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Abstract 

Background  Irregular time series (ITS) are common in healthcare as patient data is recorded in an electronic health 
record (EHR) system as per clinical guidelines/requirements but not for research and depends on a patient’s health 
status. Due to irregularity, it is challenging to develop machine learning techniques to uncover vast intelligence hid-
den in EHR big data, without losing performance on downstream patient outcome prediction tasks.

Methods  In this paper, we propose Perceiver, a cross-attention-based transformer variant that is computationally 
efficient and can handle long sequences of time series in healthcare. We further develop continuous patient state 
attention models, using Perceiver and transformer to deal with ITS in EHR. The continuous patient state models utilise 
neural ordinary differential equations to learn patient health dynamics, i.e., patient health trajectory from observed 
irregular time steps, which enables them to sample patient state at any time.

Results  The proposed models’ performance on in-hospital mortality prediction task on PhysioNet-2012 challenge 
and MIMIC-III datasets is examined. Perceiver model either outperforms or performs at par with baselines, and reduces 
computations by about nine times when compared to the transformer model, with no significant loss of perfor-
mance. Experiments to examine irregularity in healthcare reveal that continuous patient state models outperform 
baselines. Moreover, the predictive uncertainty of the model is used to refer extremely uncertain cases to clinicians, 
which enhances the model’s performance. Code is publicly available and verified at https://​codeo​cean.​com/​capsu​le/​
45872​24.

Conclusions  Perceiver presents a computationally efficient potential alternative for processing long sequences 
of time series in healthcare, and the continuous patient state attention models outperform the traditional 
and advanced techniques to handle irregularity in the time series. Moreover, the predictive uncertainty of the model 
helps in the development of transparent and trustworthy systems, which can be utilised as per the availability 
of clinicians.

Keywords  Deep learning, Neural ordinary differential equations, Irregular time series, Electronic health records, 
Perceiver, In-hospital-mortality, MIMIC-III

Background
Electronic Health Records (EHR) often contain irregu-
lar time series (ITS) data due to uneven time intervals 
between measurements of patient attributes [1]. In EHR, 
ITS can occur due to several reasons. For example, data 
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in an EHR system are not recorded for research purposes 
but are recorded as per guidelines, medical requirements 
and for supporting medical claims etc., and all measure-
ments and treatments depend on a patient’s health sta-
tus [2]. Since machine learning algorithms mostly work 
with fixed-size feature vectors so this irregular data is 
converted to regularly spaced data, which leads to the 
generation of missing values for intervals when no meas-
urements were taken [1, 3]. ITS are widely prevalent in 
primary and secondary care, including critical care, e.g., 
the MIMIC-III dataset has a missing rate of over 90% for 
hourly sampled ITS [1, 4, 5].

The adoption of EHR in healthcare has resulted in 
big data that has presented great opportunities for the 
development of machine learning algorithms and arti-
ficial intelligence technologies to reduce the burden on 
the healthcare system, support clinical decision mak-
ing and efficient management of healthcare resources 
[6–16]. Machine learning algorithms, however, are pri-
marily predicated on an assumption of coherent fixed 
dimensional feature vectors, and presence of ITS in 
EHR invalidates that assumption. The irregularity pre-
sents challenges in utilising the vast intelligence hid-
den in EHR big data and developing machine learning 
algorithms without losing performance on downstream 
tasks [17]. As a result, it is important to develop tech-
niques for appropriately handling irregularity in EHR 
for numerous reasons, such as resource management, 
triaging, diagnosis, treatment, and prognosis. Due to 
the significance and widespread presence of irregularity 
in healthcare, ITS and the resulting missing values have 
received great attention from the research community, 
and several approaches have been proposed to address 
the irregularity [2, 3, 18–23]. For example, from the tra-
ditional statistical techniques for replacing missing val-
ues (such as using zero and mean values), imputation, 
interpolation, and matrix completion-based techniques 
[24] to advanced techniques, including neural processes 
[2], adaptation of recurrent neural networks (RNN) [25], 
neural ordinary differential equations (NODE) based 
RNN [18], and attention-based techniques [19] (please 
refer to [26] for a recent review).

Traditional basic statistical techniques for replac-
ing missing values, such as using zero, mean, median, 
and carry-forward, are biased and rely on underly-
ing assumptions about how data are generated. This is 
reported to result in a loss of performance in patient 
outcome predictions [27]. Many recent techniques for 
addressing irregularity fall short of capturing feature 
correlations in data [25], consider missingness and 
patient outcome predictions separately [28], and fail 
to learn the pattern of missingness, or are ineffective 

in handling long sequences and noise [24] etc. While 
some techniques, like [18], can handle completely miss-
ing time-step, most techniques, like [3], can only handle 
partially missing values.

In this paper, our contributions are two-fold: first, we 
propose a computationally efficient variant of trans-
former [29] based on the idea of cross-attention [30–32], 
called Perceiver, to process long sequences of time series 
in EHR, and second, we propose a continuous variant of 
these attention-based models, i.e., Perceiver and trans-
former to address the above limitations of ITS tech-
niques. The proposed continuous patient state attention 
models learn patient health trajectory for end-to-end 
learning from observed time steps, which can consider 
long sequences, noise, and completely missing time steps, 
including sparse time series.

