongest impact on predicting an adverse prognosis 
for patients with PD. In addition, body weight and BMI 
were critical predictive factors for adverse PD prognosis, 
with higher BMI leading to higher hospitalisation rates 
for peritonitis [15]. In the general population, obesity 

is associated with increased cardiovascular risk and 
reduced survival, but the “obesity paradox” in ESRD has 
always been controversial [16, 17]. Our study suggests 
that increased body weight and BMI correlate with a 
lower risk of adverse PD prognosis. The nutritional 
indicators include body weight, as well as albumin and 
blood lipids. A positive correlation between nutritional 
status and dialysis duration has been reported in patients 
with PD because a nutritious diet reduces the incidence 
of complications such as peritonitis [12].

Education level was also considered a vital predic-
tor of adverse PD prognosis, and multiple studies have 
demonstrated that [18, 19] patients with lower education 
levels experience increased peritonitis and technical fail-
ure than those with higher education levels. The poten-
tial reason may be that patients with lower education 
levels have lower incomes and poor compliance, which 
affects their access to timely healthcare, medication, and 
treatment.

The high prevalence of cardiovascular diseases in 
patients with PD is related to uremic toxins, inflammation 
(ESR), and disorders in bone mineral metabolism 
(Vd, serum phosphorus, and iPTH) [20]. Similarly, we 
observed Vd, serum phosphorus, iPTH, ESR, creatinine, 
and cardiovascular disease to be associated with adverse 
PD prognosis in patients. Furthermore, we observed that 
TIBC and SF are critical predictive factors for adverse PD 
prognosis and that higher amounts of iron increase the 
risk of QT dispersion [21]. Functional  iron deficiency is 
an independent risk factor for all-cause death in patients 
with PD. Consistent with our research findings, patients 
with PD with high iron levels have a four-fold higher 
risk of all-cause cardiovascular death [22]. The effect 

Table 1 (continued)

Characteristics Total (N: 824) PD continuation group 
(N: 471)

PD withdrawal group 
(N: 353)

P

 EPO 604 (73.3%) 368 (78.1%) 236 (66.8%) < 0.001

 Uric acid-lowering medications 110 (13.3%) 87 (18.4%) 23 (6.5%) < 0.001

 Iron 144 (17.4%) 74 (15.7%) 70 (19.8%) 0.123

  β-receptor blockade 185 (22.4%) 109 (23.1%) 76 (21.5%) 0.583

  α-receptor blockade 187 (22.6%) 95 (20.1%) 92 (26.0%) 0.046

  α/β-receptor blockade 60 (7.2%) 25 (5.3%) 35 (9.9%) 0.012

  α-ketoacids 226 (27.4%) 112 (23.7%) 114 (32.2%) 0.007

  Antidiabetic agents 115 (13.9%) 49 (10.4%) 66 (18.6%) 0.001

  Lipid-lowering medications 115 (13.9%) 68 (14.4%) 42 (11.8%) 0.289

  Sleep aids 11 (1.3%) 6 (1.2%) 5 (1.4%) 0.109

  Glucocorticoids 16 (1.9%) 6 (1.2%) 10 (2.8%) 0.154

  Immunosuppressive agents 10 (1.2%) 3 (0.6%) 7 (1.9%) 0.081

  Calcimimetic agents 3 (0.3%) 2 (0.4%) 1 (0.2%) 1.000

BMI Body mass index, PD Peritoneal dialysis, ARB Angiotensin receptor blockers, ACEI Angiotensin-converting enzyme inhibitors, CCB Calcium channel blockers, EPO 
Erythropoietin
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of the COVID-19 pandemic on patients with PD is still 
being debated, and certain authors argue that COVID-
19 has no effect on the survival of patients with PD [23]. 

However, other researchers state that the COVID-19 
pandemic led to increased death [24, 25]. During the 
severe period of the COVID-19 pandemic, the mortality 

Table 2 Patient baseline laboratory data for peritoneal dialysis

eGFR Estimated glomerular filtration rate, PD Peritoneal dialysis

Characteristics Total PD continuation 
group (N: 471)

PD withdrawal group 
(N: 353)

t/ χ2 p
(N: 824)