The transformer-based models are one of the most suc-
cessful deep learning techniques, which demonstrated 
impressive results across different domains [3, 33, 34]. 
However, the quadratic dependence of the transformer-
based models on input limits their application to long 
sequences. To address this issue, recently, cross-atten-
tion-based models [30–32] are proposed to squeeze 
large inputs to tighter learnable latents, which are then 
followed by self-attention operations (transformer) on 
squeezed inputs. Inspired by the idea of cross-attention, 
we develop a Perceiver model for EHR to handle long 
sequences of time series, as discussed in Methods  sec-
tion. Perceiver could be useful in healthcare since EHR 
data represent a lot of information about patients, and 
working with a complete and long trajectory of a patient’s 
health status would yield better results.

To address irregularity in EHR data, we propose 
continuous variants of Perceiver and transformer for 
patient’s health status, called as COntinuous Patient 
state PERceiver (COPER) and Continuous Trans-
former (CTransformer), respectively. These continuous 
state attention models learn patient health dynamics, 
i.e., patient health state trajectory from the observed 
irregular time steps from which patient health state 
can be sampled at any time-step and used to generate 
a regular time series to be processed with Perceiver/
transformer model. COPER/CTransformer can handle 
completely missing time steps, i.e., time steps where no 
data is recorded, as well as small noise in the observa-
tions because it can generate the complete time series 
after learning from the observed irregular time steps. 
COPER/CTransformer achieves continuity in patient’s 
health status using embedding and NODE. The model-
ling of a patient’s health status could be helpful in sev-
eral tasks, including treatment, prognosis, diagnosis 
and disease progression modelling.
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The proposed work has some similarities to [18, 35] 
and [30–32]. The work in [18, 35], specifically [18] pro-
posed latent ODE (LODE) based on recurrent neural 
networks and developed an encoder and decoder-based 
architecture employing NODE in both to address irreg-
ularity. LODE learns the dynamics of the hidden state 
of the model. Thus, our work differs from LODE, in 
terms of using non-recurrent neural networks, using 
one NODE, and using NODE for continuity of patient 
state rather than the hidden state of the neural net-
work. Moreover, the works in [30–32] are based on the 
idea of cross-attention of inputs with learnable latents 
for reducing the complexity of the transformer-based 
architectures. Our work is also inspired by the idea of 
cross-attention but is architecturally different (refer to 
Methods section for details) from the existing work and 
presents an application to solving a different problem, 
i.e., irregularity in EHR.

To evaluate the empirical performance of the pro-
posed techniques, we have used in-hospital-mortality 
(IHM) prediction task using MIMIC-III and Physio-
Net-2012 datasets, which contain time series data from 
the intensive care unit (ICU). Area under the receiver 
operating curve (AUROC) and area under the precision 
recall curve (AUPRC) are used as performance metrics. 
Perceiver is compared with long short-term memory 
(LSTM) [36], temporal convolutional network (TCN) 
[37] and DLinear [38] as baselines. For evaluating the 
performance of the continuous patient state models, we 
have designed experiments to study irregularity at 25%, 
50% and 75% missing time steps by randomly removing 
the time steps, and compared them with simple base-
lines, like LSTM and Perceiver with carry forward, as 
well as advanced state-of-the-art techniques, like LODE 
[18], Multi-Time Attention Network (mTAND) [19] and 
DLinear [38].

The contributions of the paper are summarised below.

•	 A computationally efficient cross-attention based 
variant of transformer, called Perceiver, is proposed 
for time series in EHR data. The cross-attention oper-
ation helps to reduce the computations by squeezing 
long sequences to smaller latents.

•	 To address irregularity in EHR data, we propose con-
tinuous variants of Perceiver and transformer, called 
COPER and CTransformer, respectively, which learn 
the dynamics of a patient’s health from irregularly 
observed time steps using neural ordinary differential 
equations.

•	 Empirical evaluation of the proposed techniques 
is performed on in-hospital-mortality prediction 

task using MIMIC-III and PhysioNet-2012 data-
sets. The experiments show that Perceiver can be 
used as a potential alternative for processing time 
series in EHR, and reduces the computations by 
around nine times as compared to the transformer 
without significant loss of performance. The care-
fully designed experiments for continuous patient 
state models also show their efficacy in dealing 
with irregular time series in EHR. Moreover, the 
proposed techniques also employ predictive uncer-
tainty to improve performance, transparency and 
trustworthiness.

The preliminary idea of this work was published in [39]. 
This paper revises the idea and the empirical evalua-
tion of [39] in several ways: (i) the architecture/idea is 
revised to have continuity only in patient health state 
as this suffices to address irregularity in EHR, which 
also improves results than having continuity in input as 
well as output spaces. Moreover, similar to continuous 
Perceiver, a continuous transformer is also proposed, 
(ii) methodology is discussed in detail and algorith-
mic details are also provided, (iii) new experiments are 
added to show the utility of Perceiver over transformer 
architecture, (iv) additional dataset and metric are con-
sidered for evaluating the proposed techniques, and 
(v) experiments are added to utilise the uncertainty of 
the proposed techniques to improve transparency and 
hence trustworthiness.

Methods
In this section, we discuss the architecture and algorith-
mic details of the proposed Perceiver and the continuous 
patient state models.

Perceiver
Transformer [29] based models have been success-
ful across different domains with different modalities, 
including time series in healthcare [8, 40]. However, 
the main limitation of these models is their quadratic 
dependence on the input size, which results in large 
computational complexity when dealing with long con-
text inputs – limiting their applicability to such prob-
lems that are quite common in healthcare time series 
data [41].

The cross-attention-based models [30–32] are recent 
advancements to transformer [29] based models and 
they address issue of a quadratic dependence of trans-
formers on input by introducing a cross-attention 
operation of learnable smaller latents with inputs. The 
cross-attention distils a long sequence input to smaller 
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latents which is followed by self-attentions (trans-
former) on the squeezed latents, as given below. In our 
time series setting, a long sequence of time steps can be 
squeezed into a customised number of latents for pro-
cessing with transformer based models, which other-
wise could be computationally very expensive or even 
infeasible in some cases to use transformers directly on 
input data.

The architecture of COPER model, and Perceiver as 
a component of COPER, are presented in Fig.  1. The 
proposed Perceiver model borrows the idea of cross-
attention from [30–32] but has different architecture as 
shown in Fig.  1. Perceiver uses a cross-attention opera-
tion to squeeze the input sequence length from T time 
steps into l < T  number of latents of the same feature 
dimension as the original sequence. The cross-attention 
is applied M-times on the input and the outputs are 
averaged, which are then processed using transformer 
(self-attention) layers, leading to lower computations as 
compared with processing the original input directly with 
transformers.

Suppose {Xi, yi}
n
i=1 be a training dataset with n patients 

where Xi ∈ R
td×D represents ITS of a patient i having 

D features for uneven td time steps recorded for feature 
d, where each time-step represents health status of the 
patient. yi ∈ {0, 1} represents patient outcomes (say in-
hospital-mortality, where 0 refers to a patient, who lives 
to be discharged, else dies in hospital). First, let us define 
attention operation [29], which is a scaled dot product 
attention between a set of queries (Q), keys (K) and val-
ues (V), as given below.

where α denotes attention function and dk is dimen-
sion of key vector. The self-attention operation has 
Q = K = V = Xi while cross-attention operation has 
Q = Z and K = V = Xi , where Xi ∈ R

T×e represents a 
data point (a patient in our case) with e features having T 
time steps, and Z ∈ R

l×e for 1 ≤ l ≤ T  number of latents. 
Algorithm  1 provides details about flow of information 
through COPER and Perceiver, which is explained in the 
next subsection.

Continuous patient state attention
Continuous patient state attention models are 
advanced deep learning models to handle irregular 
time series data in EHR. They learn a patient’s health 
trajectory from observed time steps, i.e., observa-
tions of the patient’s health status at uneven time 
steps. By learning patient health dynamics, they can 
handle irregularity as well as noise in the patient’s 
health status for successfully predicting patient health 
outcomes.

COPER is based on the recent advancements of neu-
ral ordinary differential equations (NODE) and cross-
attention-based models to handle ITS in EHR and can 
be applied to different tasks. The overall architecture of 
COPER model is represented in Fig. 1 and the pseudoc-
ode for representing the flow of information is given in 
the Algorithm 1.

(1)α(Q,K ,V ) = softmax
QKT

dk
V ,

Fig. 1  Architecture of COPER: An embedding of irregular time series is passed through NODE, which captures patient health dynamics 
from observed time steps, and is used to generate a regular time series. The generated regular time series is then fed to Perceiver model which first 
squeezes the long sequence of T time steps to a l < T  latents using cross-attention and then followed by self-attention operations
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Algorithm 1 COntinuous Patient state PERceiver

As described in the algorithm, COPER processes input 
ITS Xtd ,D , having D features with td time steps for feature 
d, first by learning an optional embedding Xtd ,e of size e 
for each time-step, using a single layer multi-layer per-
ceptron (MLP). These embeddings are then processed 
with NODE, which is another recently proposed cate-
gory of neural networks. NODE learns the dynamics of a 
patient’s health status from which a patient’s health status 
can be inferred at any time and a regular time series can 
be generated. NODE consists of a neural network and a 
black-box ordinary differential equation (ODE) solver. 
The neural network outputs a derivative of the patient’s 
health status, which is fed to an ODE solver. The ODE 
solver enables the model to calculate the patient’s health 
status at any time step and hence enabling it to address 
ITS, as described below.

where Z is a patient state, fθ is a neural network which 
parameterises the derivative of the patient state. The 
ODESolver takes the derivative from fθ and initial patient 
state Z0 and calculates the patient’s health status at 
desired time steps (t0, ..., tN ).