Haptoglobin 81.23 ± 18.41 81.02 ± 19.05 81.5 ± 17.55 − 0.376 0.707

Ferritin 290.04 ± 289.57 270.31 ± 263.08 316.78 ± 320.55 − 2.06 0.040

Serum iron 12.67 ± 7.58 12.72 ± 7.61 12.6 ± 7.55 0.210 0.834

Total iron binding capacity 44.17 ± 9.19 43.84 ± 8.82 44.66 ± 9.73 − 1.189 0.235

Transferrin saturation 29.35 ± 17.16 29.69 ± 16.89 28.85 ± 17.58 0.651 0.516

Serum calcium 1.93 ± 0.28 1.91 ± 0.29 1.95 ± 0.27 − 2.188 0.029

Serum phosphorus 2.03 ± 0.62 2.1 ± 0.62 1.94 ± 0.6 3.699 < 0.001

Intact parathormone 396.61 ± 257.89 420.99 ± 264.14 359.5 ± 243.89 3.190 0.001

Calcium-phosphorus product 4.15 ± 1.24 4.2 ± 1.2 4.09 ± 1.29 1.243 0.214

Alkaline phosphatase 92.63 ± 45.68 89.52 ± 42.86 97.27 ± 49.33  − 2.149 0.032

Serum albumin 32.84 ± 5.61 33.79 ± 5.21 31.58 ± 5.88 5.707 < 0.001

Prealbumin 302.51 ± 88.02 309.74 ± 82.38 291.27 ± 95.2 2.692 0.007

Serum sodium 138.31 ± 4.01 138.5 ± 3.95 138.05 ± 4.07 1.615 0.107

Serum potassium 4.59 ± 0.87 4.59 ± 0.82 4.59 ± 0.94 − 0.028 0.978

Serum chloremia 104.88 ± 5.81 105.21 ± 5.74 104.44 ± 5.89 1.879 0.061

Carbon dioxide combining power 18.84 ± 4.67 18.72 ± 4.65 19.01 ± 4.7 − 0.882 0.378

Serum creatinine 891.45 ± 358.22 920.84 ± 359.19 852.24 ± 353.64 2.731 0.006

Serum urea nitrogen 28.48 ± 12.96 29.85 ± 13.92 26.66 ± 11.34 3.513 < 0.001

Uric acid 492.67 ± 139.6 502.99 ± 136.61 478.93 ± 142.52 2.455 0.014

β2 microglobulin 21.55 ± 8.74 22.67 ± 8.58 19.89 ± 8.72 3.669 < 0.001

eGFR 5.68 ± 2.31 5.47 ± 2.13 5.96 ± 2.5 − 3.036 0.002

Total cholesterol 4.15 ± 1.24 4.13 ± 1.25 4.18 ± 1.23 − 0.571 0.568

Triglyceride 1.54 ± 1.07 1.58 ± 1.08 1.49 ± 1.04 1.057 0.291

Lower blood lipids 2.52 ± 0.88 2.59 ± 0.87 2.43 ± 0.89 2.480 0.013

High-density lipoprotein 1.17 ± 0.52 1.16 ± 0.49 1.2 ± 0.56 − 0.942 0.347

Fasting blood glucose 5.07 ± 1.97 4.88 ± 1.46 5.33 ± 2.49 − 2.910 0.004

Glycosylated haemoglobin A1c 5.33 ± 0.9 5.21 ± 0.88 5.5 ± 0.9 − 3.168 0.002

B-type Natriuretic Peptide 2062.5 ± 4874.21 1834.29 ± 4537.45 2500.66 ± 5485.42 − 0.783 0.435

Troponin 0.07 ± 0.09 0.07 ± 0.08 0.08 ± 0.1 − 1.245 0.214

Creatine kinase Myoglobin 3.67 ± 6.79 3.57 ± 6.97 3.86 ± 6.44 − 0.466 0.642

Creatine kinase 279.14 ± 342.13 279.44 ± 337.61 278.58 ± 351.5 0.028 0.978

C-reactive protein 12.36 ± 27.05 9.25 ± 21.24 17.67 ± 34.2 − 3.367 0.001

Erythrocyte sedimentation rate 56.2 ± 38.08 54.69 ± 35.74 59.29 ± 42.46 − 0.994 0.321

Hepatitis B surface antigen 70 (8.4%) 40 (8.4%) 30 (8.4%) < 0.001 0.998

Hepatitis C antigen 11 (1.3%) 4 (0.8%) 7 (1.9%) 1.202 0.273

Syphilis antibody 2 (0.2%) 1 (0.2%) 1 (0.2%) < 0.001 1.000

Left ventricular end-diastolic dimensions 4.93 ± 3.76 4.81 ± 3.01 5.26 ± 5.38 − 0.879 0.380

Interventricular septal thickness 1.19 ± 0.76 1.16 ± 0.6 1.29 ± 1.11 − 1.256 0.210

Left ventricular posterior wall thickness 1.07 ± 0.16 1.07 ± 0.16 1.08 ± 0.17 − 0.516 0.606

Left ventricular mass 217.97 ± 70.66 215.91 ± 70.97 226.39 ± 69.49 −0.921 0.358

Left ventricular mass index 133.33 ± 40.04 132.18 ± 40.18 138.03 ± 39.53 − 0.906 0.366

Left ventricular ejection fraction 64.02 ± 7.07 64.87 ± 6.63 61.67 ± 7.76 3.331 0.001

Carotid artery plaque/N (%) 28 (3.3%) 16 (3.3%) 12 (3.3%) < 0.001 0.998
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rate of patients with PD at our centre was 2.64%, whereas 
no significant changes were observed in the mortality 
rate of patients with PD (5.13%) over the same period. We 
believe that the COVID-19 pandemic had no significant 
effect the results of the model.