Steps 5-10 are part of Perceiver model, which first adds 
positional encoding to the input for maintaining the 
order information of time steps using sine and cosine 
functions, as given below [29]:

As shown in Fig.  1, Perceiver applies M cross-atten-
tions on encoded input with latents Z, followed by N 
successive self-attention operations on average of 

(2)
dZ
dt

= fθ (Z(t), t),

Z0, ...,ZN = ODESolver
(

fθ ,Z0, (t0, ..., tN )
)

,

(3)
PositionalEncoding(pos,2i) = sin(pos/100002i/dmodel

),

PositionalEncoding(pos,2i+1) = cos(pos/100002i/dmodel
).

cross-attention operations ( M = 1,N = 1 in our exper-
iments). The resulting output is then passed through 
a fully connected layer to predict output probabilities 
and followed by a standard machine learning process 
to update parameters in an end-to-end differentiable 
manner.

An architecture and algorithm for CTransformer can be 
obtained by replacing cross-attention operation with self-
attention in the architecture and algorithm of COPER.

Results
This section presents details about a prediction task, data-
sets, performance metrics, baselines, and experiments.

Datasets and baselines
The proposed models are evaluated for in-hospital 
mortality (IHM) prediction task using two publicly 
available datasets, i.e., PhysioNet Challenge 2012 
dataset (hereon referred to as PhysioNet) [42, 43] and 
Medical Information Mart for Intensive Care (MIMIC-
III) dataset (hereon referred to as MIMIC) [44]. These 
are time series datasets based in the intensive care unit 
(ICU) setting. IHM is a binary classification problem 
that determines whether a patient will survive their 
hospital stay or pass away within the first 48 hours of 
ICU admission using hourly data. IHM prediction is 
particularly crucial for resource management, triage, 
initial risk assessment, and creating successful treat-
ment programmes [25]. For preprocessing of MIMIC 
dataset, we have followed [45] to get a dataset with 76 
features and 14,681, 3,236 and 3,222 samples in train, 
validation, and test datasets1, respectively. For Phy-
sioNet dataset, we follow preprocessing as used in 
[18]. The dataset has 47 features and a total of 8,000 

1  https://​github.​com/​Yerev​aNN/​mimic3-​bench​marks

https://github.com/YerevaNN/mimic3-benchmarks


Page 6 of 16Chauhan et al. BMC Medical Informatics and Decision Making          (2024) 24:117 

samples. Due to the smaller size, we have used 5-fold 
cross-validation in our experiments. Furthermore, val-
idation data is taken as 20% of the training data.

Two sets of experiments are designed as follows: the 
first set presents Perceiver model – a computationally 
efficient variant of transformer – as a potential alter-
native for learning from time series data. The experi-
ments compared the model with Long Short-Term 
Memory (LSTM) [36] and Temporal Convolutional 
Network (TCN) [37] – the widely used techniques for 
handling time series data, and DLinear [38]. Experi-
ments are also designed to show how the latents in 
Perceiver can be used to squeeze long sequences into 
a tight smaller number of latents to reduce computa-
tional cost. The second set of experiments presents 
continuous patient state attention models for handling 
irregularity in EHR. Since our proposed work is based 
on attention and NODE so for comparative study, we 
have chosen simple baselines as well as baselines based 
on state-of-the-art attention and NODE-based tech-
niques. The selected baselines are LSTM and Perceiver 
with carry forward to deal with missing steps, and 
Multi-Time Attention Network (mTAND) [19], and 
latent ODE (LODE) [18] which are advanced state-of-
the-art techniques for handling irregularity and are 
based on attention and NODE, respectively. We also 
consider DLinear [38] which is inspired by Autoformer 
[46] and FEDformer [47] and decomposes input data 
into trend and seasonal components for carrying out 
different downstream tasks, like classification, forecast-
ing and imputation, as available from TSlib2 [48]. To 
study irregularity, we have designed experiments at 0%, 
25%, 50% and 75% missingness by randomly removing 
time steps. The area under the receiver operating curve 
(AUROC) and the area under the precision-recall curve 
(AUPRC) are used as a performance metric for the 
comparative study.

Experimental settings
Hyperparameters of COPER are selected using a ran-
dom search, and trial and error over a range of values: 
embedding layer is implemented using a multi-layer 
perceptron (MLP) with a single hidden layer of 32 (16, 
32, 64, 128) neurons (where values inside parenthe-
sis represent the set of values tried), NODE is imple-
mented using an MLP with three hidden layers of 128 
(50, 100, 128) neurons for each NODE, cross- and 
self-attention heads have 128 (32, 64, 128, 256) dimen-
sions, latents have 64 (32, 64, 128, 256) dimensions, 
dropout for attentions and NODE networks are set 

to 0.5 (0.2, 0.3, 0.4, 0.5, 0.6). The number of latents, 
unless specified, are set equal to the number of time 
steps. The number of cross-attention operations is set 
to one, i.e., M = 1 and the self-attention operations are 
N = 1(1, 2, 3, 4, 5) . For LSTM, the number of layers is 
set to two (one, two) each with a hidden state of size 
50 (16, 32, 50, 64, 128), the dropout rate is set to 0.5 
(0.2, 0.3, 0.4, 0.5, 0.6) and single-directional (single, bi). 
The TCN implementation and hyperparameter setting 
is followed from [37] with a dropout rate of 0.70%3. For 
mTAND4, we follow the source paper and have set the 
hyperparameters as (PhysioNet, MIMIC): alpha (100, 
5), learning rate (0.0001, 0.0001), rec-hidden dimen-
sion (256, 256), gen-hidden dimension (50, 50), latent-
dimension (20, 128), norm (true, true), kl (true, true), 
learn-emb (true, true), k-iwae (1, 1), and number of 
epochs are set to 300. For the LODE5, we follow the 
source paper and have set hyperparameters as (Physio-
Net, MIMIC): latent-dimension (20, 40), rec-dimension 
(40, 80), Poisson (true, true), and number of epochs are 
set to 300. For DLinear [38], we follow implementation 
and hyperparameters from TSlib6 [48], and use 3 e-lay-
ers, 128 dimensions for d-model, 256 dimensions for 
d-ff 256 and a learning rate of 0.001, while loss is sum 
of imputation loss as well as classification loss.

For all the models, we have set Adam [49] as an opti-
miser with a constant learning rate of 0.0001. To avoid 
overfitting, in addition to dropout, we have used early 
stopping with the patience of 10 epochs. Total num-
ber of epochs is set to 100 unless provided by the base-
line paper. The batch size is set to 64 for all the models 
except LODE, where it is set to 32 with the MIMIC data-
set because LODE is memory intensive and the machine 
crashes with 64 data points. Each experiment is executed 
with five seed values. All the experiments are imple-
mented in PyTorch [50] and executed on an Ubuntu 
machine (64GB RAM, 1 NVIDIA GeForce GPU 12 GB). 
The code is publicly released and verified at https://​codeo​
cean.​com/​capsu​le/​45872​24.

Perceiver
We compared the proposed Perceiver model against 
LSTM, TCN and DLinear. Figure  2 presents the com-
parative study on PhysioNet dataset using AUPRC and 
AUROC as the performance metrics. The left panel pre-
sents results using AUPRC, and we observe that Perceiver 
significantly outperforms LSTM ( p < .001 ). DLinear 

3  https://​github.​com/​locus​lab/​TCN
4  https://​github.​com/​reml-​lab/​mTAN
5  https://​github.​com/​Yulia​Ruban​ova/​latent_​ode
6  https://​github.​com/​thuml/​Time-​Series-​Libra​ry2  https://​github.​com/​thuml/​Time-​Series-​Libra​ry

https://codeocean.com/capsule/4587224
https://codeocean.com/capsule/4587224
https://github.com/locuslab/TCN
https://github.com/reml-lab/mTAN
https://github.com/YuliaRubanova/latent_ode
https://github.com/thuml/Time-Series-Library
https://github.com/thuml/Time-Series-Library
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outperforms all the baselines, however, it has larger vari-
ability in performance and it does not show significant 
improvement over Perceiver ( p > .05 ). TCN performs 
the worst in terms of AUPRC on PhysioNet. The outlier 
performance in all the models is present due to cross-
validation, as the performance of the models is better on 
one of the folds compared to the rest. The right panel of 
the figure presents results for the AUROC metric, and we 
observe results similar to AUPRC. We find that Perceiver 
significantly outperforms LSTM ( p < .001 ), and TCN, 
once again, performs the worst. The performance dif-
ference between DLinear and Perceiver is not significant 
( p > .05 ). The variance in the values of Perceiver model 
is the least among all the models. Thus, Perceiver model 
exhibits either better or at par performance against the 
baselines on PhysioNet dataset for the in-hospital mor-
tality prediction task.

The comparative study of Perceiver with the baselines 
on MIMIC dataset is presented in Fig.  3. The left panel 
compares AUPRC and as it is clear from the figure, Per-
ceiver slightly outperforms the baselines. Moreover, as 
observed earlier for PhysioNet, LSTM surpasses TCN. 
The right panel compares the performance using AUROC 
and has results different from those observed with the 
PhysioNet as well as AUPRC on MIMIC. All the models 
perform very close to each other, except DLinear, as the 
maximum variation in the performance was around 0.01, 
and TCN performs the best on average. Perceiver signifi-
cantly ( p < .05 ) outperforms DLinear for both the cases. 
AUROC is similar in MIMIC and PhysioNet datasets, 
although AUPRC is slightly better for PhysioNet than 
MIMIC. The performance differences between the two 
datasets could be attributed to differences in the number 
of features, data points, and missingness.