ML is an interdisciplinary field of mathematics and sta-
tistics [26] that involves fitting predictive models to data 
for information grouping. We assumed that ML methods 
could predict the adverse prognosis of patients before 
starting PD, recommended the most favourable dialy-
sis method, and provided timely medical intervention, 
which improved patient prognosis and reduced medical 
costs.

CatBoost is the third Gradient-Boosted Decision Tree 
(GBDT)–based improved algorithm after XGBoost and 
LightGBM [27]. Launched by Yandex Company in Russia 
in 2018 and is open source. It uses gradient lifting on 
the decision tree and can be easily integrated into deep-
learning frameworks. Based on the GBDT framework, 
which has fewer parameters, CatBoost supports 
categorical variables with high ACC and can efficiently 
and reasonably process t-algorithms. CatBoost has been 
extensively studied in the prediction of skin sensitisation 
[28], depression occurrence [29], pregnancy diabetes 
management [30], and transplanted kidney function [8], 
and it exhibits good predictive performance. Owing to 
numerous factors that affect an adverse PD prognosis and 
considering the clinical applications, we reconstructed a 
compression model by extracting 20 key features ranked 
by the SHAP values. This simplified version of the model 
was slightly weaker in performance than the full model 
but was more conducive to clinical application and data 
collection. Before a patient starts PD, the CatBoost model 
can be used to predict whether the patient is suitable for 
PD treatment and whether PD-related peritonitis may 
occur. On the basis of the prediction, the most optimal 
dialysis plan can be selected for the patient allowing early 
intervention.

Our  study  had  several  limitations. First, this was a 
single-centre retrospective study, and we could not 
evaluate whether the external cohort population 
exhibited the same pattern. Second, this study used 
the median of missing values, which inevitably led to 
bias. Third, the  number  of  cases  was relatively  small, 
and the model construction lacked cross-validation 
and  external  validation, all of which affected  the  ability 

Table 3 Basic performance indicators of the five complete 
models

ACC  Accuracy, AUC  Area under the curve, CI Confidence interval, F1 F1 score, PRC 
Precision recall curve, CI Confidence interval

Model name AUC (CI) ACC (CI) F1 score (CI) PRC (CI)

Cat Boost Classifier 0.8 0.78 0.57 0.52

[0.76, 0.83] [0.72, 0.83] [0.50, 0.64] [0.45, 0.60]

Logistic Regression 0.76 0.71 0.48 0.45

[0.73, 0.80] [0.64, 0.77] [0.44, 0.52] [0.39, 0.52]

Light Gradient 
Boosting

0.72 0.74 0.42 0.44

[0.68, 0.77] [0.68, 0.81] [0.35, 0.48] [0.36, 0.50]

Gradient Boosting 0.72 0.76 0.41 0.35

[0.70, 0.79] [0.70, 0.82] [0.34, 0.51] [0.31, 0.43]

Random Forest 0.72 0.65 0.41 0.41

[0.62, 0.75] [0.58, 0.72] [0.37, 0.45] [0.34, 0.48]

Fig. 1 The ROC curves of the models. A The complete model ROC curves of five algorithms. The CatBoost algorithm had the highest AUC of 0.80. 
B The compact model ROC curve of the optimal algorithm. The algorithm with the best performance in the complete model was adjusted, 
and the top 20 variables with the strongest correlation were selected to create a compact model with an AUC of 0.79. ROC, receiver operating 
characteristic; AUC, area under the curve
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to generalise the  model. A  multicenter  joint study is 
needed to validate the model. Finally, only patients with 
PD were included in the study. Therefore, the model 
might be strongly biased if it is used for patients with 
chronic kidney disease for the selection of the best renal 
replacement therapy.

Fig. 2 The SHAP values of the Catboost model. A The variables with the strongest correlation in the prediction model were ranked, and the top 20 
were obtained. B The SHAP value of these variables. SHAP, Shapley additive explanation

Table 4 Performance indicators of the final models

ACC  Accuracy, AUC  Area under the curve

Model Performance

ACC AUC Youden Sensitivity Specificity

Full 0.78
[0.72, 0.83]

0.80
[0.76, 0.83]

0.48 0.68
[0.53, 0.80]

0.80
[0.73, 0.86]

Compact 0.74
[0.68, 0.80]

0.79
[0.75, 0.84]

0.46 0.71
[0.56, 0.82]

0.75
[0.67, 0.81]

Fig. 3 Two examples of model interpretation. A A patient who was predicted to be unfit for PD failed after a short period of PD. B A patient 
predicted to be suitable for PD succeeded for over two years and continued PD for five years
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Conclusions
Collectively, the CatBoost model built using the intel-
ligent analysis technology of ML demonstrated the best 
predictive performance (AUC: 0.79; ACC: 0.74). Thus, 
the model has potential value in patient screening before 
PD and hierarchical management after PD.
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