Fig. 2  Comparative study of Perceiver against the baselines on PhysioNet dataset using AUPRC (left) and AUROC (right)
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Next, we present experiments to show the utility of Per-
ceiver over transformer. The key idea of Perceiver is the 
use of cross-attention operation (Step 6 of Algorithm 1) to 
squeeze a long sequence to a customised smaller learna-
ble latents. This helps Perceiver to manage computational 
complexity as compared with the self-attention operation 
of transformers, which has a quadratic dependence on 
input sequence and may not be suitable for large inputs.

Figure 4 compares computational requirements and per-
formance of Perceiver and transformer on PhysioNet and 
MIMIC datasets. The bottom panel presents floating-point 
operations per second (FLOPS), top left and right panels 
compare AUPRC and AUROC, for the transformer and Per-
ceiver with varying numbers of latents from one to length 
of the input, i.e., the number of time steps in the input 
(48 in our case). From the figure, we observe that by con-
trolling the number of latents in Perceiver, we can reduce 

computations as compared with the transformer. We can 
reduce computations by around nine times on MIMIC and 
PhysioNet datasets, without any significant drop in perfor-
mance except AUPRC on MIMIC dataset. Transformer and 
Perceiver have the same architecture except for the latents 
introduced by the Perceiver, and because of those latents, 
the Perceiver takes more FLOPS for 30 to 48 latents. The 
computational time complexity of a self-attention layer is 
denoted by O(D.T 2) , where D represents the dimensional-
ity of the input sequence and T denotes its length. Similarly, 
for the cross-attention layer, the time complexity is O(D.T.l), 
with l (l << T ) being the length of the latent vectors. In the 
case of Perceiver, the dimensions of the query are depend-
ent upon the latents. Consequently, after the cross-attention 
layer, subsequent self-attention layers in Perceiver exhibit a 
complexity of O(D.l2) . This characteristic enables Perceiver 
to effectively manage complexity through its latent vectors, 

Fig. 3  Comparative study of Perceiver against the baselines on MIMIC dataset using AUPRC (left) and AUROC (right)
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Fig. 4  Comparative study of Perceiver with varying number of latents and transformer (TF) models, in terms of AUPRC (left), AUROC (right) 
and FLOPS (bottom)
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facilitating the processing of inputs or sequences of con-
siderable length. Regarding space complexity, we need to 
store query, key, value, and attention score matrices. So, the 
space complexity of the self-attention layer is represented 
as O(3D.T + T 2) . Conversely, for cross-attention layers, 
the complexity is O(2D.T + D.l + T .l) , and for subsequent 
self-attention layers in Perceiver, it becomes O(3D.l + l2) . 
These complexities underscore Perceiver’s efficiency in han-
dling both time and space requirements, contributing to its 
ability to mitigate computational overhead. Additionally, 
Perceiver improves the inference time over the transformer 
by up to 8% by controlling the latent dimension.

Continuous patient state attention
Here, we present results for the proposed continuous 
attention models, i.e., COPER and CTransformer, to 
deal with irregularity in EHR data. Continuous attention 

models learn patient health dynamics from observed 
irregular observations, each of which represents a 
patient’s health state at a given time. Once patient health 
dynamics are learned, missing time steps can be sampled. 
To study the continuous models, we specifically design 
experiments at missingness of 0%, 25%, 50% and 75%, and 
study the performance of the proposed models against 
the baselines, such as mTAND, DLinear and LODE, as 
well as LSTM and Perceiver using carry forward tech-
niques. In the carry forward technique for addressing 
irregularity, we simply replace missing steps with previ-
ously available observation.

The comparative study of the proposed continuous 
patient state models against the baselines on the Physio-
Net dataset is presented in Fig. 5 using the AUPRC (left) 
and AUROC (right). From the left panel, we find that 
CTransformer is the best model, except at no missingness 

Fig. 5  Comparative study using varying irregularity on PhysioNet dataset using AUPRC (left) and AUROC (right)
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where DLinear performs the best, and performs slightly 
better than Perceiver model. LODE performs the worst. 
Except for DLinear, with increasing irregularity in EHR, 
mostly the performance remains the same except for a 
slight drop at 75%. DLinear exhibits the most variation 
in performance and experiences the largest performance 
decline with 25% missing data. However, its performance 
stabilises after this point. This is likely due to its inabil-
ity to identify seasonal and trend patterns, which are not 
particularly prominent in EHR data, especially with miss-
ing time steps. The right panel of the figure compares 
AUROC and has a performance similar to AUPRC. How-
ever, DLinear is the worst performer and again shows 
more variability than the rest of the models. Simple 

baselines with carry forward, i.e., LSTM and Perceiver, 
also handle irregularity quite well. However, Perceiver 
performs better than LSTM. This agrees with some of the 
literature [51] which shows that carry forward works well 
for EHR in some settings.

Figure  6 presents the performance of different mod-
els with varying degrees of irregularity on MIMIC data-
set. The performance trends on MIMIC differ slightly 
from PhysioNet. Overall, there is less variability in the 
results for all the models and the variability in perfor-
mance increases on MIMIC with increasing irregular-
ity. The proposed continuous variant of the transformer, 
i.e., CTransformer significantly ( p < .01 ) outperforms all 
the baselines and shows small variability in performance. 

Fig. 6  Comparative study using varying irregularity on MIMIC dataset using AUPRC (left) and AUROC (right)
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DLinear performs the worst as it has more decrease in 
performance with increasing irregularity. LSTM shows 
more variability in the performance with increasing 
irregularity. However, Perceiver, which also uses a sim-
ple carry forward mechanism like LSTM, performs with 
almost no drop in performance until 50% irregularity and 
a slight drop at 75% irregularity. Perceiver also performs 
better than its continuous version COPER. One potential 
reason for this could be over 90% missingness in MIMIC 
dataset [1]. LODE performs better on MIMIC dataset 
than PhysioNet dataset, as it observes a small drop in 
performance with increasing irregularity.

The techniques which utilise NODE for handling irreg-
ularity in EHR, i.e., COPER, CTransformer and LODE, 
are computationally expensive due to the use of an MLP 
in NODE. Among these, LODE uses two NODEs, one 
each in encoder and decoder, and is the most computa-
tionally expensive. For MIMIC dataset, one run of LODE 
can take up to two days, so it is not a good option for long 
sequences.

During the evaluation of continuous attention mod-
els, we have a choice of either generating the entire time 
series after learning the dynamics from the ITS or keep-
ing the observed time steps and generating only the miss-
ing time steps. For lower irregularity and noisy data, 
generating the entire time series is helpful to reduce the 
effect of the noisy data, however, for higher irregularity 
generating only missing time steps is better.

Ablation study
In this subsection, we present an ablation study of the 
proposed continuous patient state attention models. We 
compare the proposed model, which uses one NODE, 
to using two NODEs, called COPER-2ODE, as was done 
in the preliminary idea presented in [39]. Additionally, 
we replace the attention models in the proposed model 
with LSTM, i.e, we develop a continuous patient state 
based LSTM, called LSTM-ODE where NODE learns 
patient health dynamics and addresses the irregularity in 
EHR while LSTM performs the downstream task, where 
NODE and LSTM both are trained in an end-to-end dif-
ferentiable manner.

Figure  7 presents the ablation study for the proposed 
model using MIMIC and PhysioNet datasets. For sim-
plicity, we present results with AUROC and for 25% miss-
ingness as we see similar patterns for AUPRC and other 
missingness cases. From the figure, we observe similar 
patterns for both datasets where COPER-2ODE per-
forms worse and shows large variability in performance 
as compared with the proposed model. This is potentially 
due to the use of two NODEs where errors in modelling 
patient state dynamics are exacerbated by the second 
NODE which learns the dynamics of the hidden state of 

the model. Since one NODE is sufficient to address irreg-
ularity in EHR and learning patient health status pro-
vides meaningful interpretation and can be extended to 
explore disease progression modelling so only one NODE 
was used in the proposed model. From comparing the 
proposed model with LSTM-ODE, it is clear that the pro-
posed attention model performs better than LSTM-ODE. 
LSTM-ODE may be preferable with smaller sequences 
while the proposed continuous attention models are suit-
able for longer sequences, which will be explored in the 
future study.

Selective predictions and expert referrals
The predictive uncertainty of a machine learning model 
is useful in guiding the use of a model in high-stake 
applications, such as healthcare. The models are used for 
selective predictions and highly uncertain predictions of 
a model are referred to a clinician for further examina-
tion. This will increase the transparency and trust of clin-
ical users in machine learning techniques and will help in 
the adoption of machine learning in healthcare.

The latents of Perceiver lend a natural support to 
uncertainty quantification because after processing each 
of the latent can be passed through separate prediction 
heads, similar to a multi-task setting, generating multiple 
predictions. However, we observed that the processed 
latents at the classifier layer lack diversity and thus fail to 
express predictive uncertainty. So, ways to learn diversity 
in the processed latents will be explored in future work. 
We have used the Monte Carlo (MC) dropout technique 
[52] for calculating the model’s predictive uncertainty 
and is an approximation of Bayesian techniques [52] 
which otherwise are difficult to train. MC dropout is a 
simple but scalable technique and does not require train-
ing multiple models or even retraining models, rather 
trained models which use dropout for regularisation 
can be used for uncertainty quantification. MC dropout 
requires activating the dropout layers during the testing 
phase, which is otherwise turned off. So, each evaluation 
of the model with the same data point gives different pre-
diction probabilities. We evaluated our models 25 times 
on each sample of the test dataset, and the mean and var-
iance of these 25 predictions act as actual predictions and 
predictive uncertainty of the model.

We refer highly uncertain cases to clinicians and evalu-
ate the model performance selectively on the remain-
ing test dataset. Figure  8 presents test accuracy against 
the proportion of cases referred to the clinician. The 
left panel presents the results for Perceiver with Physio-
Net and the right panel presents results for COPER with 
MIMIC dataset at 50% irregularity (selected randomly). 
Both figures show similar behaviour, and as expected, 
the performance of both models increases when the 
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uncertain cases are removed. Thus, uncertainty quantifi-
cation is useful, and cases can be referred to clinicians as 
per their availability.

Discussions
Based on the idea of cross-attention-based architectures, 
we proposed a computationally efficient variant of the 
transformer, called Perceiver, as a potential alternative for 
processing time series data in EHR. The cross-attention 
operation helps to squeeze the long sequences of time 
series to a smaller number of latents which then can be 
processed using self-attention operations, requiring fewer 
computations than directly processing the time series with 
transformer based models. Perceiver outperforms LSTM 
and TCN, the widely used techniques for time series, and 

is at par or better performance than DLinear. Perceiver was 
able to reduce the computations by around nine times, as 
compared with transformers with no significant loss of per-
formance. We further extended Perceiver and transformer 
models to learn the patient health dynamics from the ITS. 
These continuous models employ neural ordinary differ-
ential equations to model patient health trajectory from 
which patient state can be sampled at any time-step, hence 
addressing the irregularity issue in EHR.

These continuous attention models can handle long 
sequences, completely missing time steps, and noisy 
observations and employ end-to-end learning for han-
dling irregularity. The experiments prove the efficacy of 
the proposed work on in-hospital-mortality prediction 
task using PhysioNet and MIMIC-III datasets. Unlike 

Fig. 7  Ablation to study the effect of two Neural ODEs and attention models using MIMIC (left) and Physionet (right) datasets
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the existing approaches, such as LODE, which model the 
hidden state dynamics of the neural networks, continu-
ous attention models model patient health state and can 
be useful for other tasks, like disease progression model-
ling. We also employ uncertainty quantification for calcu-
lating the predictive uncertainty of the proposed models, 
which was used for selective predictions and referring the 
uncertain cases to clinicians. This helps in improving the 
performance of the system, adjusting the working of the 
models as per the time availability of clinicians, and build-
ing transparency and the trustworthiness of the proposed 
techniques for adoption in healthcare.

LSTM with a carry forward technique for handling 
irregularity does not perform well as it shows a decrease 
in performance with the increasing irregularity in EHR. 
However, Perceiver with carry forward performs signifi-
cantly better than LSTM with carry forward for handling 
ITS. Overall, CTransformer outperforms all other tech-
niques. COPER also indicates competitive performance 
in dealing with irregularity and is computationally less 
expensive than the CTransformer and LODE models. 
Amongst all the techniques for handling ITS, LODE is the 
most expensive and takes up to two days to train on the 
MIMIC dataset. Thus, the Perceiver and the continuous 

Fig. 8  Utilisation of predictive uncertainty for selective predictions and referring the uncertain predictions to the clinicians: The left panel presents 
the test accuracy of Perceiver on PhysioNet and the right panel presents the test accuracy of the COPER on MIMIC dataset, against the proportion 
of uncertain cases referred to the clinicians
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patient state attention models provide computationally 
efficient techniques for handling ITS in EHR.

The proposed attention-based models are advanced deep 
learning models, so they share the same limitations as the 
other models of the same type, such as requiring more data 
to train, hyperparameter tuning, and more computational 
resources than traditional machine learning approaches. 
Despite this, we were able to reduce computations com-
pared to the transformer, and the proposed models to han-
dle ITS are computationally cheaper than state-of-the-art 
NODE-based models, such as LODE. To further evaluate 
the performance of Perceiver and the continuous attention 
models, in the future, we will study more tasks and data-
sets across different disciplines, including sepsis predic-
tion in an ICU setting and longer sequences with original 
cross-attention. Since our work learns the patient’s health 
dynamics, it could be helpful in disease progression mod-
elling and will be explored in future studies. Moreover, we 
will explore ways to introduce diversity in the processed 
latents at the classifier layer for quantifying the predictive 
uncertainty of the proposed models, because latents pro-
vide a natural support for quantifying predictive uncer-
tainty. Additionally, understanding the interpretability 
of cross-attention layers and comparing them with self-
attention layers and other methods of interpretability will 
be investigated. This analysis will contribute to compre-
hending how these models capture and utilise information 
from different parts of the input sequence. Furthermore, 
future research will explore the scalability of the proposed 
methods with tasks of varying and longer input sequences, 
including online handwriting recognition.

Conclusions
We adapted cross-attention to propose a Perceiver 
model to process time series in electronic health 
records. Perceiver, through learnable latents, reduced 
the computations by nine times as compared with 
the transformer. To address irregularity in electronic 
health records, we further propose continuous atten-
tion models for Perceiver and transformer which 
learn a patient’s health-status dynamics. The continu-
ity of the proposed continuous patient state attention 
models comes from the neural ordinary differential 
equations which help to sample a patient state at any 
time-step from observed irregular time-steps. The 
empirical analysis with in-hospital-mortality task using 
MIMIC-III and PhysioNet datasets prove the efficacy 
of the proposed techniques. Moreover, the predictive 
uncertainty of the model helps in the development of 
transparent and trustworthy systems, which can be 
utilised as per the availability of the clinicians.
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